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what less than the cathode jet, which has a mean
radius of curvature of about a centimeter,
implying a net charge to mass ratio for the jet
of about —40 e.m. u. /gram.

SECTION XX

Conclusion

The existence of mercury vapor jets in sparks,
which have been shown to be arcs of short dura-

tion, appears to have been proven beyond
reasonable doubt. The velocity of the jets is such

that neither the positive nor negative ions in the
arc column can reach the electrodes since the ion

velocities are considerably less than the jet

velocities and are oppositely directed. From con-
sideration of the literature of vapor velocities in

both sparks and arcs, it is certain that these
vapor jets occur with a wide variety of electrode
materials. An obvious test of the theory of the
mechanism of jet production would be to obtain
the initial jet velocity as a function of the atomic
weight of the electrode material. Since the
program of peacetime research prevents further
work in this organization, it is hoped that the
study will be carried on elsewhere.

It is a pleasure to acknowledge the advice and
the assistance of many persons in this organiza-
tion, particularly Drs. F. S. Goucher,
Shockley, J. Bardeen, and C. H. Townes.

PH YSI CAL REVIEW VOLUME 73, NUMBER 8 A P R I L 15, 1948

On the Calculation of Self-Energies in Quantum Theory by Analytic Continuation

S. BERTIL NILSSON

Institute of Mechanics and Mathematica/ Physics, University of t.und, Sweden

(Received July 23, 1947)

Riesz's method of solving hyperbolic di8erential equations by analytic continuation has been
used by Gustafson to eliminate infinities in quantum theory. Treating the one-electron case,
he found finite values of the self energy integrals in the second approximation, also for those
integrals for which the X-limiting process fails (without the further assumption of negative-
energy photons). In the present paper it is shown that the general result of Gustafson's
procedure is to remove all divergences normally appearing in self-energy expressions, except
1ogarithmic divergences. Thus the total self-energy of the electron, to the second approxima-
tion, is found to be zero on the one-electron theory if calculated by this method, whereas in the
hole theory the logarithmically divergent expression of Weisskopf is retained. A proposal by
Pauli to alter the commutation rules in a certain way gives essentially the same results.

I. INTRODUCTION

E are going to investigate the general
effect of evaluating self-energies in quan-

tum theory by the method used by Gustafson in
the case of the second approximation. '—'* Before
entering on the problem we set down a few
notations to be employed in the following.

A point in space-time is denoted by x=x"
(v =0, l, 2, 3; x'=ct), and a metrical tensor with
—g00 ——g~&=g22 ——gs3=1 is used. The length r(x)
of a vector x is defined by

—r(x)'=g„~&x"=x~"= (x,x),

so that r' is positive for a time-like vector.

~ Numbered references will be found at the end of the text.

Further, we write for the wave operator
—8'/Bx"Bx„and x for a vector (x' x' x') in

ordinary space. Then (x,y) =x,y" =xy —x'y'.
Now, to form an expression for the self-energy

of an electron or of a nuc1eon, one may start with
the equations giving the interaction with the
electromagnetic 6eld and the meson field, re-
spectively. Here we use the formulation of the
theory in which the dynamic variables are
operators satisfying 6eld equations analogous to
those of the classical theory. The specific state
of the system is then characterized by a nor-
malized and time-independent state vector C.
A variable represented by an operator F has the
expectation value (F)= C*FC.
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where the expression in brackets holds in the
one-electron theory, and where the vector A and
spinor f fulfill well-known commutation and
anticommutation relations. &2" and p are Dirac
matrices (&22 = 1).

Using perturbation theory we expand A and f,
and hence s, in power series in e,

A =A&'&+eA&'&+

etc. The second approximation of the self-energy
of the electron is then given by

g2

W= —I (dx)'((s'", A'")+(s'",A"'))
2 ~

= (W 2+W p)+Wf& t.
(1.2)

(see Weisskopfi') Here A&'& satisfies

To 6x our ideas, consider the case of quantum
electrodynamics. The interaction between elec-
trons, of mass m and charge —e, and the electro-
magnetic field is described by the equations

(
2a—" +P222 lP = —eA, &2"$,

ax" )
A" = —42res" ( = —4n-eg*a'i&),

an expression u (the "a-solution" ) depending
analytically on a parameter n. In the following
we are not interested in special boundary con-
ditionsb and can then take u as

~ (x) =I f(x) = V (x-y)f(y)(dy)': (2 2)

w~ere

r(x) -' (a) (n —2)
V-(x) = , »(-) = -2.-'~l —l~l»()' &2i ( 2)
The integration element is (dy)'=dy'dy'dy'dy',
and the domain of integration D' is the whole
interior of the retrograde light-cone r(x y)2 =0-
with its vertex at the paint x. Under certain con-
ditions on f the integral I'f converges for a &2
or in some interval A &0. &2; for other values of
0. it has to be defined by analytic continuation.

