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Note on Second Born Approximation and Proton-Neutron and
Proton-Proton Scattering
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The scattered amplitude f(8} is regarded as a series in powers of the interaction potential V,
and the second Born approximation consists in calculating the scattered intensity up to the
fourth power of V. The calculation can be carried out analytically for a Gaussian potential,
leading to a simple way of calculating the second approximation for the phases. The result
is applied to the proton-neutron and proton-proton scattering at 100 Mev, on the basis of
the three forms of nucleon interaction suggested by Rarita and Schwinger, with a Gaussian
V(r} and without tensor forces. The result for the symmetrical theory is: o~ =0.96&(10~'
cm', o~ 2, =0.22)&10 '~ cm', as compared with the first approximation values 1.40X10~'
and 0.28X10~~ cm~, respectively. These give for (o„+cr~ ~) the value 1.18, in much closer
agreement with the observed value 1.17 for o„g than the other two forms of interaction
potential.

I. INTRODUCTION

~OR the scattering by a central 6eld, the
scattered amplitude is given by the Faxen-

Holtzmark formula, namely,

f(8) = Q(2l+1)(e""—1)P((cos8)
2ik

=- P(2l+1)[r,—P,I+
k

+i(8P ,'5(4 —~ —))Pi(cosO). (1)

The usual 6rst Born approximation consists in

(i) dropping off all terms except bg, and (ii)
replacing b~ by its 6rst approximation

xM
V(r) J, )'(kr)rdr,

2h' ~p

One usual method of improving on the Born
approximation is to use b~&'& in (1), so as to take
into account the higher powers of bi. This
procedure will be justi6ed if the difference
50*"' b~&'& is—very small compared with (b~&'&)'

This is, however, in general not the case for low
values of /, so that this procedure does not form
any consistent approximation in the sense of the
perturbation theory.

It has been shown' that the phase b~ can be
developed as a series in powers of the interaction
potential V(r), namely,

g, —g, ( )+g,( )+. . .

where 5~&'& is given by (2) and

where 3I is the proton or neutron mass for
proton-neutron collisions.

Recent calculations on the cross section of
proton-neutron scattering at high energies show
that the first Born approximation is unsatis-
factory at 100 Mev. ' As the exact calculation of
the phases b& by numerical integration of the
wave equation is lengthy for any potential other
than the rectangular hole one, it is of some
interest to have better approximate methods
than the usual Born approximation.

' J. Ashkin and T. Y. %u, Phys. Rev. 73, 973 (1948);
M. Camac and H. A. Bethe, Phys. Rev. 78, 191 (1948}.

X l'(r) J,+)(kr) J ( )(kr)rdr
Jp

X $J&+~(kr)I & y(k$) —J, ~(kr)
0

X~~+)(kk) j~ ~ '(k&) V(5)Ãk. (4)-

Calculation of b~(2) by means of this expression
is very lengthy, if not difticult.

~ E. J. Hellund, Phys. Rev. 59, 395 {1941}.
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Another approximate formula for l'&i has been sufficient to employ bi&» in (8), but in the First
found by Pais' by the variational method. The term it is necessary to employ'
expression is

g, —g, ( )+g,( )

2l+ 1 —(2&1&/&r)

2I+ 1 —(4&I&/&r)

m llew

V(r) J (kr) rdr.
2h' ~ 0

f+)—(2b g /~)

Instead of summing (8a) with &I&= hi ' +8P'
and b&&2) given by (4) or a similar expression
obtained by the perturbation method, it is found

(5) convenient to calculate the First two terms in

(7) together, namely,

If &Ii is small, this can be put in the form (3),
with bi&') given by (2) and

If'"(» I'+ If("(» I'= If'"(»+f'"(» I'

Let f be the solution of

where

2&&' 8,&» )
21+1)

(i)
q

E ap ),=,+i

(6)

(6a) and let

3f
hP+ k' V(—r)—/=0,

h'

4'(0) +)I'(»+4'(2) + ' ' '
~

When b~ is small, calculation of b~(') according to
(6) is easy. Unfortunately, Pais' method is not
valid for low values of l,, and 1=0 in particular,
and recourse must be made to numerical solution
of the wave equation.

