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Orbits of Charged Particles in Constant Fields

A. H. T@Us
j/Icthemctics Department, University of Washington, * Seattle, Washington

(Received July 31, 1947)

Solutions of the relativistic equations of motion of a charged particle in a constant electro-
magnetic field are obtained in terms of a Lorentz transformation determined by the tensor
describing the field. Some results of O. Veblen, J.W. Givens, and the author on Lorentz trans-
formations are summarized in Appendix A and are used to obtain explicit expressions for the
orbits. The methods used may be applied to the orbit of a charged particle in the field of a plane
wave. The latter orbits are discussed in detail in Appendix B.

l. INTRODUCTION
' 'T is the purpose of this paper to classify and

discuss some properties of the solutions of the
differential equations determining the orbits of
charged particles in uniform external electro-
magnetic fields when the interaction between the
field of the particle and the external field is
neglected. In case the external field varies in

space and/or time, the results given here may be
used as a zeroth approximation to start an
iterative procedure for determining the orbit.

The discussion will be based on the observation
that the four-dimensional antisymmetric tensor,
f„„,which describes the external field determines
a family of Lorentz matrices, L, of which it is an
infinitesimal generator. It is a consequence of the
equations of motion that the four-dimensional
velocity vector at any point of the orbit is related
to its initial value by means of this family of
Lorentz transformations.

Some hitherto unpublished results of O.
Ueblen, J. W. Givens, and the author give a.

complete classification of these Lorentz trans-
formations in terms of the tensor f„.as well as
closed expressions for L. These results are sum-
marized Appendix A. They are used to give a
classification of the various cases which may
arise and to obtain various properties of the orbits.

We shall formulate our problems in terms of
the four-dimensional Minkowski space with the
metric

dr = —ds =gp, vdx"dx"
= (dx')'+(dx')'+(dx')' —(dx')' (l.l)

The four-dimensional velocity vector will then
be denoted by

dx~
U~=

ds
(1.2)

then
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where 8; and H, are the components of the
electric and magnetic field strengths, respec-
tively, in the direction of x', Maxwell's equations
are

gfvvv ~fi v ~fv~ ~f«v
=j~, + +

Bx' Bx" Bx"

where j& is the four-dimensional current vector,

fvvv gvvvf gvvv

and, hence,

and as a consequence of (1.1) will satisfy

g„„V~V"=V~V„= —1.

If the three-dimensional components of velocity
are v' (i= 1, 2, 3) and if

3
VR = (Vi)2

x'=x, x2=y, x3=z, x4=ct.
* Now on leave as a Guggenheim post-service Fellow, in

residence at The Institute for Advanced Study, Princeton,
New Jersey.
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The Lorentz ponderomotive force equations
are then

where

d'XI' dx"

d$ d$
(1.7)

0 H3

Iff".II
=

H2 —Hl

—H2 El

~' = F, (1.8)

E3 0

dU
=AWFU, (1.10)

where V=
II V"II and is a one column matrix.

In case the tensor f„p is constant, that is,
independent of xp or s, the solution of (1.10) may
br written as

V=L(s) Vo, (1.11)

where Vo is the one column matrix representing
a constant vector, the initial four-dimensional
velocity vector, and where

X = 8/tploc .

It is our purpose to discuss the solutions of
Eqs. (1.7). They may be written in matrix form

which is the condition that I (s) be an extended
Lorentz matrix. Now L(~s) also satisfies this
condition. Hence I (-,'s) =I.'(4s) has determinant
one and either satisfies L'4) 0 in the coordinate
system in which (1.1) holds or L'4(0. In any
case L (s) =I'(-', s) must satisfy L'i& 0. Thus L(s)
is a proper Lorentz matrix. In fact every such
matrix may be expressed in the form (1.12).

When L(s) is determined, the orbit may be
obtained from (1.11) by a quadrature.

It follows from Eqs. (1.10) and (1.11) that
the particle undergoes constant acceleration in
the sense of special relativity. That is, at every
point of the orbit, the acceleration, as measured
by an observer instantaneously at rest with
respect to the particle, is constant. If the con-
stant Lorentz transformation which carries the
initial velocity vector Vo into Vl = 81& is denoted
by 3f, then the Lorentz transformation which
transforms the particle to rest at any point of its
orbit is M 'I. '(s). The acceleration in this coor-
dinate system is given by the spatial components
of the vector

dV~—lL —1 —) ~—11—1FJ~U )~—1F~U
ds

) '$'
L(s) =e"'~=1+XsF+ F'+ . (1.12) Hence b" is a constant vector. The magnitude of

