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A calculation is made of the rate of diBusion of "tagged"
molecules in a pure gas at uniform pressure in a long

capillary tube of half-length I and radius a. At pressures

for which the mean free path )&&a, the result in the limit
L~ ~ reduces to that already obtained by M. Knudsen,

the diBusion coefficient D being given by 2ue/3, where 8 is

the mean molecular speed. For a capillary of finite length

the diBusion coefficient is, to first order in a/L, smaller

than this by a factor 1 —3c/4L. In the opposite limit of
high pressures, for which P«a, the result reduces to the
elementary kinetic theory expression for the self diBusion

coefficient, D=M/3. One of the most significant features

of the result is that in a long tube the diBusion coefhcient

drops very rapidly with increasing pressure from its initial
value for ) &&L. Thus the initial slope of D as a function of
pressure is given by dD/d(a/X) ——)sa 1nL/a. It is shown
that these results account for the anomalous low pressure
minima observed by several investigators who have meas-
ured the specific flow G/~p through long capillary tubes as
a function of mean pressure p. The failure to observe such
minima with porous media, for which eBectively I =a in
each pore, is also explained by these results. The formulae
obtained here represent a rigorous solution to the long
capillary diBusion problem, valid at all pressures and sub-

ject only to the limitations of the mean free path type of
treatment.

'HE How of a gas through a long tube at
pressures for which the mean free path is

much greater than the tube radius has been inves-

tigated experimentally by Knudsen, ' Gaede, 2

and Adzumi. ' Knudsen showed by an elementary
argument that a diffusive transport proportional
to the pressure gradient but independent of the
density of the gas was to be expected in this
limit. In this derivation it is assumed that all

momentum transfers take place at the tube walls

and none in the gas. In a circular capillary of
radius a, a section of the wall of length dx is

subject to gas molecule collisions at a frequency

(1/4) u8 2sadx, where I is the numerical density
and 8 the mean molecular speed. If the average
How velocity of these molecules along the tube
is u, and if u is assumed not to vary with distance
from the axis, the rate at which they transfer

~ A preliminary abstract was published in Phys. Rev.
69, 53 (1946).**Most of the work reported here was completed while
the authors were members of the staB of the Columbia
University Division of War Research SAM Laboratories,
New York City. This document is based on work per-
formed under Contract Number W-7405-eng-50 for the
Atomic Energy Project, and the information covered
therein will appear in Division II of the National Nuclear
Energy Series {Manhattan Project Technical Section) as
part of the contribution of Columbia University.

' M. Knudsen, Ann. d. Physik 28, 75 {1909).
'%'. Gaede, Ann. d. Physik 41, 289 {1913).
' H. Adzumi, Bull. Chem. Soc. Japan 12, 285 (1937).

7

momentum to the tube wall is (1/2)san6mudx,
where m is the molecular mass (cf, , Appendix I).
It is assumed that there is no preferential direc-
tion of reAection. Balancing this rate of mo-
mentum transfer by the force —xa2dp, due to
the pressure difference between the faces of the
segment, and neglecting the inertia force, which
is negligible in the case of a long tube, the gas
transport 6 in molecules per second is found to
be4

2s-a' dP
G=KG Su=—2

PL V dx

Knudsen also gives an alternative treatment
of this problem' using a more reliable method,
an extension of which is employed in the present
investigation. In this treatment an expression is
found for the number of molecules crossing a
given section of the tube in unit time due to
reAection from an arbitrary element of surface
on the tube wall. Integration of this expression

' This result diBers by a factor 8/3~ from that obtained
by Knudsen using this method. The discrepancy is due to
an incorrect expression which he used for the momentum
transferred to the wall. The problem of the rate of mo-
mentum transfer to the tube wa11 in a diffusing gas is
considered in Appendix I.

'See also von Smoluchowski, Ann. d. Physik 33, 1559
(1910).
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over the entire surface of the tube leads to the
desired expression for the net transport. The
result, which has the same form as the "mo-
mentum transfer" expression (1), except for the
numerical factor, is

16m' dP6=-
3mB dx

(2)

The experimental investigations referred to
above all show that the observed Row approaches
a limiting value at zero pressure which is in good
agreement with that given by relation (2). A
comparison of these two treatments of free
molecule flow is given in Appendix II.

These kinetic theory calculations of free mole-
cule flow in a capillary tube are applicable only
for values of the mean free path, X, much greater
than the tube radius, u. In the opposite limit of
high pressure where P(&u it is necessary to dif-
ferentiate two distinct limiting forms for 6:
hydrodynamic viscous flow and gaseous self-
diFfusion. The first form occurs where a gradient
of the total pressure exists and is given by the
usual hydrodynamic treatment of the flow of a
viscous fluid in a long circular tube as'

Q dp
G =Ss'+2 ———+uo,

8q dx
(3)

' E. H. Kennard, Xinekc Theory of Gases (McGraw-Hill
Book Company, Inc. , New' York .1938), p. 293.

where g is the viscosity, e the molecular density,
and uo the "slip" velocity at the tube wall. The
gas molecules in this case possess an average
drift velocity characteristic of the point in the
tube at which they made their last collision.