We can now assert that u(" is a solution of the
wave equation 2.1. That a solution is indeed
obtained for 0.=2 is seen from the relation

V = V ' whence I f=I 'f

(which is an immediate consequence of the
definitions above) together with the fact that I2

is an identity operator, '
A&" = —42rs&'i, (1.3) I'f=f

II. RIESZ'S SOLUTION OF HYPERBOLIC
EQUATIONS

A. To solve the wave equation

~(x) =f(x) (2 1)

by analytic continuation, we form with Riesz""
In natural units, h=c=1.

so that the solutian of the inhomogeneous wave
equation is of importance for the first part of TV,

that of the Dirac equation playing a corre-
sponding role for the second part (in the case of
a nucleon the mesan equation takes the place
of the wave equation). As is well known, simple
insertion of these solutions into 1.2 as in the
ordinary treatment gives rise to divergent
integrals. In Gustafson's papers use is made of
the method of solving normal hyperbolic dif-
ferential equations given by Riesz"" and em-

ployed by him and Fremberg'' to eliminate
divergences in the classical theory of point
electrons.

B. The solution of the "meson equation"
(Klein-Gordon's equation),

( +")~(x)-f(*) (2.3)

where J is a Bessel function. "'
We may note that, owing to the form of »(a),

the contributions to the integral from the

The solution of the general Cauchy problem in any
number of dimensions is to be found in references 3 and 12.' For proofs see references 1 and 3.

can be obtained in an exactly analogous way.
Ke have only to replace the integral operator I
in (2.2) by a similar operator I„ in which the
new kernel V, has to satisfy

( +&&2) V' —V a—2

The further condition that V„~V as x~0 now

determines V completely:

" ( —~/» (r/«)'"' 'J& (2)-2(«)
V-=&i

l

«2" V~+2~ =
ao E p ) 2-2«2&+'1'(n/2)
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r(x y)" ' ex—p[iEoy'](dy) '
DDx

=exp[iZox'] I dz' exp[ iEoz']—

p

4zp2dp((z0)2p2)&R4}/2X,
4p

=exp[iZox'](iI&. o)
—II(a),

(where z =x —y, ~z
~

= p), whence generally,

V (x —y) exp[i(Ky)],(dy)'

= exp[i(K, x)]r(iK)—.

From the expansion of V„we now obtain for
I,~ exp[i(K, x)] a binomial series giving

V. (x —u) exp[i(K y)](dy)'
~Dx

exp[i(K, x)]
(2 3)

(X„K"+«') 12

which holds, provided the denominator does not
~ This remark is sufhcient for our present purpose. A

more detailed treatment of the Dirac equation, also
taking certain boundary conditions into consideration, is
given by Gustafson (reference 8).

interior of the cone are cancelled in Pf (Huygens's
principle: retarded potentials), but not in IPf
for x/0.

C. The Dirac equation may be written

(V+im) &P(x) =g(x), (2.4)

where V =y"(8/Bx") (y" =Pa", y~y"+y"~ = —2g&").

Multiplying on the left by V' —im we get

( +m')P = (V im—)g,

which is solved, as in the case of (2.3) above, by
I '(V im)g—

D. As a special case, which will be of im-

portance in the applications below, let us choose
for f(x) a plane wave of the form z'&x *&. Then f
does not vanish for x = —~, and the integrals
I f and I„f over D» will not converge for any
value of 0,. However, for e &2 they are oscillating
and can be defined in the usual way by first
letting iXp have a real positive part, which is
then made to tend to zero. In this way we get,
assuming EC to be a time like vector and
choosing a suitable set of coordinate axes,

vanish, whether X is time-like or not (also for
c =0).

With this form of f(x), and with g(x) =f(x)u
(u a spinor independent of x), (2.5) is the a-solu-
tion of (2.3) or of (2.1) («=0), that of the Dirac
equation (2.4) being given by

i(X,y' —m) u
&P (x) = —exp[i(Kx), ] . (2.6)

(X,X"+m') "
The actual solutions are obtained for o.=2.
III. FORMATION OF SELF-ENERGY INTEGRALS

GENERAL MSCUSSION

A. Returning to the self-energy (1.2) with a
view to establishing what types of integral to
expect in such expressions, we can content
ourselves for the moment with studying one
typical term, e.g. , the electrostatic energy

(3.1)

We introduce the a-solution for Ao"' (from
(1.3) and (2.2)),

Ao&'& = —4s I so&0&(x).

ln evaluating the integral we write &P&'& as a
Fourier series,

&&0' = V & P a„u exp[a(p„,x)],

where V is a periodicity volume, P„ is the
momentum four-vector of an electron in state n,
u„ is a certain spinor, and the a„'s are Jordan-
'IAI igner matrices.