2! the acceleration is given by

L(s) is a proper Lorentz matrix as follows from
the antisymmetry of f„That is.

garfp' = gprfa v

or

b" b.*= 7 'fisf„~Vo" Vo &

2. THE MATRIX L(s)

(1.14)

where
(GF)' = GF, —

0 0 0
0 1 0 0G=I'g""=
o o 1 o '

0 0 0 —1

(1.13)

and the prime denotes the transposed matrix.
The proof of this statement follows from the

fact that
I'( —s) =GL(s)G '

as a consequence of (1.13). Since

Since the matrix F must satisfy its reduced
characteristic equation, the matrix L(s) is linearly
expressible in terms of F, F', F', and F4, the
coefficients of these matrices being functions of $

and certain scalars determined by the tensor
f," We procee. d to the determination of I (s) in
these terms after introducing some auxiliary
quantities.

We define

frar —1Farkuf& —gapgrvft —gapgrv1F „fip (2 1)

where

we then have
L(—s)L(s) = 1,

G=L'(s)GL(s),

1
F--ip = (g)'~-ip (2 2)

(g)'
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g is the determinant of the matrix 6, and

1 if ev) p, is an. even permu-
tation of 1, 2, 3, 4,

e„),„=e""~=- —1 if o-7', is an odd per-
mutation of 1, 2, 3, 4,

0 otherwise.

(2 3)

0

llf"II =

iHl

—ZE3

0
ill
iH2

+iE2
—ill

0
jH3

—iHl
v

-H'
0

The c's are tensor densities which have the same
value in each coordinate system. In the coor-
dinate system in which (1.1) holds we have

Hence, in this case

)PS2
L(s) =1+XsF+ F'.

2I
(2.11)

Before discussing the orbit in the parabolic case
we obtain the expression analogous to (2.11)
when a and b do not both vanish, the so-called
non-parabolic case.

It is somewhat more convenient to deal. with
two tensors S"and St" defined in terms of f"
and ft«as follows:

S=aF+iPF, 5"=iPF+aFt, (2.12)

where a and P are related to a and b by

The tensor ft'" will be referred to as the dual 1

tensor of f" It may. readily be verified that the a+20=, L(2((a'+4b') +a))'
a'+4b' l

dual operation is of period two, that is,

We define
(ft) te r —fs r —'(l((a'+4b')' —a))'j = . (2»)

(a+ 2i b)&

0
iE3

-lE2
Hl

—iE3
0

ill
iH2

i'
—ZE3

0
iH3

F'= llf' ll
= llf'"IIG

and in virtue of (2.4) we have

SHl

(2.5)

0

the positive square root of a2+4b2 is to be taken,
and the signs of a and P are to be taken such that
aP&O The m. atrix 5 is thus determined up to
sign.

Equations (2.12) may be inverted to give

F= vS+i85t, F' =i8S+vP', (2.14)

From (1.4) and (2.5) it may readily be verified where

that
IP = PP=ib1,

where 1 is the four-dimensional unit matrix
3

2b=i Q E;H;= —',f 'ft „-
4=1

(2 7)

= (-'(( '+4b')'+ ))'
a'+P'

—P
8 = = (-'((a'+4b')& a))& —(2.15).

a2+ P2

(2.8) lt follows from Eqs. (2.6), (2.9), (2.12), and

(2.13) that
2.9)

detF=(ib)2= ( 'f"ft )'-
F-'+ P"-' = u1,

where S'+St2 = 1, traceS"' = traceS&2 = 2,
55~=0, (2.16)3

a = Z (E ' —I~.') = 2f"f-= —2-f"f"- (—2 1O)
and, hence,

S'= S'S= (1—St')5= S,
522= 5225"= (1—5')St= 5'.

1.(s) = sinhvXsS+coshvksS'
+i sin8XsS~+cos87 sSn. (2.18)F'= —Ft(FtF) =O=F" n&3.

Equations (2.6) and (2.9) enable us to express (2.17)
any polynomial in the matrices F, F', F3, and Ii4

1 7as one in terms of Ji Ii'f F and A2.
Hence, substituting the first of (2.14) into (1.12),

In case a = b =0, which we shall call the we obtain
parabolic case, it follows from (2.6) and (2.7)
that
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or, alternatively,

L(s) =— f(v sinhv)4s+8 sinNs) F
(a'+4b') &

—(8 s111llvt4$ —v slnMs) Ft]
+ L

v-' cosh vXS —8' cos8Xs) F'
a'+4b'

—(8' coshvt4s —v' cos8Xs) P'j

+ 1. (2.19)
a'+46'

Equations (2.11) and (2.18) (or (2.19)) enable
one to give an explicit expression for the orbit
for any fields described by F. For, if these ex-
pressions are substituted into Eq. (1.11), the
resulting expression may be integrated to give
x"(s). It is evident from the latter equation that
the proper vector of the matrix L will play an
important role in the discussion of the various
possible types of orbits. For example, if the time-
like vector Vp& could coincide with a proper
vector of the matrix L, then the orbit would be
particularly simple.