In the present note, we shall obtain the second
Born approximation and apply the result to
proton-neutron and proton-proton scatterings at
100 Mev.

where &&0) is the solution of the equation

Af+k'f =0

and represents the incident wave. By successive
approximation, one obtains

IL SECOND BORN APPROXIMATION

We shall regard f(» as a series in powers of the
interaction potential V(r). The scattered in-

tensity I(8) is, up to the fourth power of V(r),

M
(~+k'j4'&» =—V(r))I'«&

and their solutions

~(» = If'"(» I'+ If'"(» I'+2f'"(»f"'(» (7)
(i) r

4&r ~ Ir"—r'I k'-'

h

X I '(r') e)&' "dr',
f(»(» =—P(2I+ I)&I&P&(cos»,

k

f("(»=- g(2I+1)b&'P&(cos»,
k

)I'&»(r) =
4~~

1 3II

Ir —r"
I

k'

&«("')4&»(r")dr".

I rom the asymptotic solutions P&»(r), P&»(r) for
+ ) ' ' )' ( '

I ge r, one obtains the scattei'ed amplitude up

In the second and the third term in (7), it is

~ A. Pais, Proc. Camb. Phil. Soc. 42, 45 (1946).

' Strictly, one should have included in (9) the next b&(')

which is cubic in V. Including it, however, makes any
calculation too difacult. We shall therefore neglect it by
assuming the condition {i8)below to be valid.
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to the second power of V,

f(~) =f())(&1')+f(s)(~)
M e-~' "V(r') e&k "dr'

4~a»
( M q

' «e~~"'-"&
~

'e-"" V(r")
E4sh') ~ & Ir"—r'I

&& V(r') es' "dr'dr". (10)

Now it is seen that

f(»(&'&) +f&s) (&'1) =f")(t&) +f")(~)- (11)
Since f(»(ns), the first term in (10), is known to
be the sum (Sa) with i&& replaced by b&('), it
follows from (11) that the real and the imaginary
part of f(s)(8) in (10) must be, respectively,

real part of

Xexp l

— sin' —
I2ns 2)

y x exp( —x') )F&(-,', —', ; xs)

-y exp(-y') )Fs(l; l; y')

i(s) 1

+ (exp( —ys) —exp( —xs)), (14)
2

x2= cos~, y'=
4

2k'
sin' —,

4

transformation from r', r" to g=r" —r' and
n=r"+r'. It can be shown that

(&r)1)MV&& y
' (h

f()(~) =
a (4as))ss) (a 2)

f(s) (t&) =- P(21+1)3,&')P, (cost&),
k

imag. part of

f&»(t&) =—Z(2~+1)(&l '")'F (c»&) (12b)
k t*

exp(ts)d1.x )F)(-,', -', ; x') =
To calculate the last term f&'&(t&)f&s)(0) in (7),

one would have to sum (Sc) with i&& replaced by
b~&'~. This series cannot be summed in a simple
manner as (12b). However, as the bo, ht, hs, .
must converge, we may approximate f&s)(t&) by
taking the first few terms, say three, in (Sc).
Up to the approximation desired, the f«)(t&) in

the last term in (7) is given by the usual Born's
expression.

To enable f(s)(t&) to be evaluated in analytical
form and incidentally to demonstrate the relation
(12b), we shall take a Gaussian potential

V(r) = Vs exp( —n'r'). (13)

The integration in (10) can be eSected by a

4 0

The relation (12b) in this case can then be
proved by means of Weber's second exponential
integral, together with the addition theorem of
Bessel functions. ~

For Gaussian potential,

(~)1 )3fV&)q

f&»(~) =
2 &40.'h')

(15)
k'

——cos—
EX 2

for ordinary and Majorana exchange force,
respectively. For ordinary force, one readily 6nds

(12a) and )Ft is the usual confiuent hypergeometric
function which for numerical work can be more
conveniently expressed in the form