The kinetic theory treatment of hydrodynamic
flow is limited to an evaluation of the viscosity q
and the slip velocity No in terms of the mean free
path X and mean molecular speed 8. No kinetic
theory derivation of the production of a molecular
drift velocity from a pressure gradient has yet
been developed to the authors' knowledge. It is

therefore not yet possible to give a theoretical
discussion of the transition from the limit repre-
sented by Eq. (2) to that represented by Eq. (3),
although this transition is actually the one inves-
tigated experimentally by Knudsen, Gaede, and

Adzumi. Using the kinetic theory values' of q,

P, and uo, Eq. (3) may be written in the form

XQ 3XG G Jp
+

m8 8m8 X dx

The experiments of course verified the Poise-
uille term. In the low pressure limit Eq. (4)
reduces to the slip term which has the same form
as the free molecule flow but is smaller by a
factor of 3s./16. This factor is independent of the
relation between ri and X. If Eq. (4) is integrated
and the specific flow G/Ap is plotted against the
mean pressure, a straight line is obtained and the
ordinate intercept measures the slip term ac-
cording to (4). Since the intercept lies below the
free molecule flow, the specific flow curve should
have a minimum at low pressures. The experi-
ments demonstrated the existence of a minimum
in the neighborhood of a/X=0. 2. However, the
minimum was less pronounced and the intercept
of the straight-line portion higher than one would
have expected from Eq. (4). Approximations
such as those made in the classical treatment of
slip lead to appreciable uncertainties in nu-
merical factors, so that not only may the factor
3s/16 be incorrect but the prediction of a
minimum on the basis of Eqs. (3) and (4) may be
essentially fortuitous. The experimental curves
when extrapolated to zero pressure agreed within
one or two percent with the Knudsen formula (2).
The experiments of Gaede showed that the drop
below (2) set in at very low pressures corre-
sponding to ) /a = 100. No satisfactory explana-
tion of this behavior has as yet been given and
we shall return to this point later.

The other high pressure limiting form is ob-
tained at uniform total pressure and represents a
transport due to random motion without drift.
If a certain fraction of all the molecules is
"tagged" by some means without the molecules
losing their identity in other respects with the
untagged molecules, a transport due to inter-
diffusion is associated with a partial pressure

~ The Maxwell expression for the slip velocity uo
is —(2q/nrn0) (du/dr), . %'e take g = (1/3) nm&, and
p = {x/8)nm8 in the following. Some results clearly depend
on the form chosen for the relation between y and X. The
factor 1/3 is used here rather than the Chapman-Enskog
value I/2 in order to have the result correspond with the
simple kinetic theory treatment employed in this paper.
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the angle between r' and the normal to dS'. Of
these a fraction e "'~" will arrive at dS without
collision. Thus,

—de„,= dSdS' co+ cosa e "'",
4xr"

In order to proceed further it is necessary to
make a speci6c assumption with respect to the
molecular density n as a function of position x
in the tube. We shall show later when we treat
a tube of finite length that this function for an
infinite tube is given by

where we have put dco=dScosg/r". We now
put dry' =d5' cosa/r" = sinPdfd ip and s = r'

sining

with the result

n(x) = np+x(dn/dx),

where dn/dx is constant. This variation of n
implies a corresponding variation of ) and
invalidates the use of the factor e &'" as a
measure of the probability of a free path of
length p. %'e show in Appendix III, however,
that the proper inclusion in these expressions of
the variation of X with position in the tube leads
to the same 6nal expression as that obtained in

Eq. (15) for a fixed value of X appropriate to the
gas density at the point where the Row is
measured. It is therefore su%.cient to use the
value of X corresponding to the value of eo above
and to include only the variation of n.

The foregoing considerations apply directly
to the case of a pure gas diffusing under a
pressure gradient. If there is no pressure gradient,
the same expressions apply to the self-diffusion
if iV, X„and n(x) in Eqs. (9), (10), and (11)
are interpreted as the number and density of the
tagged molecules. Furthermore, in the case of
the self-diffusion, the mean free path X is inter-
preted as (nieii+niai. ) ', where ni and ni are
the densities of tagged and untagged molecules
and 0.

&~ and 0~2 are the collision cross sections for
like and unlike encounters. Thus, ) is inversely
proportional to the total pressure and is constant
along the entire length of the tube.

In the integral for IV„., Eq. (9), we put

—d¹= (n8dS/4') cosif singe ' '-&'"day

The net number passing from left to right
through the tube cross section at this point in
unit time which come directly from the tube
wall is thus

fQ2X

de I n(x),V. -JI'dIV. , = —" t t'dS
J

Xcosig siniPe *' &'"dP,

where the integration extends over all values of
P for a tube of infinite length. Since the integral
does not depend on y, this result simplihes to

In order to get the number dX, which comes
from gas collisions, we note that the collision
frequency in the volume element dr is n8dr/X,
so that

Pw~d T dG0
-- dX, = —e-&'".