In Appendix A, the proper vectors of L are
determined from the coefFicients of the matrix J'.
It follows from that work that all possible
Lorentz matrices none of which is the identity
fall into one of the following four classes

and determine how the coefticients of this ex-
pansion vary with the parameter s. We shall find
it convenient to use both methods below.

It follows from the material in the appendix
that a Lorentz transformation, not the identity,
can have a time-like vector as a proper vector if
and only if it belongs to class (2). Hence only in
this case may we expect the orbits to have par-
ticularly simple properties for a particle whose
initial velocity vector is chosen to be the proper
vector of L.

0 0 —1 +1
F= flf II

=H
I 0 0 0 (3'1)

+1. 0 0 0

0 0 0 0

~0 0 0 0
0 0 —1 1

0 0 —1 1

Equation (1.11), may be written as

) 's'
V=

i
1+XSF+ F'

j Vp
2 )

(3.2)

3. ORBITS IN THE PARASOIIC CASE

in this cue 8'=FP, E H=O and we may
always choose our coordinate system so that

8;=+II';~, II;=II',2.

(1) E'=IP, E H=O (a=b=Q),

(2) SP)E', E H=O (a(0, b=O; v=0),

(3) Eo)H' E.H=O (a)0, b=0; 8=0),

(4) E' EP+0, E.HQO —(a+0, 5+0).

in virtue of (2.11).The integral of this is

X X'
x=xp+svp+ —s Fvp+ —s JP Vp, (3.3)

where xo is the matrix of one column xp= ~~xo"~~

and xp& are the constant space-time coordinates
of the position of the particle when s =0.

In the coordinate system where (3.1) holds
we have

The Lorentz matrices of the first class have been
called parabolic.

The classes difFer in the range allowed for the
proper values of L and the nature of the cor-
responding proper vectors. By choosing the coor-
dinate system of the Minkowski space appro-
priately (so that the invariant vectors associated
with L have prescribed values), any Lorentz
matrix of a given class may be reduced to a can-
nonical form for that class. Hence it suffices to
discuss Eq. (1.11) when L is assumed to have its
canonical form. An equivalent procedure is to
express all vectors as linear combinations of a
set of four linearly independent invariant vectors

)s
x' —xo' ——s

)
Vo'+ —H( Vo' —Uo')

)E. 2

x'- —xp' =s Vp',

res vs'
x' —xp'=s~ —HVp'+ Vp'+ H'(Vo' —Up') ~,

gs ),~s&Ho
x4 —xo4=sl +—HVo'+ (Vo4 —Vo')+ Vo' I.
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From these equations it is evident that
~

x' —xp'~ (i = 1, 2, 3) increases as s increases
regardless of the choice of Vo . Hence there can-
not be a spatially "closed" orbit. We also have

V' = Vp'+XsH( Vp4 —Vp'),

V2 V2

X's'
V' = XHs Vp'+ H'( Vp4 —Vp') + Voo,

2 Hence,

d'x' d'x'
=0

ds' ds'

Thus, in this case Eqs. (3.1) describe the electro-
magnetic field of a plane wave progressing in the
x' direction. We may readily solve Eqs. (1.10)
in this case also by the methods used above,
since it is a consequence of Eqs. (1.10), (3.1),
and (4.1) that

Vs-'
U4 = +XHs Vo'+ H'( Vo4 —Voo) + Vo4

2

If Vo'= Vo'=0, xo'=0,
and

dx' dx'
= V()' —Vo' =constant,

ds ds

x' —x4 = ( Vp' —Vp4) s+xo' —xp4.

s'kV
x'=+ (Vp' —Vp'), x'=0,

2

Therefore, our original differential equation is
of the form

X2II~
x' = Vp's+ ( Vp' —Vp') s',

6

&~II~
Y4 = P 4s+ ( V 4 —V 3)so

6

=) H(s)FoU,

where Fo is a constant matrix and its solution is
given by

e)», h(8) F0 V

That is the particle orbit is in the x', x' plane where
(perpendicular to H) and is given by

x'- =0
2x' )'-- XH-

x' =
i

—
i

Vp'+ x'
&XH(V, —V,'))