2 ~ 2f&')(e)f()(e)sinada

16&rl(n)s&rMVsy ( 5 q ) ( k'q q

l

—
I l I l

&s' —-&s' " ll 1 —expl —
I I

3as (P) (4asyjs) ( , 2 ) ( g as) )
2a'

t 2 'yn( k'q
~

15+3(&t''')'1- +l 1+
I expl —I +—(hs* )

ks ) 4 a') l 2

4a' Sa' p 4a' Sa'q t h'q
I+ -l 1+ + Iexpl —

I
+"

s 6. N. Watson, Theory of Besse/ Fur&etsorss (The Macmillan Company, New York, 1944), i&$13.31, 11.41.
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TABLE I. Phases in proton-neutron and proton-proton scattering. The 8&&') and 8&&" in the table are,
for 100 Mev, those given in (22).

Neutral Charged Symmetrical

p-n, triplet b((» (—1}a&&» &~)

1/9a, & )
for / even
for l odd

singlet (1—2g) gg& ' (1—2g)2())g&2) (—1)'(1—2g) g~&') {1—2g) $1& ) (1—2g) f))1& ) (I —2g)28~&2) for 3 even—3(1—2g) 51") 9(1—2g)2(I)~&2) for / odd

p-p, triplet 2) (,)
odd 4g, (2) 2 fI) g(1) l &2) /9(I) l

2(1—2g)8)&» 4(1-2g)'t))&~) 2(1—2g)b)&"even 4(1—2g)'8)&') 2 (1—2g) 8$«» 4(1—2g}'(I)$&')

For the case of exchange force, one employs the
lower expression in (15) and remembers that the
b~(" with odd l change their sign. Hence

If("(&)f("(&)I-h.~.
= If")(~—&)f("(~—&) I-p'-", (17)

and the contribution to the total cross section
from the last term in (7) is again given by (16).

For interaction potentials which are mixtures
of the ordinary and exchange force, the f("(8),
f")(0),f("(0) can be found in a similar manner,
as will be illustrated below in III.

A better approximation than the second can
be obtained by substituting (9), namely, h) =h)')'
+8)(», into (1) so as to include the contribution
of all powers of b~ higher than the fourth. While
this procedure again does not form any dehnite
approximation in the sense of the perturbation
theory, it may be justi6ed and expected to be
very good if

III- PROTON-NEUTRON AND PROTON-PROTON
SCATTERING

We shall apply the above result to the problem
of proton-neutron and proton-proton scattering
at 100 Mev on the basis of the three forms of
nucleon interaction suggested by Rari.ta and
Schwinger' with Gaussian dependence on r and
without tensor force, namely,

"Neutral"

U(r) = —L1 —g
+sg(1+o ) ' os)] Vp exp( —a r ),

"Charged"

U(r) = s(1+r) rs)L1 —
g

+-',g(1+o) os)] Vo exp( —a'r'),

"Symmetrical"

V(r) =-s, r) rsL1 —
g

+gg(1+o ).os)] Vp exp( —a'r').

+ ' ) ( ' ) ' ( ) We have chosen the following constants

To obtain the 8&&'), one may either calculate
them by the perturbation theory, by (4), by (6),
or, in the case of the Gaussian potential, make
use of the following procedure which is very
much shorter. From (12a) and (14), one has

Q (2k+ 1)f))(»P, (cos())

I
3fVpy' 1 ~

k'
expI — sins —

I&4a'k') cos(8/2) ) 2a' 2)

Vp
——45 Mev, (1—2g) Vp ——26 Mev,

~2= o.266' &026 cm-2

to fit the data on the ground state of the deuteron
and the proton-proton scattering at low energies.

The scattered amplitudes f("(t')) f")(8) f's)(8)
in the case of the "N" and the "C" theory can
be readily obtained as explained in II. For the
symmetrical theory, it can be shown that for
the triplet state scattering,

)(,
'

I
x exp( —x') t F,(-,', ss; x')

—r «p( —y') )~)(s;X') ].
By taking e difkrent values of 8, one can calcu-
late the first e 5~&'&'s which are not negligible.