The one-electron theory (cf. (1.1)) will then
give for an electron with the momentum vector q,

(so&'&Ao&'& ) = —4s V—' P„u,*u„u„*u,

X«p[i(p. —%»)]I exp[ —i(p —0 x)].
If this is inserted into lV, » and the sum over the
momenta is written as an integral, the resulting
expression reads (with p =

~ p ~, z =y —x)
e'

W.p = —— (so&'&AD&'& )(dx)'
2 0

e' dao r"
pdpQ ug uu uq

4m &p (tz)

X V (—z) exp[ —i(p —q,z)](dz)' . (3.2)
J D
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The summation here is over the four states
belonging to a fixed momentum p, dry is a solid-
angle element, and D the retrograde light-cone
from the origin.

So far everything is straightforward and no
new hypotheses have been made, the usual in-
finite value of S;& being obtained by putting
0, =2 after the integration over D has been per-
formed. However, in the form given above, H/",

&

can be computed also for other values of n and
is not necessarily infinite everywhere. In the
domain of convergence it is then, as Ao&", an
analytic function of 0., which can be continued
analytically to n=2 (just as, e.g. , the Eulerian
integral for F(x) converges only for x)0, the
function having to be defined by analytic con-
tinuation for x&0).

Gustafson's procedure consists in taking this
'H/;~' as the significant value of 8', ~, corresponding
definitions being used for other quantities. A
certain justification for defining physical quan-
tities by means of analytic continuation can be
given in the classical case, where the whole
theory, as shown by Fremberg, "can be built
up with general O,-quantities in place of the
ordinary ones, and satisfying the same equations.
Such a procedure does not seem adapted to the
quantum theory. Instead, we must there lay
down as a rule that all the equations should be
solved by Riesz's method, then all physical
quantities are first to be defined as functions of
the parameters entering into these solutions,
and afterwards calculated by analytic con-
tinuation. In this way an unambiguous scheme
is obtained. It means a redefinition, but if we
want to have some means of eliminating di-
vergences without changing the fundamental
equations, it is a rather natural one.

B. In connection with the expression (3.2) for
8",~ we can now make some general observa-
tions. Using Fourier analysis, it is evident from
(2.5) and (2.6) that self-energies involving a
solution of the wave or meson equation, or of
the Dirac equation, can always be expressed as
a sum of terms of the same general form, vis.

const. dk&
i

fi(p)dp
0

V„(—z) exp[ —i(K,z) j(ds)'
D

where we have introduced P= (a/2) —1, so that
P~ as a-+2. Thus, apart from an integration
over the directions' and from a constant factor,
the terms of interest are of the form

(3.4)

The functions f~ and f2 are rational in p or may
contain square roots. For large values of p
f,/f, '+~ can then be supposed to behave essen-
tially as p" "~, where r is the degree of f2 (1 or 2).

The ordinary result is obtained by setting P =0
in the integrand. A possible infinity is presup-
posed in the following to arise only from the
upper limit of the integral (i.e. , if n&~—1), so
that we have no convergence difficulties at the
origin for P=O. It may happen, however, that
new singularities are in some cases introduced
here for other values of p. To exclude this con-
tingency we may agree always to let the lower
limit of the integrals over the momenta be some
small positive value e, which is allowed to
approach zero only after the analytic continu-
ation of the integral has been performed. Thus

anal. cont.
P-+0 al q

p" I'dp~0 as e-+0 (n) —1) (3.5)

(we may also choose &=const. P). However, we
will continue to write 0 for the lower limit, under-
standing it to be reached only in the final result
if this is necessary for the convergence.

To calculate Qo by analytic continuation
assuming that the integral Q~ does exist for some

P s, we split it up into

Q'=i + I dp
r "& fi

(&o p 3 f2'+&

=Q'(0»)+Q'(» ") (3 6)

The two parts are both analytic in P with some
domain of convergence in common and, con-
sequently, Q' is obtained by performing the

'This integration does not give rise to any new in-
finities, so that we can pass to P =0 before carrying it out.

(~=0 for the wave equation), where X is linear
in p. The integral over D equals

(3.3)
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continuation of each integral separately. In fact,
the same procedure can always be used for a
general Q~ if we have first a lower integration
limit e &0 as above.