2x' q»- eH(1 —v,')»-
vo+ x

(XH(1 —vp) (1 —voP)» j 3m'
2x' y» )H

I U"+
E),H( Vo4 —Vo'l 3

( 2x' )» cH(I —voo)»

vo+ — x'
(XH(1 —vo) (1 —vo')»l 3mpc'

where vo is the magnitude of the initial three-
dimensional velocity.

p8

It(s) =
~

H(s)ds
0

Applying the methods discussed above, we
obtain the following parametric equations for the
orbit

x' —xo' = Vo's+X( Vo4 —Voo) h(s)ds,
kp

x' —xo' = Vo's)

x' —xo' = Vo's

t" ( X
+)

i
h(s) Uo'+ —It'(s) ( Vo4 —Vp') (ds, (4.2))

X4 —X.4= U,4S

+), ~

~
h(s) Up'+ —It'(s)(Vp' —Vp') ~ds.

t" ( X4. ORBIT FOR PLANE %'AVE

In case H of Eqs. (3.1) is a function of the
space-time coordinates, it follows from Maxwell's

The nature of these orbits is discussed in detail
equations that

in Appendix 8 for the special case where
H =H(s ct) =H(x' x4). — (4.1) II(s) = s—in2orfs.
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5. ORSITS DT THE NON-PARABOLIC CASE

A particularly simple form for the parametric
equations of the orbit may be obtained in terms
of the proper vectors of the non-parabolic
Lorentz transformation discussed in Appendix A.
These are called P, Q', N', and N', where the
bar denotes the complex conjugate, and they
may be determined in terms of the components
of firr as in Appendix A. In terms of these we may
write

(CXsv S
—Xsv

x —xp +c' =—
~

ppP' — gpQ')I v v

where

M
—ih, la

noN'+ noN' (,
tt

obtained by taking the limit of the above ex-
pression as v or 8 goes to zero. This equation may
be written as

Ls (cxsvPsQ +s—xsvQsP' p,
i i

c = poP goQ npN + rTpN .
Xv Xv tII tt

'+ ')' From this it follows that

where

Vp'Q

P'Q.

Uo'I', —Vo'X.
go= — no=

P'Q. P,Q'

Neither po nor go can vanish for

Vo' Vo = 2 (pogo —nono) P'Q. = —1.

Since P'Q, = —2 (0 we must have

pogp =-,'+nono & 0

The velocity vector at any point along the
orbit is then given by

The initial four-dimensional velocity vector of
the particle may be written as

Vp =ppP +gpQ +npN +ripN~,

(x' —xo'+c ) (x,—xp, +c.)
2 fppgp npnp)

)'( v' 8')
4 tspogo nono)

X' E v' O' J

That is, the orbit lies on a hyperboloid in

space-time and is thus analogous to the path of a
particle undergoing constant one-dimensional
acceleration in the sense of special relativity. It
has already been shown that the particle is
undergoing constant acceleration, and the mag-
nitude of this acceleration may be computed
from (1.14) to be

cib'=b*'b. *=+4K'(v'pogo+8'nno). (5.4)

Vv(s) =L, (s) Vp' pP +gQ'+n—N—'+nN'

where p g, and n are functions of s given by

p(g) —Skvsp g(g) —
C 'svsg-

n(s) = e*M'no' (5.1)

The parametric equations of the orbit are

1 (sx, I) s—xvs

x' —xp' ———
( ) ppP' —gpQ'—

v

(si) ps 1) (s—icos 1)
i —n—pN +i — ripN . (5.2)

These formulas hold when v and 8 are di8'erent
from zero. In case either is zero the orbit may be

Equation (5.3) is a generalization of the result
that a charged particle in a constant electric
field undergoes constant four-dimensional ac-
celeration in the direction of the field.

It is evident from Eqs. (5.1) that if v/0, no
time-like vector Vo can be a proper vector of
L(s). However, if the particles initial velocity is
such that no=0, that is, the particle is initially
moving in the space-time plane determined by
the actors

2 =p(P'+Q') Z'= p(P' —Q ) (5 5)

then it remains in this plane. This statement is
independent of the value of 0. If 8=0, then the
orbit is essentially that of a particle in a constant
electric field. Thus for properly chosen initial
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velocity vectors Vp& (no -—0) the orbits of particles
jn electromagnetic fields with E2&H' and
E H/0 are qualitatively the same as those for
E'&H' and E H=O. Both are essentially the
same as that for a particle in a constant electric
fieM, that is, H=O.