X 4m

Putting da& =dS cosP/p' and dr= p' sinPdpdPd p,
we obtain

n = no+s cot&(dn/dx)

N„= —(1/2)8 '

~ d5J n(x)JJ
Xcosf singe-' '~'"df (9).

de, = cos—P singe ~'"d pdPde.
4m)

s esca

X~ n(x)e &'"dp (10).

The integration over p is terminated by the tube
wall at p=scscf. Thus the net transport across
the section in question due to dift'usion from the
gas is given by

iP p fg ir

~l dS ~ cosP sinPdP

The integral over the term in no then vanishes by
symmetry and the term in dn/dx gives

x/2

IV, = —8—I

' dS ' s cos' fe ' "'&'"dP. -(12)'d, . J

This expression was 6rst obtained by Knudsen
and he evaluated it in the special case of X= ~,
where the exponential term can be set equal to
unity, with the result already given in Eqs. (2)
or (7).
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so that Eq. (10) reduces to

dn
X„=—t!X—) ) dS) cos'P sing

( s csc!!()
(v

—e cscglx

)

In the integral for X, we put

11= tlo+ p cos!I!(dÃ;dx),

a/X it is clear that Q must vanish somewhat as
g
—at%

Using this result it is possible to obtain
expressions for the diffusion coefficient in the
capillary which are valid for small and for large
values of a/X. The diEusion coefficient is given
by Eq. (6) as

dn ( dna

(14) dx)

1 3X 6X
=—vX 1 — + Q(a/X) . (19)

3 Sa ma
The total flow of both groups of molecules

through the section is given by the sum of the
two flows .V,„, and .V„ in Eqs. (12) and (13). It

Thus using (18) we find in the two limiting caseshas the value

de.V= X„+E,= —Q,— dS
dx ~ &

~ajar
2 a

D =—va 1 —(1.2264+ 4 ln(X/2')) —+
3 X

)& (1—e * '"&+) cosQ sinPdP (15). and

It is readily verified from Fig. 1 that
1 3X

D= —vX 1 ———, )«(a.
3 8a

) »a, (20)

(21)

) d5=a)
t

&a costI

cos8d8
4p

ds. (16)

Applying this to Eq. (15) and interchanging the
order of integration over P and s, we obtain

where

xa'-j)X 3A 6X dn
+ Q(u/) )—

8a ma dx

n

Q(u, 'X) =
~

cos8d8
fl ~ f)

—2c co88 esc'g/&

Xc oisin'Pdf. (17)

Q(~/~) =

a3
——(1.2264 ——', In2ya/X) —+ . , (18)

3

where y is Euler's constant. For large values of

It has not been possible to evaluate the integral
for Q explicitly for all values of a/X, but it has
been evaluated numerically for a few values and
an expression which can be used for small values
of a/X has been obtained and is discussed in

Appendix IV. It is shown there that

These results show that in the two extreme limits
X/a —+ ~ and X/a —+0, the present calculation
gives limiting forms of the diffusion coefFicient in
agreement with those given by Eqs. (7) and (8).

A perhaps surprising feature of this result is
the appearance of the logarithm term in the
coelficient of a/X, Eq. (20). The effect of this
term is to make the slope of the curve for the
diffusion coefficient as a function of pressure
negatively infinite at zero pressure. Thus we have
from (20)

—= ——,
' va[0.6352+ ln (X/2ya) j (22)

d(a/X)

and this approaches —~ as p (or 1/X) ap-
proaches zero.

It should be noted that although the diffusion
coefficient has an apparently infinite slope, the
diffusive flow has a finite slope as p approaches
zero. It is, of course, impossible for a measurable
physical quantity such as the diRusion coef-
ficient to vary with pressure in such a way that
at zero pressure the graph has a vertical tangent.
This behavior would imply that an infinitesimal
amount of gas could produce a finite drop in the
diffusion coei%cient. One must recall, however,
that in the derivation of Eqs. (20) and (22) the



GASEO US SELF —DIFFUSION

capillary was assumed to be infinite in length.
For a tube of length 2L, these equations are
therefore valid only for mean free paths in the
range a«X«L and cannot be applied at pressures
so low that ) J. Consequently, there is no
vertical tangent at zero pressure and the shape
of the curve when X~L must be determined from
a separate calculation for a 6nite tube.

THE DIFFUSION COEFFICIENT FOR A
CAPILLARY OF FINITE LENGTH

The diffusive transport in a tube of finite
length will differ from that obtained in Eq. (15)
for an in6nite tube in two respects. First, in the
various integrals for X„and N„ the lower limit
on f is no longer 0 but the value appropriate to
the end of the tube. The other effect arises from
the fact that the molecular density e(x) can no
longer be represented by the simple linear
function (11) because the density must become
constant beyond the tube ends and equal to the
values appropriate to each of the connecting
chambers. The manner in which the transition
occurs from these constant values to the ap-
proximately linear variation at the center of the
tube depends on the ratio of its diameter to its
length.

We consider first the effect on the molecular
density. Let eo be the density and de/dx the
density gradient at the center of the tube, x =0.
Let J be the half-length of the tube and e~ and
n2 the densities in the connecting chambers at
x = —J and x = +J, respectively. We may
expand the density e(x) in a Taylor series

S
e =eo+x +x'A +x'8—+

dx

ference for the density gradient. Both are pro-
portional to 1/I.'.