If P is chosen large enough, fi/f2'+& can be
expanded into a series of falling powers of p in

the interval (P, 00), so that for p & (n+1)/r

00

Q'(P, ~)= P" ' 2 a. -(P)-P "
0

Ps—m+1,—rP

= —E a„(P)
m-0 n m—+1—rP

and as P~O by analytic continuation

(Nothing is changed in this formula if P' is a
sum of terms of the form (3.4).)

So, if u ~/0 the value is logarithmically in-
finite in I', and otherwise finite. The general
result, then, of defining self-energy terms by
means of analytic continuation as above is that
logarithmic divergences are retained, whereas
all other types are eliminated. For the analytic
function Q& this means that in the presence of
logarithmically divergent integrals Q~ has, and
otherwise has not, a pole at P =0.

The result is an improvement on the X-limiting
process of Wentzel and Dirac, which is only able
to remove the singularities of uneven orders if it
is not combined with Dirac's assumption of
negative-energy photons. **

Q'(P, )=-
n m+—1

P "& ai(P) —ai
+ a-1 +

where a„=a (0).
In the first integral of (3.6), with the limits 0

and P, P may be set equal to zero under the
integration sign, We determine the dependence
upon P by expanding fi/f2 as before and making
an indefinite integration:

Pe-m+1
Q'(0,P) =

0-m 2«-i n —m+ 1

IV. EXAMPLES—SELF-ENERGY OF THE
ELECTRON

The calculation of the self-energy (1.2) of the
electron by means of analytic continuation has
been carried out by Gustafson" when neglecting
the retardation in the solution of the equations
(i.e., putting y0 =@0 in f(y) in (2.2), etc.). As an
application of the formalism developed above,
the continuation of the exact integrals is given
here.

A. The electrostatic energy is expressed in the
one-electron theory by (3.2).' We make the cal-
culation also for a «&0 (meson theory) and get
for the integral over D, in the case of a particle
at rest: q=(m, 0, 0, 0),

+a-2 »gP+Q (3.7)

where Q does not depend on P.
Thus we get by addition

Lp2 (p0 m) 2+ «2j—a/2

K2 ) --a/2

~

p0-m+
2m&

1 d jP—rP-

Q0=Q+- —a i(0)+a i logP+-
rdP rP P 0

1' g

Q0=Q+- +lim a i logP.
r JP p~w

(3.8)

which is, as it must be, independent of P, the
last term equaling a i(1/rp)s 0. If we let P tend
to infinity in this term before P—+0, the result
may be written as

where P' = +(P2+m2) &. If we let P0 stand for the
positive square root, the result of performing the

~* In the classical case, the X-limiting process and the
Riesz method have been shown by Ma'~ to be equivalent.

& This is not the usual expression for the electrostatic
energy, E,g (obtained, e.g., by eliminating the longitudinal
waves). Indeed, E,& can be obtained from our 8',

& by neg-
lecting the retardation, which is equivalent to letting the
time component of the vector y-q in (3.2) be zero. Then
we get, instead of (4.1) and (4.2),

E. =02/ 9'~P/(P+")'+' j-—"/2
0

(cf., reference 5). So our separation into 'W,'~' and 'S;~'
is not identical with that in reference 24.
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summation over u in (3.2) can then be written found to be (»:=0)

lV, p =
e' 1 ("p'dp ' po+m

4&rm (2m)» 0 pp ~ ( ~' ) '+&

] po —m+
2m)

3g2 1
) p2dp

4irm (2m)i' ~

XDpo™)'~( p—o m—) '),
p =—Q& (4.1)

( g') '+«m
]

—po —m+
E. 2m)

(P=u/2 —1). The integral converges for P)2.
As in the last section the analytic continuation
to P=0 is conveniently carried out by dividing
the integration interval into two parts. After
putting P=0 directly in the first part and sim-

plifying the integrand, we obtain

P nd

Q'(0») =& "
~0 p'+~'I&

(&r=bP zb&
~

——a—rctan
(2

with b=1 —~'/4m'. The last term can be ex-
panded in descending powers of 2 . Comparing
with (3.7) we have a i ——0, and since da i/dP
is found to be a pure imaginary and so has no
physical significance, (3.8) gives

C. The last energy term Wn„,&, in (1.2) con-
tains the solution of Dirac's equation for P&'&.

If A "& and f&'& are written as Fourier series, this
solution is expressed as a sum of terms of the
form (2.6) with X=q —k, q being the momentum
vector of the electron and k that of an emitted
photon. For an electron at rest q=(m, 0, 0, 0),
and then