' V(r) = ——s'(1+22,s) Up exp( —a'r'),
f(»'(&) = sD'(»(+)+2f(»(s'
f(s)'(&) = pI:5f(s)(&)+4f(s)(~—&)]

(21a)

~%. Rarita and J.Schwinger, Phys. Rev. 59, 557 (1941}.
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TAs&.s I I. DiEerential cross section 2'(8} in 10 "cn&~ of
proton-neutron scattering at 100 Mev.

Charged Symmetrical
1st 2nd 1st 2nd 1st 2nd

Born Born Born Born 8on Born

Neutral

0 641
15 5.46
30 3.46
45 1,61
60 0.641
90 0.064

120 0.0061
135 0.0024
150 0.0012
165 0.00077
180 0.00064

6.45
5.51
3.41
1.58
0.530
0.052
0.018
0.0140
0.0137
0.0094
0.0044

0.00064 1.066
0.00072 1.035
0.0012 0.849
0.0024 0.614
0.0061 0.388
0.064 0.054
0.641 0.020
1.61 0.51
3.46 1.66
5.46 3.28
6.41 4.12

1.280 1.234
1.085 2.072
0.692 0.759
0.303 0.438
0.135 0.263
0.062 0.057
0.51 0.117
1.28 0.515
2.78 1.40
4.38 2.53
5.22 3.27

TABLE III. Total cross section in 10 " cm' of proton-
neutron scattering at 100 Mev.

1st Born
Using g, (i) in (7)
Using 5g(') in (2)
2nd Born
Using 8'g(»+ 5)(')

in (2)

Neutral Charged Symmetrical
Rect.

Gaussian Gaussian Gauss. Yukawa hole

1.40 1.40 1.40 1.39 1.40
1.33 1.25 1.15
1.22 1.22 1.14 1.20
1.34 1.02 0.83
1.35 1.07 0.966 {exact) 0.94

TABLE IV. Twice the total cross section in 10 '~ cm' of
proton-proton scattering at 100 Mev.

1st Born
Using bg(') in (2)
2nd Born
Using 8~(')+ Bg(2)

in (2)

Neutral Charged Symmetrical
Rect.

Gaussian Gaussian Gauss. Yukawa hole

2.69 2.69 0.56 0.57 0.56
1.83 1.83 0.47
3.08 0.72 0.41
2.39 1.24 0.43

r It is of interest to compare the phases (22) with those
calculated by the method of Pais. They are as follows:
from (5), 81 0.534, bs 0.221; from (6), 8~")~0.063,
BP)=0.026. For / 0, Pais' method is not valid, but
calculation with (6) gives 8s(s) = -0,28, with the sign
correct.

and for the singlet state scattering,

' V(r) = —(1—2g)( —I+22&s) Vs exp( —&s'r'),

f&i&'(&) = (1—2g) I:—f(i&(&)+2f&i&(~—&)j. (21b)
f&s&'(&) = (I —2g)'Lsf&»(&) —4f&s&(~ —&)3

where f&s& (es) is given by (14), and f& i& (il&),

f«&(s —t&) are given by the upper and lower
expression in (15), respectively. For f&s&(t&), the
appropnate phases bl are given in Table I.

For the potential (13) with constants as given
in (20), we obtain'

0 1 2 3 4
bg&'i 0.833 0.487 0.j.97 0.0605 0.0127

—0.0793 0.0N 0.0325 0.00477 0.002k i.
(22)

Remembering that to the approximation (3),
the l»&" are linear and the b&&s& quadratic in V(r),
one readily obtains the phases for the triplet
and singlet state scatterings for the three po-
tentials in (19), as shown in Table I.

The result of the calculation is given in

Tables II, III, and IV. Table II gives the
differential cross section 2sI(8) in the first and
the second Born approximation. An important
feature of the second approximation is the
appearance of a maximum in the forward direc-
tion in the case of the exchange force, recently
noted by Ashkin and Wu. '

Table III gives the total proton-neutron cross
section obtained in the first Born approximation,
by using l»&'& in (7), and in (1), in the Second
Born approximation, and by using 0&&" +b&&s& in

(1).Table IV gives the corresponding values for
proton-proton scattering.