An appropriate way, in principle, to determine
the values of A and 8 would be to set up the
equivalent of Eqs. (9) and (10) for a tube of
finite length using (23) for e. Expressions could
be found for the total transport N=N„+N, at
either end of the tube and at its center. Values
could then be chosen for A and J3 which would
make all three transports the same. In like
manner, higher order coefficients in the Taylor
expansion of n could be determined by equating
the transports at other sections. Such a pro-
cedure is very involved in practice and will not
be attempted here. It can, however, be easily
shown that the integrals arising from terms in
x'" and x'"+' are of order a' times those arising
from terms in x'" ' and x'" ', respectively. It
follows that inclusion of terms in x' and x' in

(23) results in additional contributions to the
transport proportional to c'A and u'8 and thus
in terms of order a'/L2. In this treatment we
restrict ourselves to long tubes and a deter-
mination of the end effects only to order a/L.
Thus in this approximation we can continue to
use Eq. (11) to represent the density e(x).

The 6rst efkct referred to above results in
terms of order a/L and we proceed to take
account of it in Eqs. (9) and (10). Referring to
Fig. 1, we let $0 be the value of f for a point on
the tube rim so that tango ——s/L. Using (11)
for e this replaces Eq. (9) by

1 dnN= ——8—) )dSJ~ s

&&cos'Pe ' -'&'"dP. (24)

Adjusting this to e& at —J and to n2 at +J, we
find

A = (1/I. ') (-,'(e, +e,) e,) = (1—/L') (n —e,),

1 )e, e, deq— 1 )~e deq

I.' ( 2L dxi L' (Ax dx)

Thus the coefficient A measures the difference
between the average of the densities in the con-
necting chambers and that at the center of the
tube while 8 measures the corresponding dif-

The modification in the integral for N, is more
pronounced. For values of f lying between $0
and m —&0 the integration over p is ended by the
tube wall at p=s cscP, but for values smaller
than $0 or greater than s —&0, this integration
must be extended beyond the tube ends into the
gas in the connecting chambers. In this latter
case, we must use (13) for e for 0 ~& p &~ lI sec& j

while for p ) ~I, sec/~ we must use e=e2 when
0~&/ ~&$0 and e= ei for m. —go ~f &~ ir. Thus, the
net transport across the central section due to
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c ccc/

Xsinpdp pe c/"d—
p

Jo

V d'fE f' f

~d5
2Xdx J J

~$P fs 1P

+
Jo J

cos'P

diffusion from the gas is

d'0
1 t f

dS cos'il/
2g dg

The first term is identical with Eq. (15) which
was derived for a tube of infinite length so that
the second term clearly represents the correction
to N due to the finite length of the tube.

We now obtain the diffusion coefFicient D
corresponding to this expression for N, and denote
by D„ the value given by (19) for an infinite tube
and by ADI, the correction to this value arising
from the hnite length of the tube. Thus

I L 8ecgj

Xsingdg ~~ pe ""dp with
(27)

/ /

ds n2 +ng
Jo ~ -yp

cosP

"~dS
gD& vIc

~

I (e Lsccg—/x

~g2 J

—e ' -'&/") cos'f sinPdif/.

Xsinpdp ~t e
—c/"d p. (25)

~ IL, seep)

The neglect of terms of order a2/L2 leads to
the neglect of the x' term in (23) whose coef-
ficient 8 is proportional to Dn/hx —dn/dx. Thus,
in this approximation we may put (nm —ni)/2L
= dn/dx. On performing the integrations over p,
Eq. (25) with this approximation simplifies to

dn t /

Iit, = —vX —dS (1—e ' ccc&/")

dxJ ~

Xcos'P sinfdP

f 4O

+ (1 —e "'&/") cos'P siniI/dil/
J,

On expanding the trigonometric functions in
powers of if/ and representing ADr, in units of aa,
it is found that the leading term is of order a/L
with the next term of order (a/L)'.

Thus, to the required order in a/L we may put
tango=pc ——s/L, sing=tang=P, and cosP=secf
=1.This gives

pl dS
AD i, ——vX, (e '" e&c/~&)—pdif/

xG2 "0

Using iI/O=s/L together with (16), we obtain
finally

1 L // Ll
DDI, = va e-'/" + Ei

~

————
~

—. (28)
2 X ( Xi L,

s cosmge —c cccf//dp

On combining this with Eq. (24) for Ii/,. we
obtain Anally.