ln case 8=0, b of (5.4) becomes

e
b=) i = (—-,'((a '+4'-b')t+a)&)

mp

6. PEMODIC ORBITS

If v=O then the time-like vector T' given by
the first of (5.5) is a proper vector of I.(s) cor-
responding to the proper value 1. We may there-
fore expect in this case that the orbit of the
particle is particularly simple for a properly
chosen initial velocity vector Vp&. We shall now

discuss this case. We first show: the condition
v=0 is the necessary and sufhcient condition tltat

tlM orbit be periodic in tlM sense that tbere exist a
constant 0 suck the

If these equations are satisfied we have

2Kpspc

M e(II' —E') &

In case E=0 this reduces to

811d
2mc eHc

a moc-

is the well-known proper circular frequency of
the orbit of a particle in a constant magnetic
field H.

As follows from (6.1), the orbits in case i =0
are those of a particle in crossed electric and
magnetic fields where the magnetic 6eld is larger
than the electric one. The cycloidal nature of the
orbits is well known. However, to illustrate the
methods used we briefly discuss this case in

detail.
ln case (6.1) holds, a =0 and Eqs. (2.24)

become

V~(s+ o) —= V~(s). S= I'~,
(II'-' —E2) & (IP —E') t

From Eqs. (5.1) this condition is equivalent to
the set of identities

exv(a+a) p
—ex~ep

AP(8+0') ~ e)LY8~
QO = gp~

e tM(.~+a)n —eix8sn

The numbers pp and qp cannot both vanish, since
Vp must be time-like and hence these identities
can be satisfied if and only if s =0, that is,

a+ (a'+4b') & =0.

If we choose the coordinate system so that
H;=Hb, E,=Eh,2, then

0 FI 0 0
—H 0 0 E
0 000
0 E 0 0

0 0 iE 0
0 0 0 0

—iE 0 0 iH '

0 0 iH 0
This in turn implies that

E.H=O, H'&E'.
The orthogonal ennuple of vectors associated

(6.1) with this field is then given by

II EX' =(,0, 0
i
= -'(l1l +X )

0 (IP—E')' (IP E')&)—
F = (0, 1, 0, 0)

Z' = (0, 0, 1, 0)

(N E')—— —
2

=-:(I.-e-),
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The Lorene trarisformation

0 0
(H' —E')& (H'- —Eo) ~

0

and hence

M(x' —xo') = (sinMsgo —(cosMs —1)gp)X
+ (cosMs —1)Pp+sinMsqo) Y'

+MbsZ'+XHr psT', (6.4)
where

8= (IP Fa) &.—

(IP —E')'
0 0

It follows from (6.4) that if Vp& = T", then the
orbit is given by the simple formula.

X —Xo =$1

0

F"=I.FI 0
0

(IP E') '* 0 —0
0 0 0
0 0 0'
0 0 0

carries the four vectors X, Y', Z, T' into
X*'=8i', Y* = 82 Z~'= 83', and T*'=84', re-

spectively, and it transforms Ji into
That is, if the initial velocity of the particle is
Ec/H in the direction perpendicular to both E
and H, then this velocity is always unaltered and
the particle always moves along this direction.

From (6.4) it follows that the projection of the
orbit on the plane of the vectors X', V is a circle
of radius

Thus, as is well known, for an observer traveling
with a velocity

1
r =—(6'+pa')'=

XH
((p X')'+(p F')')

e(H' —E')&
E

V =C—.
H

In the direction perpendicular to both E and II,
the electromagnetic field given by (6.2) appears
as a pure magnetic one in the direction of II
and of magnitude (IP—E') &. The orbits may be
computed in the new coordinate system quite
readily and then transformed into the original
one. An alternative procedure is to refer the
orbits to the vectors I', Y, Z', and 1 in a
general coordinate system.

That is, we write

where p„ is the four-dimensional momentum
vector defined by

P„=moc V„.