E,X"+m' = 2mk, (4.4)

where k= ~k~ =O'. Comparing with (3.3), (3.4),
and with the ordinary result, "we see that we
must have

e' 1

where the upper and lower signs refer to the
one-electron theory and hole theory, respec-
tively. In the former case we get the result zero
immediately by setting P=O, while the hole
theory gives, by analytic continuation,

3e 5z 3e m 2I
lV,„=— +lim log

8m & ~ 4x m

l.e. ,

Q'= Q = (s/2) «bi,— Wa-~ = O' I'dk.
~m (2m)& &0

en' ( g2

W., = —-( 1-
4m')

'

which is zero for «=0 (electrodynamics). '
The efI'ect of assuming the hole theory is to

substitute a plus sign for the minus sign between
the terms in (4.1); the result is then logarith-
mically divergent, vis. essentially (for «=0)

(Wailer's result is obtained for P =0; this holds
also in the hole theory. ") If the integral is
interpreted as in (3.5) the continuation to P =0
gives the value zero. '

D. Collecting our results, we obtain for the
second approximation of the total self-energy of
the electron,

W = W.a+ W.p+ Wn, g(=E,g+Egy, ),
9e'm 3e'm 2I'

S;&= +lim log
8m p 4x m

(4.3) in the one-electron theory

8'=0,
B.The O.-expression for the "spin energy" lV,„

(obtained from the product s&'&2&'& in (1.2)) is

+ If ~=0 at the outset we must use an e&0, as in (3.5},
in order to make the integral {4.1) convergent (for P&2).
For another device serving the same purpose see reference
4

For E.g Weisskopf's result is obtained, i.e., it is only
the logarithmic term in (4.3} that is retained, with the
factor ~ replaced by unity'

and in the hole theory

3e'm 3e'nz 2I'
S'= +lim log

4x & ~ 2m m

'Neglect of the retardation results in changing the
denominator 2mk as given by (4.4) into k'+m', the
numerical value then becoming —e'w. s

j The value of the finite term is really immaterial.



SELF-ENERGIES I N gUANTUM THEORY 909

Consequently, the singularities have been
removed in the one-electron case" by using
analytic continuation, but the situation in the
hole theory is not improved as compared with
the usual treatment. '4

V. PAULI'S MODIFICATION —CONCLUSION

An alternative formulation of quantum elec-
trodynamics which leads to the elimination of
the same divergences as above in a simplified
manner, by likewise making use of analytic con-
tinuation, has been proposed by Pauli. ' In this
method the commutation rules for the Fourier
components of the electromagnetic potentials
are changed by introducing a factor ss(k) (cor-
responding to the factor cos(k, X) in the X-limiting
process, see, e.g. , reference 10, p. 193), chosen
in such a way that ss(k) —+1 as p~0, and that

anal. cont. k"yp(k)dk =0 for n) —1.
p~o

From (3.5) it is seen that we may choose

To avoid having to introduce a lower integration
limit e&0 as in (3.5), we may define ys to be
constant, equal to l &, for k~&l.

In this modification of the theory the function

qp will enter as a factor under the integration
sign in all self-energy terms (cf. the corresponding
expressions obtained with the )-process). Then
the considerations of Section III can be repeated,
again giving the result (3.8), with the difference
that the term containing da ~/dP is no longer
present. Consequently, the same divergences are

"However, in the higher approximations logarithmic
singularities appear also in the one-electron theory. The
calculations by analytic continuation (using Pauli's
modi6cation below) have been made in the e' approxima-
tion„and will be published before long (the result is
inhnite).

' I am indebted to Professor Pauli for permission to
mention his method here.

~ The theory is consistent for a finite P, but is seen to be
relativistically invariant only in the limit P=0.

removed as when Riesz's solution is used, though
there may in some cases be a diR'erence in the
numerical results.

To sum up, we have seen that by admitting
analytic continuation and not only ordinary limit
transition it is possible in quantum theory to
extend the class of divergent integrals that can
be made finite by formal mathematical methods,
though the difficulties of the logarithmic diver-
gences cannot be overcome in this way. It is true,
however, that if Pauli's method is formulated
with several parameters (as done for the ) -process
by Pomeranchuk), these divergences can be
removed too, but the result can then be made
wholly arbitrary.

In conclusion, I want to thank Professor T.
Gustafson cordially for suggesting an inves-
tigation of problems within this sphere and for
valuable discussions and suggestions. My thanks
are also due to Professor W. Pauli for instructive
criticism of the procedure and especially for per-
mission to mention his alternative method.
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