~ x/2

%=X +X,= —83— dS
~

dx ~

X(1—e ' -'&/") cos'P sinPdif/

dn
+vg j dS

~ (e LccciP/i—

If we now combine this result with Eq. (19)
for D according to (27), the dilfusion coefficient
for a finite tube, good to orcler a/L, is found to be
given by

1 3A, 6P
D= —BX 1 ———+——Q(a/X)

3 Su xa
3a' I I. f I. q————e '"+ E/,

(
——

(
. —(29)xi

—e ' cc&/") cos'p since/dif,

where we have substituted

J, 0 fp

The behavior of the correction term AD& at very
26 low pressures for which Ic))L is found from an

expansion of (28) to be

1 Q G
2 D & va ——(1—In'/)c) —,———)I &)L. (30)

2 I. X
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2 3a f 3 L)eD= va l —————
) 0.4764+—In—

~

—,
4L ( 4 2a)X

X»L»a. (32)

This result shows (a) that the Knudsen diffusion
coefficient in a tube of finite length is less than
that, Eq. (7), for an infinite tube by the factor

Ll I11
X-moo

3 c

4L
and (b) that the slope in the limit X~~ is no
longer infinite as in (22) but has the finite value

= ——,
' va[0.6352+ lnI /2a j (X)&L)

—-', va lnI. /a. (34)

DISCUSSION OF RESULTS

We wish first to comment on the behavior
noted in (a) above and in Eq. (33) which shows
that among several tubes of the same radii but
different lengths the Knudsen Rows maintained
in each by the same pressure gradient approach
different limits at zero pressure, the values being
smaller the shorter the tube. If we compare the
diffusion process under a given density gradient
dn/dx in the limit X~ ac for an in6nite tube with
that for a tube of the same radius but finite
length, it is seen that the chief difference arises
from the fact that the density n(x) increases
without limit in the former, but assumes constant
values in the connecting chambers where x & —L
and x &L in the latter. A comparison of Eqs.
(24) and (25) for X„and N, in a finite tube with
the corresponding Eqs. (12) and (14) for an
infinite tube shows that this difFerence is indeed
responsible for the dependence of diffusion coef-
ficient on tube length.

For larger values of L/X this term decreases very
rapidly, becoming asymptotic to

DDi, ,'v=X(a/L)'e ~~", X&(L.

Thus the correction term is negligible for mean
free paths a few times shorter than the half-length
of the tube.

Equation (30) is of primary interest at pres-
sures lower than that for which X L. In this
range v.e may combine Eqs. (20) and (30) to
obtain

The effect of cutting off the tube at x= ~L
appears in Eqs. (24) and (25) in two ways. The
first is through the substitution of limits $0 and
s —P, in place of 0 and x for the integration over
P. The other is through the second term in Eq.
(25), which merely includes a portion of X, for
the region —I ~& x ~&t which was left out of the
first term in this equation by setting these limits
on P. In the limit X»L these modifications are
found to subtract an amount Ha'/L from the cor-
responding limiting value 28a/3 for the diffusion
coefficient of an infinite tube. On the other hand,
the contribution from the regions x& —I. and
x&L in the connecting chambers, where the
density is now constant, is represented by the
last term in Eq. (25). In the limit X&)L it is found
that this term adds only ~va'/L to the diffusion
coefficient. Thus, the substitution of constant
density chambers for additional capillary main-
taining the gradient dn/dx beyond x = ~L results
in a net loss of ~va'/L in the zero-pressure limit
for the diffusion coefficient. This accounts for
the dependence of this limit on tube length
expressed in Eq. (33).

The Knudsen diffusion coefficient in a tube of
finite length in the limit X~~ has been deter-
mined for all values of a/I by Clausing. ' He
employs a method in which all terms in the
Taylor expansion for n(x), Eq. (23), are included
by setting up an integral equation involving n(x),
which insures that the total transport across all
sections of the tube is the same. The result ob-
tained here in Eq. (33) agrees with his within the
limits set by the neglect of terms in a'/L'.

We turn next to a consideration of the behavior
noted in (b) at the end of the preceding section
together with the asymptotic behavior of the
correction term ADi, given in Eq. (3i). The latter
causes the diffusion coefficient to merge with
that for an infinite tube of the same radius when
X L.

We have seen that among several tubes of dif-
ferent lengths the Knudsen Rows maintained in
each by the same pressure gradient approach
limits at zero pressure which are smaller the
shorter the tube. Equation (34) shows, on the
other hand, that as the pressure is increased,
these Rows are decreased at a rate which is

g P. Causing, Physica 9, 65 (1929).
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smaller the shorter the tobe. Thus the smaller
the initial value of the flow, the less rapid is its
decline with increasing pressure. In terms of
these two effects the asymptotic behavior of ~1,
means that the dependence of the initial slope on
tube length is so related to that of the intercept
that, in a tube of given L, the flow is brought into
coincidence with that in all longer tubes of the
same radius when the pressure in all of them has
been increased to values for which X &L.

Physically this behavior has a simple inter-
pretation. The transport across any given section
of the tube will be determined largely by mole-
cules starting free paths within a distance

~
x

~

on either side of the section. If ))&L, all portions
of the tube are effective in determining the
transport, and the Knudsen diffusion coefficient
characteristic of the tube length L, as given in

(33), is realized. When, however, X(1., only the
portions of the tube within a distance X from the
central section are effective in determining the
transport across it. Thus, if additional lengths of
the same tubing were added at the ends without
changing the density gradient in the central
portion, the transport there would not be appre-
ciably altered. It follows that the diffusion coef-
ficient in all tubes longer than a given value I
should be the same at pressures for which X &L.