In the coordinate system in which (6.3) holds
the parametric equations of the orbit are

Hp E
x'=xo'+ —

~
raX8s +$p sinMs—

Z2S E II
—

YJp costi8$+ ihip

where

alld

Vo' = M+no & +'(oZ'+ raT',

go= Uo'X. , ito= Vo'V. , go= Vo'Z. ,

70= Vo'T. .

x' =xp'+ —($o cosMs+ ihip sinhHs —gp),
M

x' =xp'+ )os,

H (x'=x,'+—
( .oMs

IH&

(6.5)

Since V(I Vo = —1, we must have

g2+~2+g2 &2

It follows from (4.8), (4.18), and (4.22) that

U =I', (s) Vo'=(cosMsfo+sinMsiio)X
+(—sinMsgo+cos) Hsgo) Y +goZ'+ roT,

+—L(p sinMs —itp cosMs+itpJ (.
II )

From these equations it is evident that the
spatial coordinates x'(o = 1, 2, 3) wilt be periodic
functions of s if and only if E=O and go=0,
and then the period will be o.
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The first two of Eqs. (6.5) may be written as by solving equations of the form

X= (1 —E'/H') &(x' —xo')

=R44+r(sin(p, —co)+sin40), (6.6)

Y= (x' —xo') = r(cos(p —co) —cos4d),

where

p, =&gS,

R=
kP'(1 —E'/H') l

~E s.
e(H' —E')(1 o'/—c')& (H c

we achieve our purpose by forming simple com-
binations of the components of the tensor f.,
We begin with the parabolic case.

In this case the matrix F is of rank 2 since we
assume that it is not identically zero, its deter-
minant vanishes, and f„= f„—Fro.m the fact
that

it may readily be verified that if f&4/0 we may
write

eH(1 E'/H') i—

(v, E)~ v2
X

I

———
~
+— —.(6 &) That is,

E c H) c' (1 —s'/c') &

la 4r lr 44r

f., =-', (X.Y,—I' X,),
tan40 = so/$o,

v. and v„are the x and y components of the
initial velocity, respectively, and v is the mag-
nitude of the initial velocity.

From Eqs. (6.6) the following known results
are readily obtained. The motion in the X, V
plane is a cycloid generated by rolling a circle of
radius R on the X axis with the generating point
a distance r f'rom the center of the circle. From
Eq. (6.7), it follows that the radius of the rolling
circle depends on the initial velocity of the par-
ticle. Hence particles entering the crossed fields
at the same point with different initial velocities
will not have orbits intersecting at the same
point. If, however, (E/H)', (s/c)2, (Eo/Hc) are
negligible with respect to one, this "defocusing"
will disappear.

APPENDIX A

Proper Values of Lorentz Matrices

(a) ParaboI4c Case

In this appendix we determine a set of in-
variant vectors associated with the Lorentz
matrix L(s) given by Eqs. (2.11) and (2.18) and
express I. in terms of this set. It is evident that
these are to be determined from those of F.
Instead of determining the proper vectors of F

where X and V, are vectors which in a fixed
Gallileau coordinate system are, respectively,
proportional to two independent rows of the
matrix f.. Then.

f.,f"= —,
'

L (X' Y.)' —(X.X.) ( V. I;)j= 0.

The scalars X'X and Y Y cannot both vanish
for then it would follow that X Y = 0, and since
both are null-vectors this would imply X = p Y
which is contrary to the assumption that f„ is
not identically zero. If X'X, /0, we define

X~V,P.— X~ y~ U~ —X.
X'X

It then follows that

PP, =O, P U, =O,

f- = 2(P.&. &.P.). —

If X'X, =O we define

P —X

(a1)

(a2)

We then have the result that any antisymmetric
tensor f„ for which f"f„=f"ft„=0,defines a
null-vector P, and a space-like vector U'
orthogonal to it. The vectors P and U may be
replaced by pP and (1/p) U', respectively,
without affecting (a1) and (a2). We may deter-
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mine p up to a sign by the requirement that
P,Z'=P T'= —p, /0.

lt follows from (3.4) and the properties of the

p4 )0 Thus the Fqs (o1) to (n3) a„d th;s vectors involved that

rondition on P determine P and U' uniquely. L', f',sjP' =P',
We then have

Equation (2.11) then becomes

)s 1
L', (s) = b;+ (P'U,——U'P ) )Ps'P—P—,. (u4)

2

From a similar argument it follows that we

may write

ift"= ——',(Pi'W' —W Pi'),

where Pj' and 8' are vectors satisfying

Pg'8', =Pj Pg. =o

and are determined up to a common factor.
Equation (2.6) then may be written as

f"ft = (P 'P ) W W —(P 'U ) W P
—(W'P, )P, U, +(W'U, )Pi P, =O.

On multiplying this equation by U~ and summing
we obtain

(Pi P.) W' —(W'P.)Pi' ——0,

Xs
(g) Ur Us+ Pa

2

L,(s) W'= W,

Xs )Ps'
L', (s)Z'=Z'+ yU'+—pP .

2 8

From these equations it is evident that the
vectors of the form aP +bIV' are carried into
themselves under L(s) and a and b unchanged.
Moreover, no direction in space-time is left
invariant under L(s) unless it is in the plane of
the vectors P and 8'. In particular, no time-
like vector can be a proper vector of L(s) given
by (a4).