As the exact values of the cross sections can-
not be obtained without lengthy numerical inte-
gration of the wave equation, it is not possible
to make a comparison between these approxi-
mate and the exact 0's. From the values of the
i»"& and l»&'& in (22), one may perhaps expect
the h&&s& to be small so that (18) is satisfied. If
this is the case, the value obtained by using
h&&'&+ll&&'& in (1) should be rather close to the
exact values. One can then see the improvement
achieved by the Second Born approximation.

The above calculation cannot be carried out
so simply for potentials other than the Gaussian
one. It seems, however, that with other forms of
V(r) one may still estimate the correction to the
first Born approximation by replacing the 6eld
V(r) by an appropriate Gaussian one. The
angular distribution of the scattered intensity
certainly depends on the shape of the potential
V(r); but it seems that the total cross section is,
for a given proportion of ordinary and exchange
force, rather insensitive to the exact form of
V(r). To illustrate this, we have calculated the
cross sections for the potential on the M»iller-

Rosenfeld meson theory, with constants deter-
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mined by the variational method, ' namely,

e—)r
8 Veven 3(A+2i) V

r

e—gr

'i"~'= (A+8) V
r

e—hr

'V'"' =(A I3) V—
r

where

'V'~~= —3(A —8) Vo
r

A = —1.303, 8 =4.606,
U= 0977&10 is y 5 655 X10i

Ke have also calculated the cross sections on the
symmetrical theory in (19), replacing the Gaus-
sian potential by a rectanglar hole with the
following constants

range p =2.80){',10-"cm, Vo=21 Mev,
(1—2g) V0=11.7 Mev. (24)

' Frohlich, Huang, and Snedden, Proc. Roy. Soc. A19I,
6& (&947}.

For this potential we have also calculated the
exact cr for proton-neutron scattering. The result
is given in Tables III and IV. A comparison of
the values obtained for the Yukawa potential in

(23) and the rectangular hole potential (24)
with those obtained for the Gaussian potential
leads one to think that a higher approximation
for these potentials probably gives approximately
the same values as For the Gaussian potential.

In view of the strong dependence of the total
cross section on the proportion of ordinary and
exchange force and comparatively weak de-
pendence on the exact form of the radial V(r),

it seems of significance to compare the total
cross section calculated with Gaussian potential
for various mixtures of ordinary and exchange
force with the experimental values. Recently
Cook et a/. ' reported the following total cross
sections for 90 Mev:

o„=0.83X10 '~ cm',
o~-a=1.17X10 "cm'. (25)

'Cook, McMillan, Peterson, and Sewell, Phys. Re+.
'n, &264 (&947}.' T. Y. Ku and J.Ashkin, Phys. Rev. 'D, 986 (f948).

It is seen that the calculated cr„„on the sym-
metrical theory agrees better with the observed
value than the other two theories. On regarding
the proton-deuteron cross section as approxi-
mately the sum of the proton-neutron and
proton-proton cross sections, ' one finds for the
ratio 0~ /o~q the values 0.36, 0.51, 0.69 for
the neutral, charged, and the symmetrical
theory, respectively, as compared with the ob-
served value 1.17.

This agreement, however, does not establish the
symmetrical theory in the form (19). The great
difference between the observed value for the ratio
o (n )/a(s. /2) ~3 for proton-neutron and the calcu-
lated value shown in Table I seems to indicate
the presence of tensor force, whose e8ect is to
increase the scattered intensity in directions
8~s/2 (in the center of mass system). ' But an
exact calculation on the symmetrical theory,
including tensor force, still leads to a much
1arger value for the ratio than the observed one. '
It seems that both the range of the force and
the proportion of central and tensor forces
have to be readjusted in order to agree with the
meagre data now available at 90 Mev.

The writer wishes to express his indebtedness
to Professor G. E. Uhlenbeck for helpful dis-
cussions.