The evaluation of the function Q(a/X) defined
in Eq. (17) is described in Appendix IV. Using
this evaluation, the diffusion coefficient D has
been determined as a function of a/X for an
infinite tube by means of Eq. (19). The result
is shown in Fig. 2 where D/av is plotted as a
function of a/X in the lower full curve. The
broken curve above it represents the gas diffusion
coefficient Dii ——Q,/3= va/3(a/X). It is seen that
the coefficient of diffusion in a capillary tube
falls below that for self-diffusion in the gas at
pressures for which the tube radius is equal to a
small number of mean free paths and that at
pressures for which ) is of order a, the diffusion
is primarily limited by wall collisions. In the
more elaborate Chapman-Enskog theory of dif-
fusion, the factor -', would not of course be ob-
tained for the high pressure limiting form of the
self-diffusion coefficient. The value at zero
pressure would, however, still be 2va/3, and the
curve for D as a function of a/X would still be
asymptotic at high pressure to that for D» in

On the other hand, the diffusion coefFicients
associated with each of these mean steps may be
taken to be proportional to v times the mean step
size, so that we have

(1/D) = (1/D-) + (1/D.).

Putting D =2va/3 and D, = vX/3, we obtain

2 vc
D=—

3 1+(2a/X)
(34)

The broken curve superimposed on the full one
in Fig. 2 is plotted from this relation. The agree-
ment between the two curves is quite good and
may be taken as a justification for the applica-
bility of the elementary considerations leading
to Eq. (34).

Unfortunately, no experimental data on the
variation of D with pressure are available for com-
parison with these results. In making such a
comparison the mean free path at unit pressure
Xi ——pX is to be regarded as a parameter and
adjusted to make vX&/3p agree with the measure-
ments of D» at high pressures.

OMGIN OF THE MINIMUM IN THE SPECIFIC
FLOVf VERSUS PRESSURE CURVES

In the previous section, at high pressures, the
pressure and density gradients referred to were

C. H. Bosanquet, British TA Report BR-507, Sep-
tember 27, 1944.

much the same way as we have found here. It
is clear that the value of X can be adjusted to
give D» correctly for any particular gas.

It is of interest to compare these results with
an interpolation formula developed by Bosan-
quet' for the diffusion coefFicient as a function of
pressure in a capillary tube. Bosanquet con-
siders the diffusion process in the tube as a
random walk in which the successive steps of
individual molecules are terminated either by
collisions with other molecules or with the tube
wall. In this process the frequencies of the two
types of collisions are additive. The mean step
size 3 for this random walk can then be related to
the mean free paths / for wall collisions and 3,
for gas collisions by taking the total collision
frequency to be v/I, so that

(v/I) = (v/I*)+(0/4)
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always partial gradients for the tagged mole-

cules, the total pressure being uniform. We have
already noted in the introduction that the theory
developed here is not applicable to flows main-
tained in the capillary by finite total pressure
gradients because of the production of molecular
drift velocities under such conditions. The
theory can, however, be used to obtain a quali-
tative insight into the mechanism of the flow

behavior observed by Knudsen, Gaede, and
Adzumi. This is possible because the flow at
pressures for which X»a has a negligible con-
tribution from drift and so can be described by
the relations derived here.

When the coefficient of specular reflection is

zero, the molecules are reflected or evaporated
from the tube wall in a completely random
manner at all pressures, so that each molecule

m a'ne/X 2a

2m.a -„'ne
(35)

Thus each molecule ma, kes on the average 2a/X
gas collisions between successive wall collisions.
At low pressures for which I.)X»a, the average
molecule only occasionally collides with another
before completing a path across the tube. The

starts a free path from the wall with no drift
velocity component. In order to acquire a drift
it is necessary for such a molecule to collide with
another, and thus we may get some measure of'

the amount of drift developed at low pressures by
considering the average number of gas collisions
made by a molecule between successive wall col-
lisions. This number is equal to the gas collision
frequency divided by the wall collision frequency.
For a unit length of the tube, this ratio is
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Fso. 2. Transport in molecules per unit time per unit area per unit pressure gradient as a function of the
ratio of tube radius to mean free path for various cases of gas Bow and diffusion in long capillary tubes.
Upper full curve drawn from a composite of a large number of observations of M. Knudsen on the Row of
several different gases through various capillary tubes. Lower full curve: Self-diffusion coefficient at constant
total pressure according to Eq. {19)with the corresponding curve (———) from the Bosanquet interpolation
formula, Eq. (34), superimposed on it. Broken curve: Self-diffusion coefficient D&& of the gas.



9 . G. POLLARD AND R. D. PRESENT

small drift component which can be developed
under these circumstances is, to first order in a/)%, ,

proportional to the chance of an intermolecular
collision and thus to a/li itself.

At zero pressure P»L, ) the entire transport
comes from the Knudsen or wall dift'usion. As
the pressure is increased to small values such that
I g) &a, this fIow is on the one hand decreased
because of the obstruction of the long diR'usion

paths by the added molecules and, on the other
hand, it is increased through the development
of a drift transport. Now it is clear from the
foregoing discussion of both tendencies that the
former, because of the near infinite initial slope
of the diffusion coefKi.cient, must always outweigh
the latter so that the total Row must initially
decrease with pressure. Another way of putting
this is that the obstruction of the long di6'usion

paths (depending on the ratio of mean free path
X to tube length I) sets in earlier than the drift
which depends on the ratio a/X. In a tube of
given radius, the first effect can always be made
to counteract the second simply by making the
tube long enough.