(b) Non Parabolic C-ase

In this case it is convenient to work with S"
defined by Eqs. (2.12) in terms of f". The
argument given at the beginning of the pre-
ceeding section enables us to write

and hence S„=A,B,—B,A„ (b1)

Therefore,
P ~P =5"~P =0

Ke may then choose p=1 by redefining 5' if
necessary. Equation (2.9) then gives for this
new choice of

lV IV, = U U, =1,

ift"= —-'(P'W' —W P') (a6)

If we define the space-like vector Z as one
orthogonal to the two space-like vectors U and
W' and the time-like vector T~ (with T4&0) as
that orthogonal to these three space-like vectors,
the four vectors U, 8', Z, and T form an
orthogonal ennuple in terms of which any vector
may be expressed. In fact, we have

P =p(T Z), —

where A, and 8, are vectors which in a particular
coordinate system are proportional to two inde-
pendent rows of iiS., ii. Thus if Si~&0 we may
take

1
A. =—Sg.,

Si2
8,= 52.. (b2)

If A'A and 8'8, are not both zero it is suf-
ficient toconsider the caseA A /OandA'8 =0,
for we may always interchange A and —8
without altering the form of (b1). Moreover, if
A 8 Wo, we may replace A and 8 by

A'8,
As ——A, Bc ——B'— A',

A'A

and obtain
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From the second of Eqs. (2.16) we have

-'S S' =((A 8 )' —(A A )(8'8 )]
= —(Ai'Ai. )(Bi 8,.) =1. (b3)

independent rows of ~~iF'„~~. Thus if iS"34WO
(as will be the case of Sii/0) we may take

Hence A» A» and 8» B~, are of opposite sign.
tf A'A, &0 we write

C. = i&3., D. =~&4, .
i&g4

From Eq. (2.16) we have

(b12)

Zir-
(A 'A, )l

A'B.
2 =(AA, )&~ 8—

)
and if A'A, &0 we write

(b4)

—,'iP, iSt, '
= L(C D.)' —(C'C.) (D'D.)]= —1. (b13)

It is evident from this equation and the fact
that C and D' are real that C C, and D D,
cannot both vanish. It is su%cient to consider
the case C C WO, We define

Z'= —( —A'A )~Bi T = . (b5)
(—A'A. ) *'

C'D,
C» =C, D» =D — C.

O'C

The sign of the radical occurring in (b4) and
(b5) is determined by the condition that T') 0.
Thus, in either case we have

iSt„=C»,D», —D», C»„

and (b13) becomes

S., =Z. '1,—T.Z„ (b6) (C.C.)(D D.) =1
where

Z Zir T Trr (b7)

that is, Z and T are uniquely determined
orthogonal unit space-like and time-like vectors,
respectively. We shall have occasion to use the
null-vectors

Hence C» C» and D» D» are of the same sign
and hence positive. That is, C"D», and every
vector cC» +bD» with real c and b must be
space-like.

We now define

C»'
Pr —(T'a Zs) Qrr (T~+Zs)

satlsfylng

P'Q= —2 PP =QQ =0

In terms of these vectors we may write

(b9)

X =
(Ci'Ci )l (C C.)l

C'D,
I =(C C.)&i D.— C. i.C.C. )

Then we have

(b14)

(&.Q.—Q.~.).
Pu

(b10)
with

iP.,=X,Y,—Y,X„ (b15)

XX,= Y Y,=1, X'Y, =0. (b16)
In case A'A, and 8 8, both vanish, it follows

from (b3) that A '8, = &1 and hence by a
relabeling if necessary we may always write S,
in the form given by (b10) with the second of
Eqs. (b9) satisfied. T and Z may then he
rlefined by the inverses of Eqs. (b8).

Similarly, we may write for the real tensor iN,

and making use of (b7) and (b16) that

X„Z'= Y,Z'=X, T'= Y,T'=0. (b17)

It follows on substituting (b15) and (b6) in
the equation

iS~-,S =0

These equations together with (b7) and (b16)
state that the four vectors X, Y, Z, T form

where C and D, are vectors which in a par- an orthogonalennuple of unit vectors, the first
ticular coordinate system are proportional to two three being space-like and the fourth time-like.



ORB ITS OF CHARGED PARTI CLES

It is sometimes convenient to introduce the tities sand Haregiven intermsof thecomponents
complex vector ¹,and its complex conjugate of E and H by Eqs. (2.15), (2.10), and (2.7).

where
APPENDIX B

Then

(—P'Q. )'
(X'+iF )

(—P'Q.)'
¹

= —(X —i Y').
2

(b19)

Orbit for a Plane Wave of Frequency f
ln this appendix we discuss Eqs. (4.2) in the

special case where

H=Hp cos2prf(ct —s).

Ke choose the origin in space-time so that at s = 0

xo=yo=zo=to=0.

Then Eqs. (4.2) becomes

The factor under the radical in (b18) is one when

the first of (b9) holds. However, even when this
normalization is not made Eqs. (b19) and (b10)
hold. The equations satisfied by P', Q', IiI' are

x= Vo's—

y= Uo's,

kFI( Up4 —VpP)

[coscps —1],
2

(B 1)

P'P. = Q'Q. =N'X. =Ã'E. =0,
P IiI =P'E, =Q'Ii/ =Q'IiI, =O,
P'=P Q =Q PQ. =1—ii" IiT..

(b20)
XHo Vo'

s = Vp's+ (1—cosids)

It follows readily from these equations, (b10)
and (b19), that

) 'Ho"-

( Vp' —Up') [2~s —sin 2~s],
8o)'

(P'Q, +Q'P.),P'
)~o Uo'

ct = Vp's+ (1 —cospps)

(IiI'X,+N'IiI, )' P,
K~H,2

+ ( Vp' —Vp') [2cps —sin2ips],8'
Hence Eq. (2.28) may be written as with

id =2irf(Vp' —Vp').

I rr (s) (exsvP~Q +e kwQrP—P,
e ii paga1iI eAps1l—l'sg )

Using (b20), we obtain

Lo Pp exvePa
P

I s Qp e ivsgr—

J tr Pfp eixalgfe

(b21)

(b22) Uo'=
vp/c 1

(1—vpP/c')& (1—vpP/c')'

If the particle initially moves in the z direction,
(Vp' ——Vp'=0), then its subsequent motion will
be in the x, z plane, the plane determined by the
direction of propagation of the wave and the
direction of the electric held. Suppose Uo' = Uo' =0
and write

L a' pf p e—Q.tt8+6

That is, P~, Q',¹,and E are proper vectors
of I.(s) corresponding to the proper values e""',
e ""', e'"", and e-'"", respectively. The quan-

2s f(1—vp/e)

(I.—v '/c') &

where vo is the magnitude of the initial velocity.
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Then the equations given above become

XHp
x = [1—cosrusg,

(2v )(v

The maximum displacement from the z axis
occurs when

and is given by

y=0,
+lil aX

2XHp

vo/c )~Hp' )+
(oo(1 —vo'/c') & 16'foo'i

X2Hp2

sin2ops,
32v fa)' Here the particle has maximum energy given by

( 1 )PHp
CE =

i
—+ — icoS—

(co(1—v ~/c2)~ 16'foom)

VH, 2

sin 2cos.
32m foo'

mpC' ) 'Hp'
mph'' U4 = +

(1 —vo'/c') &
87r fee

It is evident from these equations that the
projection of the orbit in the x, z plane is a dis-
tortion of x=sin'z such that the particle stays
one side of the z axis, returning to the z axis when
z changes by

vp/c K'Iio2 )—+
((o(1 —vo'/r, -') l 16v foo')

In case the function H has a phase angle e,
that is,

H=Ho cos)2v f(ct z)+n—],
the orbit of the particle no longer returns to the
z axis when Vp'= Up' ——0. The projection of the
motion on the x axis has in addition to the motion
described above a constant velocity proportional
to sine.
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A N analysis of the mechanism of the pre-onset
burst pulse corona indicated that use might

be made of the theory to throw some light on the
photoelectric ionization processes responsible for
various other breakdown mechanisms in gases.
In view of the work currently being done on this
subject, it is of importance to report the con-
clusions arrived at. The discussion will be limited
to the positive point to plane corona in air at

*The writer wishes to acknowledge the assistance of
06ce of Naval Research Contract No. NPONR295, T.O.
& t, in obtaining some of the data that made this analysis
possible.

atmospheric pressure, fields X being expressed
in volts per cm and pressure p in mm of Hg.

Currents from a corona point of radius r
below the onset potential V, of the intermittent
Geiger regime consist of a field intensification of
the negative ion currents produced in the volume
of the corona gap by an external source. Field
intensification can only begin when the potential
of the point reaches a value Vf such that the ratio
Xg/p at the point surfaces exceeds 90. At this
field the negative 02— ions produced in lower

field regions by external agencies begin to shed