These considerations give rise to the expecta-
tion that, starting with the Knudsen value at
p=0, the specific flow in a long tube must
initially decrease with pressure, pass through a
minimum value, and at higher pressures increase
toward the Poiseuille form. This is, of course,
the behavior observed experimentally as shown

by the upper solid curve of Fig. 2 which repre-
sents Knudsen's experimental data. This curve
was contributed by Melkonian" and was pre-
pared by plotting Knudsen's specific fiow data for
a number of diferent gases and capillaries, using
the quantity kTGI/7rOa'Ap as ordinate and a/$, as
abscissa. Here I is the length of the capillary, Ap
the pressure drop across it, G the How in molecules

per sec. , and A. the mean free path computed
from the average pressure in the tube. Plotted
in this way all of the data defined a fairly
unique curve with very little scatter and this is
the one shown in Fig. 2. Gaede gives no data
suitable for inclusion in this plot, but in this
connection his observation that the drop below
the limiting value of 3 sets in at very low

pressures corresponding to X = 100a is significant.

"E. Melkonian, Manhattan Project Report M-1485,
January 11, 1945.

This behavior is in accord with the logarithmic
term of Eq. (20).

An important consequence of this explanation
of the Knudsen minimum is that it should not be
observed in an irregular capillary or in a porous
medium. In these cases free paths much longer
than the mean radius cannot occur. The possi-
bility that the observed minima were associated
with the long free paths in a straight capillary
or between parallel plates (cf., Gaede, reference 2)
was first suggested by R. M. Badger and is, of
course, confirmed by the present investigation.
Experimental confirmation of this explanation is
provided by the failure to observe any evidence
of such minima with porous media. "These ob-
servations have shown the relation between
specific fIow and average pressure to be accu-
rately linear down to pressures for which the
mean free path is of the order of several hundred
times the mean pore radius.

APPENDIX I

Momentum Transferred to VfaH

Knudsen believed that the reason for the sma11 nu-
rnerical discrepancy between the results given by the
momentum transfer and the diffusion treatments of free
molecule flow (Eqs, (1) and (2), respectively} was to be
found in the inapplicability of the usual relation —,n0 for
the molecular flux when the gas is in motion. It is desirable
therefore to consider the flux of momentum in a moving gas.

The Maxwell distribution function for a gas drifting in
the x direction with velocity u is

f(v)dv=Ae &'('~ ")'dv e ~"&'dv„e &""dv„

where P=2/e{m)& and e is the average molecular speed.
Since u«v„we can drop terms in u~ and expand. We then
have to first order in u/v,

f(v)dv=Ae &'"'(1+2P'uv )dv dv„dv, .

The normalization constant A can in first order be replaced
by its value for a stationary gas: (P/(m)&)'.

We transform to spherical polar coordinates with the
polar (s) axis taken perpendicular to the wall. Then

f(v) dv =A e ~'"'(1+2P'uv sine cosset )v'dv sin8d8dp.

The number of molecules with ve1ocities between v and
v+dv striking unit area of the wall per unit time is
nv cos8f(v)dv, where n is the molecular density. If each
molecule is absorbed by the wall it transfers momentum
mv in the x direction, and the total x momentum trans-

"H. Kuhn, letter from N. Kurti to F. G. Slack, Man-
hattan Project, March 8, 1944; A. D. Callihan, Manhattan
Project Report M-1157, September 4, 1944; K. Schleicher,
Manhattan Project Report M-1472, January 5, 1945.
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ferred to unit area per second is

ca x/2 2v
M= mnA f f f v4e &'"(1+2pccv sinlt cosp)

)&sin~8 cos8 cosfdvd8+.

The first term of the parenthesis vanishes on integrating
over @. This corresponds to the fact that a stationary gas
communicates no x momentum to the wall. On carrying
out the integrations, one 6nds

nmu s8cV= - -=—mu,
2P(~)» 4

which agrees with the elementary result.
It is assumed in this treatment (1}that the drift velocity

is the same at all points of the gas (cf., Appendix II), and
(2) that the rnolecules, after being adsorbed on the wall,
are re-emitted in random directions.

APPENDIX II

Comyarison of Diffusion and Momentum
Transfer Treatments of &~udsen Flow

average transport velocity u and thus that r is inde-
pendent of r. This constant value of r is, from Eq. (1),

G 2akT dn m dnr= —-— —= ——Sa-
ma' m8 dx 4 dx'

and is therefore equal to the correct value on the tube axis.

APPENDIX III

Effe|:t of Change of Mean Free Path
with Pressure

We consider here the effect of variations in the mean free
path ) due to a pressure gradient on our 6na1 result, Eq.
{15),for the total Row through a section of the infinite tube.
For this purpose it is necessary to modify the expression
for the probability that a molecule will traverse a distance
p without collision. When the density is 6xed at a value np,
this probability is given by P(p) ~e ~" . When, however,
the density vs'ies along the tube in the manner given by
Eq, (11), this probability is given by

It was noted in the introduction that the expression for
the Knudsen How which is given by the method employed
here differs by a factor 8/3x from that given by the mo-
mentum transfer treatment. Although a comparison of
these two treatments is secondary to the primary problem
under consideration, it is nevertheless of some interest and
we include a discussion of it here.

In order to make such a comparison we first determine
the Row per unit area r =dN/dS in the limit of zero pres-
sure from Eq. (15). Since this eliminates the integration
over dS, it is necessary to reintroduce the integration over

@ which was performed in Eq. (9). Taking the limit as
)~~, we find then from (15) that the How dN through
the element dS is

2m x/2
dN = ———dS dye s cos'PdP.

2m' dx
Thus

dN 8dn
sd@

0

From Fig. 1 we note that the polar coordinates of dS in

the plane of the cross section are r, p, and that

s = (a' —r' sin'y) &—r cos@.

exp ——1+——
Expanding the exponential of the small term proportional
to dn/dx, this takes the form

P(p) = L1 —(px/2np) 0) (dn/dx)]e

In determining the transport N from wall collisions,
it is necessary to use the expression

s cog cscf dn —s cscf/
2nphp dx

in Eq. (9) in place of the term e
—8 csc'lt'/& This gives

dn ~/2
N = —6— dS s cos'|t' Ll —{scscg) /2/I 0)dx 0

y e
—s cscg/Xp~,

For the transport N, it is necessary to make two changes.
Not only must the expression for P(p) above be used in
place of e ~/" in Eq. (10), but the collision frequency Sdr/)
in the volume element dv must include the effect of the
variation in X along the tube. Since 1/X is proportional to n,
we may use for this collision frequency the expression

r =—= —~e— {a'—r' sin'y)»dy
dS 'dx 0

dn= —-'eaB(r/a)—2 dx

where Z denotes the complete elliptic integral of the sec-
ond kind. Thus on the tube axis we have

~ dnr, 0= —-ea—,
4 dx'

and at the tube wall

r~~ = ——sa—.
dx

In the case of the momentum transfer treatment it is

necessary to assume that all rnolecules have the same

The integral over p in Eq. (10) is then replaced by

f;
"'(..+.-~)(~+"„"",—"„)

p' cosp dn
2np'Ap dx

This gives for N, in place of Eq. (14)

dn m'/2

dS cos~p sing
0

SCSClpySCSC~scscp/
Xp Xp~

If we now add these expressions for N and N~, the total
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transport is found to reduce to

dn r/2
N=N„+N„= —e) 0— d5 (1—e ''"&")

'dx 0

g cos'P sinPdf.

Since this is the same as Eq. (15) with ) p in place of ), the
statement made in the body of the text is established.

APPEHDIX IV

The Evaluation of the Integral Q

The integral is defined by
~/2 m/2

Q= ~ dP cos'y sin'y d8 cos8e 2c GSGP G088/
2

p —x/2

V'e consider first the problem of expanding Q in a power
series in a/). Reversing the order of integration and sub-
stituting x=cscP, we obtain

from which we find that
x/2 C3 , C4 q'Q= d8 cos8 Cg- C2q+—q' ——q'+ —logyq0 2 6 6

where

1 ~ (2k —2)! m

3 I k (k 1) 2 (2k+3) 16

1 ~ (2k —2)! 12, kt(k —1)!22~ '(2k+2) 3'

(2k —2}'. m

, k!(k —1)!2' '(2k+1) 4'

11 ~ (2k —2}!6, k!(k—1)!2'~ '2k

On carrying out the integration over 8 we obtain

n/2 —eat 1
Q= d8 cos8 dx '1——

0 x4 x~
x/2 e&* 1 1

d8 cos8 dx 1 ~ e ~ ~

0 x4 2x' 8x4

where

+—— log —,
x/2

C,- = cos48 log cos8d8 = —0.06405.
where q=2a cos8/). We define

L„= dx = fe & —qIx" n —1

qLI ———Bi{—q) = —logyq+q
t

+2!2 3!3

where y is Euler's constant (logy =0.5772 ~ ).
x/2

Q = d8 cos8 I L4 —qL6 —qLg ~

0

Retaining terms through (a/))' we have to the desired
order of approximation

1 q q 11
3 qL4-———+ — q'+ —log&q3 2 2 36 6

1 q q qL = — + n&4,
n —1 n —2 2(n —3) 6(n —4) '

a/) =0.25 0.5
K=0.0560 0.0834

1 2 00 '

0.1066 0.1186 0.1250.

This is the desired expansion for small a/). In order to
evaluate Q at larger values of a/t we make use of the
relation

x/2
e ""' cos8d8=2 —~IHI(iy) —iJI{iy) )

in which JI(iy) and H&(iy) are, respectively, the Bessel and
Struve functions of first-order and imaginary argument.
Then Q =~/16 —(m/2)K where

x'/2
K= + cos'p sin /{HI(2ai/X sing) —iJI(2ai/) sing) I

0

and K has been evaluated numerically with the following
results:


