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account of by shifting all of the calculated curves
toward the lower end of the radius scale by an
amount equivalent to 1.5 Mev.

From Figs. 2 and 7 it is seen that the experi-
mental distributions are in general agreement
with those calculated from the stripping process
described by Serber. The experimental data are
not good enough to permit us to make a choice
between the transparent model and the opaque
model.
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In many crystalline insulators there is a temperature proportional displacement of the long
wave-length absorption limit towards longer wave-lengths. These are crystals which have a
broad, nearly structureless absorption which is caused by the transition of an electron from a
full to an empty electron band. Previous attempts to explain this phenomenon have shorn
that the effects of thermal expansion are far too small to account for the observed shift. In
this paper it is shown that there is a broadening of electron energy levels due to collisions with
the thermally vibrating lattice which results in reducing the effective width of the "forbidden"
energy region between occupied and conducting bands. Calculations indicate that, in polar
crystals for which the observations have been made, this eEect is of the proper magnitude
to explain the experimental data. In non-polar crystals the effect would be very small. However,
no absorption shift in non-polar crystals has been observed.

1. INTRODUCTIOH

(a) General Discussion of the Shift of Absorption
with Temperature in Insulating; Crystals

''T is well known that in many crystalline
insulators there is a displacement of absorp-

tion toward longer wave-lengths with increasing
temperature. &~ This is manifested in many cases

*Adapted from a dissertation submitted to the faculty
of the Graduate School of Arts and Sciences of the Catholic
University of America in partial fu1611ment of the require-
ments for the degree of Doctor of Philosophy.

F. Moglich and R. Rompe, Zeits. f. Physik 119, 472
{1942), containing data of the shift of the absorption
limit. H. Fesefeldt, i%d. 64, 623 (1930) the data of which
probably pertains to shift of excitation lines (see Section
III).' There is also a much larger shift which sets in suddenly

by a deepening of the color. For example, ZnI,
white at room temperature, becomes yellow at
higher temperatures. This is due to the fact that
the absorption, which at room temperature
starts about 3600A and extends far into the
ultraviolet, shifts into the blue at higher tem-
perature.

The shift toward longer wave-lengths at higher
temperature applies to excitation lines as well as
to the long wave absorption limit of the main
absorption. However, this paper treats the latter
case primarily, although, as indicated at the end

at higher temperature. Moglich and Rompe state that
this is due to "multiple collisions'. " Naturwiss. 29, 105,
Feb. 21, and 120, Feb. 28 {1941).
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of Section 3, the method used here oars a line
of attack for the case of excitation lines also.
This paper does not treat cases in which the
absorption is due to externa1 excitation of
localized groups of atoms (as in KMn04).

The following discussion, then, applies to those
crystals having a very broad absorption region
in which the absorption is due to the fact that
an electron is lifted from a full band to an empty
or conduction band. The order of magnitude of
the shift (of the long wave-length absorption
limit toward larger wave-length with increasing
temperature) is the same for most cases, about
j.A per degree at 5000A.

The shift of the absorption toward the red
can be explained in two ways: as a broadening
of the region of absorption —caused by a
broadening of the energy levels, so that the
upper limit of the full electron band and the
lower limit of the excited electron band come
closer to each other; or as a shift of the whole
absorption region to the red. No measurements
of change at the short wave-length limit have
been made, so that no choice between these two
interpretations can be made on the basis of direct
experimental data.

By analogy with x-rays, in which it is found
that the scattering of the x-rays by the thermaI
vibrations of the crystal lattice particles cause a
reduction in the width of the region of total
reflection, one would expect that the thermal
scattering of electrons by the lattice particles
should likewise result in a reduction of the width
of the "forbidden" energy region between the
full and the lowest conducting band.

Moglich, Riehl, and Rompe have investigated
the amount of broadening which would result
from the scattering of an electron by the lattice
vibrations. It can be inferred from their work
that the efkct so calculated is far too small to
account for the facts.

Moglich and Rompe have then tried the other
possibility, by explaining the phenomenon as
attributable to thermal expansion. This effect,
however, is also too small by a factor of at least
four.

The present investigation was undertaken with
the aim of a scrutiny of the assumptions made

~ F.Mdglich, N. Riehl, and R. Rompe, Zeits. tech. Physik
21, 6, 128 t,'1940),

by Mbglich and Rompe, to 6nd a way out of this
dilemma. Therefore, the mathematical pro-
cedures were considered more carefuIIy than is
usual in investigations of this type; they, how-
ever, were found not to be responsible for the
difficulty. Instead the key was found in a fun-
damental difference between polar and nonpolar
crystals. Moglich and Rompe's assumptions and
results are valid for nonpolar crystals, while
most of the observations apply to polar crystals,
for which the much larger interaction between
electrons and lattice vibrations leads to the
correct results for the broadening of the ab-
sorption.

(b) General Discussion of the Method

The method followed in this paper is to con-
sider an electron which by some means (for ex-
ample, because of radiation in the case of absorp-
tion) has been raised from the full band to the
lower levels of the upper band, leaving behind a
hole in the Iower band. The electron or hole
collides with a lattice vibration, which throws
the electron (or hole) into a different level of the
same band. This transition therefore shortens
the lifetime of the electron or hole in its state.
This shortened lifetime is equivalent to a
broadening of the energy level, analogous to the
collision broadening of spectral lines. 4

Since each level, both in the full band for the
hole and in the conduction band for the excited
electron, is widened, the bands made up of these
levels are correspondingly widened.

In Section 3, the number of co11isions are cal-
culated for three different types of crystals-
non-polar monatomic, non-polar diatomic, arrl
polar —and the resulting shift in absorption com-
pared with experiment.

Some of the calculations are contained in

Appendices I, II, and III, while Appendix IV
considers a lattice with permanently displaced
atoms; this is for the purpose of seeing how much
influence the mere dispLucement and how much
influence the motion of the lattice has.

The writer wishes to express in some small
measure his great indebtedness and gratitude to
his teacher, Professor Karl F. HerzfeM, for sug-
gesting the problem and the method of attack.

4The same calculations apply to the hole as to the
electron, provided a suitable mass is assigned to the hole,
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2. COLLNIONS RED EMQKGY BROADENING

The purpose of this section is to show the rela-
tionship between energy broadening and col-
lisions, in a manner applicable to the collisions
of an electron or hole of small kinetic energy and
the thermalIy vibrating lattice. '

Call f(X, q) the spatial wave function of a
simple harmonic oscillator of quantum number

X(q) corresponding to a lattice vibration with
wave vector q. The energy associated with this
vibration' wiII be

&P, q) =(&(q)+l)f (q),

where is(q) is the circular frequency of vibration.
The wave function of an electron in a periodic

field is

P(K, r) =e'i~'iu(K)/ni

where K is the wave vector of the electron, n,
the number of unit lattice cells, u(K) a periodic
function normalized in each cell, and r the elec-
tron position vector.

The energy of the electronic state will be
approximated by that of the free electron:

E(K) =lZ', l= 0'/2m,

tron into a difkrent state K' and changing one
or more N(q). Here Ps and Es are the spatial
wave function and total energy of the complete
system in its state at i=0 and P; and By cor-
respond to other states.

The coefficients, u, , satisfy the normalization
conditions

and at I =O.

up= j. and all the other a, =o.

Thus &;isla;l' equals the total collision prob-
ability'

The perturbation matrix eIement is:

ll io = p&s hodr (electron and lattice). (4)

Let the electron wave vectors and quantum
numbers of the states 0 and j, respectively, be
Ks, X(0, q),—and K;, X(j, q) where q is an
arbitrary lattice vibration vector.

W;0 vanishes unless the following conditions
are fulfilled: For p=(Ks —K~) (conservation of
linear momentum), the quantum number of the
lattice vibration changes by one

where m is the eHective electron mass.
The solution of the time-dependent

dinger equation for the complete system,
plus electron, is given by:

q'=II q4(X q)~i(K)

Schro-
lattice

(2)

X(0, Kp —K;) =X(j, Kp —K,) &1;

and for all other P remains unchanged.
The coefficients in (3) satisfy the well-known

differential equations

where 8, the total energy=Zs(Z(N, q))+8(K)
for the case in which the lattice thermal vibra-
tions and the electron would not interact: and by

all g P~ isails+'v .~~ Q g
—isjtlh- ~pp and each lV, ; are zem in all cases considered

here.

for the case in which an interaction energy, 8', —k Ba;
causes transitions in the system ("collisions"
between electron and lattice), bringing the elec-

+gs~sssg;ss ' i i &, j+0—. (5—')
~For a classical discussion of the energy broadening

resulting from collisions, see V. Weisskopf, Phys. Zeits.
34, 1 (1933). The discussion here is an adaptation to the
problem at hand of the quantum-mechanical treatment
employed by Weisskopf and signer to determine the
width of spectral lines. (See Zeits. f. Physik 63, 54 (1939).)' In a composite lattice having S particles per unit cell
there will be S nodes of vibration corresponding to each
wave vector q. For a pven q the energy associated with
the sth mode of vibration will be

E(N, s, q) = (N(s, q)+$)ko(q).

'Strictly speaking, the quantity P~Z&co~a&. ~' is the
total probability that at the time, t, the system is no
longer in the original state, rather than the total colbsion
probability. The latter designation does not take into
account the fact that a particle which has made a transition
from the original state 0 to a state j has a possibility of
return to the original state or transitions to other states.
However, for small times, for which P«1, the number of
transitions out of the states j will be small compared with
the transitions out of the original state.
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z IILSX

p (L,(z)/k') Q(z)dz,

where L(z) is obtained by first integrating (6)
over the surfaces of constant z, and z max and
z min represent maximum and minimum values
of z, respectively.

If, now, the conditions (8) and (9) are ful-

filled:

(z max)t/2k ~s, and (z min)t/2k~m; (8)

and L(z) varies so slowly that, at least for the
range of z given by

(9)

I can be replaced by its value, L(0), when z=0;
then' I' will be nearly time proportional (pro-
vided 5 is not too short), and in (7) L can be
replaced by L(0) and the limits may be replaced

by + 00, respectively. Thus

(10)
Also,

Let 21'=(4ir'/k)L(0) and let A be an arbitrary
real number. From (3)"

(uo~
-'= 1 —21't or ao=e "+'"'. (12)

From (3) one sees that A must vanish to first-
order approximation, for (—hA) represents an

energy shift which equals $00 to the order.
Hence, c=e ~'

0 (13)

R. C. Tolman, The I'riecipEes of Statistic/ Mechanics
(Oxford University Press, New York, 1938), Section 96.

9 Reference 8, Section 99.
"One could obtain the same value for ao, but less

simply from the diR'erential equation (5). The normaliza-
tion condition yields the same results as (5) because the
fact that the normalization condition remains true for
t&0 follows directly from the original Schrodinger equa-
tion; i.e., if 4'(t) is the solution of the Schrodinger equation
at any time t,

4 'dr =Q.

In first approximations one obtains

P(t) =—Z;go[a;j'=(I/O')Z ( Wp('0(E; —ED), (6)

where
Q(z) = sin'(tz/2k) /(z/2h) '

(z is used below to represent {F.; Z—0)) A.p-

proximately,

~z max

z min

(L(z) /h')

e—'r'+1 —2e r' cos(z~/k)

(z2+ P 2h2) /h2
(14)

Equation (14) may be integrated under the
conditions that: t is long enough so that (8) is
satisfied; I is substantially independent of z
in the range given by (9); and

[z min ~&&1'h, and (z max [&&I'h. (15)
"The neglect of all terms involving a; in the right side

of (5 ), even in second approximation, is justified by the
fact that from (4') the matrix element W;y must vanish
for any state, k, for which both WI,0 and W;o are di8'erent
from 0. Thus, if one considers a state jwhich does combine
with state 0, the terms remaining on the right sid'e of (5')
besides ao would involve coefficients ai satisfying the
conditions at t=o,

a~=0, and Bai/Bt=o.
These coefFicients wouM therefore be infinitesimals of the
second order (or higher) and would be negbgible for small
t. For large t the phase factors e "(~& ~&&~~ will range
almost continuously from approximately (-1) to (1) (see
{8))and therefore

may be neglected in this approximation. The limits of
validity for this approximation are that 1't must not
become so large that ao(=e ~') becomes so small as to be
of the same order of magnitude as the sum of the terms
remaining on the right side of (5'). However, ao would
then be so small that the Fourier expansion (16') would
be a very good approximation. The above divers from
the usual treatment in the case of spectral lines' in which
no coefficients other than ao and ay appear in the right
side of the equations corresponding to (5').

where I' is half the number of collisions per
second.

Although (10) is true only for small t satis-
fying (11), it can be shown that the expression
(13) for ao remains correct for greater values of t.
This will be done by solving the Eqs. (5')
to obtain a higher order approximation for
(Z;~o~a;~') valid for a wider range of t. The cor-
responding higher order approximation for a0
is again (13).

In the right side of Eqs. (5') use the ap-
proximation

g —e—Ft

and neglect all terms involving a; (j/0)."Then

e»i+1 —2e ri cos(z(/k)
I'= (I ~ o I'/k')—

(z2+ p2k2)/h2

Again expressing Z,~o~a;~' as an integral anal-
ogous to (7),
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(15) replaces (8)."
It is then a satisfactory approximation to

extend the limits in (14) to plus and minus in-
6nity so that

I' = (L(0)/ft') [wit (e
—'"'+ 1)/I' —x2he-'r'/1' 1 (16)

Or

From the normalization condition one again
obtains the expression (13) for as.

By Fourier analysis it is found that the wave
function asPse 's'"s, where as=e r', is mathe-

matically equivalent to the wave packet

Equation (16') represents a distribution of
energy levels so that an energy level

~=&o—hv

occurs with a relative probability proportional to

I
f'+2xsv

i

-'-= (4x'v'+ 1'-')-'

= (1/4s') [(Es—E) '/h'-+ 1"/4x'j-'.

This represents a distribution of energies
analogous to the distribution of absorption in a
spectral line of half-width

(1'/2x) = (1/4s) X (number of collisions per
second) = s.L(0)=—LLZ. (17)

The widening calculated above for a single
level making up the conduction band will also

'g Condition (15) can only be fulfilled if F is not too
large (the temperature not too high). If (15) is fulfilled
amply, then (8) is also fulfilled, since one is not interested
in times for which Ft is very sma11; otherwise (13) and
{16)are not significant. Then (9) means that

s min
Now it turns out that

L(z) =f(z+ Is minI).
Therefore, if IsI((Is minI, L will be nearly constant in
that range of s. (For the hole L(s)=f(s+ I

s maxI) and a
similar argument applies. If the temperature is too high,
I' too large, the method of approximation used is not
valid. Nevertheless the formula found will be used at
higher temperatures. A similar difhculty arises in the
theory of metallic conductivity. The temperature de-
pendence of the conductivity of metals is found experi-
mentally to obey the law' derived by application of the
simple perturbation method at temperatures far beyond
that for which the method is strictly valid. {Cf.E. Kretsch-
mann, Zeits. f. Physik SV, 518 (1934); 88, 7'86 (1934);
R. Peierls, iNd. 88, 786 (1934).)

apply to the lower edge of the conduction band,
and, if the mass appropriate for a hole is used
(see Eq. (1')), to the upper edge of the full band.
The absorption will therefore be widened at both
ends, and the long wave-length limit shifted
toward the red by the sum of the values of
(F/2n. ) taken for the upper edge of the full band
and the lower edge of the empty band. "

xLr(b, P)j is the vector displacement of the bth particle
in the Pth unit cell;

q is the wave vector of the vibration;
M(b) is the mass of the bth particle;
n is the number of unit cells in the lattice;
a{s, q) is the time-dependent amplitude of the sth mode

of vibration having wave vector q. The atomic normal
vibration coordinates may be expressed in terms of the
a{s, q);

f(b, p) is the equilibrium position of the bth particle in
the pth ce)1 relative to the origin of coordinates;

((b, s, q) is a constant vector corresponding to the sth
mode of vibration (of the bth particle) of wave vector q.
The g are normalized according to the equations:

Zsg(b, s, q) .g*{b,s', q) = bs, s'. {20)

Also $(b, s, -q) =P{b, s, q).
In order that the x{b, p) should be real,

a*(s, q) =a(s, —q). {21)

Call T(Z) the kinetic energy of lattice vibration; V(B),
the potential energy; co{s, q), the circular frequency of the
sth mode of vibration of wave vector q. As a result of
(19), {20), and (21) it can be show'n that:

T'(&) = k&s.* I d(&, q) I'
V(&) =P'q ff ~'{s q) I a{s, q.) l'.

(C}Let E{s,q) and eu{s, q) be the quantum number and
circular frequency, respectively, of the sth mode of vibra-
tion with wave vector q. It will be assumed for the sake of

"W. Heitler, The Quantum Theory of Radiatioe (Claren-
don Press, Oxford, 1944), Chapter III, Section 12.

'4 F. Seitz, The Modern Theory of SoMs (McGraw-Hill
Book Company, Inc. , New York, 1940), Section 22.

3. DETAILED DISCUSSIO OF COLLISIONS FOR
INSULATING CRYSTALS

(a) Simplifying Assumptions

The following simplifying assumptions are
made in the case of all types of lattices discussed
herein:

(A) The lattice particles are arranged in a cubic lattice.
Call a the distance between adjacent particles.

(8) The displacement of the particles due to thermal
vibrations is given by the Hooke's law approximation 4

xLr(b, p))=Z~, qa(s, q)lr(b, s, q)e'f&. "&'»&L(M(b))aj & (19)
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simplicity that the high temperature approximation (23)
may be used:@

E(s, q) PE—(s, q)+P MT'/iky{s, q). {23)

(8} It will be assumed that there are so few electrons
in the upper band that they can be treated as a Boltzmann
gas.

(Z} In this paper one is only interested in the neighbor-
hood of the edges of the bands and therefore deals only
with electrons of small kinetic energy and consequently
small (X] {SeeEq. (1')).Therefore only lattice vibrations
of small wave vector lq[ contribute significantly to col-
lisions probabilities. For it follows from Section 2 that only
collisions in which total energy is very nearly conserved, or

are important. Now

s =LX"—lE'+Ace(q).

Hence from (31)N

s =2k(Z q)+fq'~hu(q)

For small [E[ compared with lqj the first term may be
neglected. Now 1~6.i X10~ (using m~mass of free
electron); cu(q) maximum~2w X10'~. Hence for collisions
of interest here, ]ql should not exceed 4X10', which is

roughly only 4 percent of the maximum value, v/s, of
~ q ~

.

(h) Non-Polar Monatomic Crystals

The general procedure, used by Sommerfeld
and Bethe" in computing the electron collision
probability in connection with the conductivity
of metals, is applicable here except as follows:

(1) Only one electron state in the upper band is assumed
to be occupied . (See paragraph 3a(D).)

(2) The sound energy (see below), emitted or absorbed
by an electron as a result of a collision with the lattice,
can no longer be neglected in comparison with the electron
energy, since electrons of very low energy are being con-
sidered instead of electrons at the top of the Fermi dis-
tribution.

The perturbation energy, W', will be computed
by the "deformed lattice" method. "

Corresponding to the atomic vibration (19),
the displacement at any point, r, in the lattice
js eg8

x(r) =Zsa(q) g(q) (cVn)-&e'«" &. (24)
"The collisions (VsskloPPfprosssss) for which K'~K+q

+g (g being a reciprocal lattice principal vector) will be
neglected, s&nce in such cases the condition for energy
conservation would be for small [K )

AP+fg'+2f(q g) +Aar(q) =0,
and this could not be satisfied even for [q( maximum
(= ling t)."A. Sommerfeld and H. Bethe, Holdback der I'kysik,
XXIQ/2 (1933).

'& Reference 14, p. 520.
~ The subscripts g and b in (19) have been omitted since

here there is on y one atom in the unit cell.

In this case ((q) is a unit vector indicating the
direction of the vibration displacements.

Let V be the atomic potential at the point r.
Then

W(r) = [x(r) grad V]. (25)

Let K be the wave ~ector of the initial electron
state in the upper lattice.

In accordance with Eqs. (2) and (4) the matrix
component of lV—connecting for example the
states determined (a) by the lattice-vibration
quantum numbers X(q) and the electron wave
vector K, and (b) the quantum numbers X'(q)
and electron wave vector K'—is:

W(K'X'(q), EN(q)

Iles'(Ã q)P(K') (ss grad V)II'(X q)P (K)dr

=2 q Ilqf*(X', q)a(q')n &Ilail'(X, q)dr(atomic)

4*(K')[4(q') grad V3(~)-'

Xe'«'"&P(K)dr(electronic). (26)

The integration in (26) over the atomic coor-
dinates vanishes unless for a particular wave
vector q:

or
X(q) =X'(q) —1,

N(q) =E'(q)+ I;

(27)

(27')

and for all other wave vectors, for example w,

X(w) =X'(w). (28)

The integration over the atomic coordinates
yields (29) and (29'), corresponding to (27) and
(27'), respectively.

[(&(q)+1)~j'[2n (q)1~,

[&(q)&j'[2n~(q) 3 '.

(29)

(29')

~(q) =N.
l ql. (30)

Let No be the speed of sound waves in the
crystal. For small

l g l, which alone are important
(see paragraph 3a (8))
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C=l(R) ', (33)

Equations (27) and (27') correspond, respec-
tively, to the emission or absorption by the
electron of the sound energy hpi(g).

The integration in (26) over the electronic
coordinates vanishes except for the longitudinal
vibration of wave vector q for which:

K'=K+q" (31)

When (31) is satisfied, the integration over the
electronic coordinates equals in absolute value:

i-,*gc(~)-1i, (32)

where C is the electronic interaction constant.

R being the approximate atomic radius.

(l = h'/2m).

Combining (29) and (32) and using (23), (26)
yields:

i
W(K'N'(q), KN(q) i'

= (2C'kT) (9up'ncV)-'=—D'. (34)

The left side of (34) will be written as D' for
brevity. It will be noted that D' is independent
of q and K.

Take polar coordinates about the point K in
the inverse lattice. One obtains for the total
collision probability, P:~

X (I (E(K') —E(X)+hupg)/2h j ') + (sin'L(l/2h) (E(X')—E(K) —hupg) ])

X ([(E(K')—E(K) —hupg)/2hf
—') sin tldedq. (35)

From (35) one obtains (see Appendix I)

P=(2a C hTl)(97rhlup Iv) [X+(hup/2l) /Xi
X=—hup/2l, (36)

P= (2a'C'ATE) (9pruplpM) ' X«hup/21 (37).

The second term in (36) is a correction which
can be neglected for large X.

The transition point

X=hup/2l,

between formulas (36) and (37), corresponds to
the point where the electron speed equals the
speed of the sound waves, since the momentum
of the electron equals kX.

From (37) and (33) it will be noted that for
small

i
X

i the collision probability is inde-
pendent both of the initial electron wave vector
and of the electronic mass.

Using (37) for germanium one obtains 1.66
XIO' as the number of collisions per second per
degree. "Assuming an equal broadening for the
electron in the upper band and the hole in the
lower band, it follows from (17) that there would
be a shift in the absorption limits of 9)(j.0 4

"This is based upon the value of 2.78)C j.0~ for uo as
computed from the Debye temperature of 290.

wave numbers per degree or 2.25)(10 4A per
degree at 5000A, much too small to be observed
optically. It is also too small to a8'ect the formula
for the number of thermally excited electrons.

A similar result of a shift too small to be
observed would result from application of the
formula (37) to other non-polar insulating crystals
except possibly for loosely bound molecular
crystals for which uo, the speed of sound waves,
might be very small. However, a temperature
proportional shift has not been observed in
non-polar crystals. Moglich and Rompe' state
that there is no positive evidence of a tern-
perature proportional shift in quartz; if a shift
exists, it is smaller than that observed in polar
crystals. As will be seen in the next subsection,
the computed shift in composite non-polar
crystals is practically the same as for monatomic
crystals.

Experimental measurements" on the con-
ductivity of germanium confirm formula (36) for
the case of large i Xi where the correction factor
may be neglected.

~ A zone of reciprocal lattice space is here approximated
by a sphere of the same volume.

~' Lark-Horovitz, Miller, and Walerstein, Phys. Rev. 69,
258 (1946).
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(c) Diatomic Non-Polar Crystals

In a diatomic lattice there will be two modes of
lattice vibration (one at high frequency and one
at low frequency), associated with each vibration
wave vector q, which may interact with the
electron. The low frequency vibrations (acoustic
branch) correspond to the case of the monatomic
lattice just considered. In the case of the high
frequency vibrations (optical branch), for small

~ g~, the two atoms in the unit cell are displaced
in opposite directions, the magnitudes of the dis-
placements being in inverse ratio to the atomic
masses.

As in the monatomic case, the "deformed
lattice" method will be used to compute the
perturbation. The two atoms in each unit cell
will be numbered 1 and 2, respectively. In
accordance with (19), the displacements of the
two atoms (having equilibrium locations r(1) and
r(2)) will be given by x(1) and x(2), respectively:

x(1) =Ze, qa(s, q)((1, s, q)e'« "&'&&[M(1)n]
(38)

x(2) =Zs, qa(s, q)g(2, s, q)e'«. "&'»[M(2)e]—&,

(x(1) grad V(1));

and in subcell No. 2 the perturbation will be

(x(2) grad V(2)), (40)

where V(1) and V(2) are the atomic potentials.
The perturbation matrix element, corre-

sponding to (26) for the sth mode of vibration
will be

where n is again the number of unit cells in the
lattice; thus there are 2n atoms total. The nota-
tions L, or H will be used in the future where it
is necessary to distinguish between lower and
upper frequencies of lattice vibration, respec-
tively.

The volume of a unit cell is now 2e'. Each atom
will be assigned a subcell of volume a'; it will be
assumed that the perturbation in each subcell is
determined primarily by the displacement of
the associated atom. Thus the perturbing
potential at any point, r, of subcell No. 1 will be

W(K'N'(s, q), KX(s, q)) =Zz' II'*(N'(s, q))a(s, q')n &II&f(N(s, q))dr(atomic)

X
~

4 (K')(((I, s, q') grad V(1))[M(1)] ~e'«'"&f(K)d~(electronic subcell No. 1)

+P(K')(5(2, o, q') grad V(2))[M(2)] 1e"""'f(K)dr(electronic subcell No. 2)
~

. (41)

The magnitude of (41) will be denoted by D(s).
From Eq. (41) it appears that the inte-

gration over the atomic coordinates will give the
same result as for the monatomic case except
that X(s, q) is substituted for N(q) and a&(s, q)
for rv(q).

In order for the integration over the electronic
coordinates to diAer from zero it will again be

necessary that

K'=K+q.
For the lower frequency branch the two atoms

in the unit cell vibrate in the same direction
with nearly equal amplitude as long as g is
small "Hence from (38):

~ L. Brillouin, lVave Propagation in Periodic Structures
(McGraw-Hill Book Company, Inc. , New York, 1946),p. 52.

~3 A monatomic lattice could be considered as a diatomic
lattice with &{1)= M(2). If one considers it as monatomic,
the lattice waves of high frequency have a large )g~ and
for that reason do not interact with the electron (see
paragraph 3a (E)). If one considers now the lattice as
diatomic, the high frequencies should be allocated to the
upper branch and assigned a low ) q ~, so that they could—
from this standpoint —interact with the electrons. But
now they give again no contribution because in {47)
M(1) = M{2).

Using the normalization condition (20), one
obtains

$(1, I.) = [M(1)/(M(1) +M(2)) ]&n,

g(2, I)= [M(2)/(M(1)+M(2))]~n.

where n is a unit vector.
Since the electronic wave amplitude function,

u(K), (see (1)) is now normalized over the unit
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cell volume of 2a' in lieu of a', it follows that Equation (41) may now be evaluated for this
case and gives:

f(K')(n grad Vjf(K)dr(subcell) =
~

-', qC ~
(43) D(II)2 = CmkT&~(M(2) M(1))2/

72m'v'(M(1)+M(2)) M(1)M(2)n. (47)
or —,

' the value in the monatomic case (see (32)).
Thus

D(I )' = 2C'k T/I 9uo'n(M(1) +M(2))j. (43')

Comparison with the corresponding expression
(34) for the monatomic lattice yields

D(I.)'= MD'/(M'(1)+M(2)). (44)

In the limiting case of a monatomic lattice

M(1)-+M, M(2)~M, D(L)'~-', D'.

However, the collision probability, P(L,), would
be equal to I' for the monatomic case since in
(35) the volume of the unit cell, 2a', would be
substituted for a' (see also (47)).

The expression (37) therefore holds for the
collision probability due to the lower frequency
branch of lattice vibrations, except that M is
replaced by —,'(M(1)+M(2)). Thus the expression
is the same as for the monatomic case except
that the average mass of the two atoms in the
unit ce11 is used.

For the upper frequency branch of lattice
vibrations the displacements of the two atoms
in the unit cell for a particular small g satisfy
the relations:

x(1)/x(2) = —M(2)/M(1).

Hence,

g(1, H) = LM(2)/(M(1)+M(2))]in,
g(2, H) = —LM(1)/(M(1)+M(2)) j&n.

Let v be the highest frequency of lattice vibra-
tion, '4 corresponding to the point on the upper
frequency branch for which g =0. To first
approximation" the frequency may be assumed
independent of q for small g.

The integration over the atomic coordinates
in (41) still yields the expressions (29) (in
N(H, q) a,nd co(H, q)), but it must be taken into
account that the circular frequency ar(H, q) is
no longer proportional to g but is constant.

~4 u divers only slightly from the Restrahlfrequenz. See
R. B. Barnes, Zeits. f. Physik 2'5, 732 (1932). ~ is of the
order 1013 sec. 1.

"Reference 22, Eq. (15.5).

This expression vanishes for M(2) =M(1) as
would be expected" and is no longer independent
of g as in the previous cases.

The sound energy emitted or absorbed by an
electron during a collision is now kv, which is
comparatively large. Where the electron energy
is less than hv, as in this case, the probability of
a collision in which the electron emits energy
will be very small. Hence, in place of (35), one
obtains for the total collision probability, P(H)
due to the upper frequency branch.

&q max &s.

P(H) = (2a'n/(2s. )'k') J~ J~ 27rg'D(H)'
0 0

X (sin'L(t/») (&(K') —~(K) —hv) 3)

X L(Z(K') —E(K) —hv)/2kj ' sin8d8dg. (48)

The solution for P(H) which is proportional
to time is then (see Appendix II) for small K:
P(H) = La'h~kTC'(M(2) —M(1))'t3

(18l'~'v&(M(2) +M(1))
XM(1)M(2)2s'j '. (49)

Suppose one mass, M(2), much larger than the
other. Then

P(H) =(a'h&kTC't)(1815'2v&M(1)2s') ', (50)

which would usually be smaller by at least the
factor 10' than the collision probability (37) for
the monatomic case, since (50) equals (37) multi-
plied by

(1/8s ) (hu02/1 u) &.

Thus it will be seen that ordinarily the upper
frequency branch of lattice vibrations would
contribute very little to the electron collision
probability. A similar result would be expected
for crystals with a greater number of atoms per
unit cell.

(d) Diatomic Polar Crystals

In a polar crystal, as pointed out by Frohlich, '6

the scattering of electrons is due mainly to those

~6H. Frohlich, Proc. Roy. Soc. 160, 230 (1937); H.
Frohlich and N. F. Mott, ibid. 171, 496 (1939). The
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Zqea(s, q) e*«"&/(2a'(n3f) l). (52)

thermal vibrations, in which positive and
negative ions move in opposite directions, so
that, because of the long range of electric forces,
many atoms cooperate, producing a polarization
6eld. This 6eld has a much greater perturbing
eEect on an electron than the effect of the local
distortion of the lattice 6eld which is alone
present in non-polar crystals.

The displacements x(1) and x(2) of the two
ions in a particular cell will be given by (38).
The polarization per unit volume due to these
displacements is then:

e(x(1) —x(2))/2a'. (51)

Hence, since only small g are important, only
the lattice vibrations of the upper frequency
branch, in which the ions move in opposite direc-
tions, mill produce an appreciable polarization
6eld.

Using (46), the polarization per unit volume
becomes~~

Here M is the reduced mass

(I/3/I = I/cV(I) +I/3I(2)).

8'= [—4s.ie'/(2a'(eM) l)j

Since only longitudinal vibrations result in a
polarization potential, it will be necessary to use
the longitudinal vibration frequency (denoted by
v(l)) rather than the transverse frequency
(denoted by v(t)) which is observed in the infra-
red. As shown by Frohlich,

v(l) s = v(t) +se /2sMsa . s (54)

The matrix components of the perturbation,
t/I/', may now be computed:

The periodic perturbation potential energy, "
8', is derived from (52) by use of Poisson's equa-
tion. It is found that 8' vanishes except for
longitudinal vibrations where

W(K'N'(s, q), KN(s, q)) =Zq'~~IIqlt (N'(s, q))a(s, q')(n) &IIqp(N(s, q))dr(ionic)

X
~

lt (K') (—4s ie'/2a'Mlq') e'«'"&p(K}dr(electronic). (55)

The magnitude of (55) will be denoted by D.
The expressions (29) (in N(s, q) and ts(s, q))

are valid for the integration over the ionic coor-
dinates. Hence, using (23) and (31),

D' =e'kT/(2a'qsnM v(I)'). (56)

For low energy electrons only those collisions
in which the electron absorbs sound energy need
be considered (because in the upper vibration
frequency branch the phonon energy is large).

treatment in the present paper di8ers from that of Frohlich
in that here the collisions per unit time are computed in
order to determine the energy broadening from (j.7). On
the other hand Frohlich, because he was interested in
conductivity, computed the time required for an electron
velocity component in a particular direction to be reduced
to zero. Hence, instead of simply summing the collision
probabilities for the various lattice vibration vectors as is
done here, Frohlich 6rst weighted each collision probability
by a suitable factor taking into account the change in the
electron velocity component.

'7 It will be noted that (n)& is used here, whereas in
Frohlich's similar expression (2n}& appears, since as may
be seen from {19),the number of unit cells, and not the
number of ions, enters into the normal coordinate solution
for the ionic displacements.

Hence the expression (48) applies for the total
collisions probability, P(H), here also, except
that (56) is substituted for D(H) in (48). It is
then found (see Appendix III) that for small X

P(EE) =e'kTt/(a'Mks "v(l)s"(k'/2tn) &). (57}

The displacement of the absorption edge in

energy units is then obtained by substituting
from (57) into (17)

hE = e4kT/(4sasM'klv(I)'"(is'/2trt) l), (58)

plus a corresponding displacement due to the
collisions of the hole in the lower band.

The expression (58) will now be compared with
experimental results.

It should be noted that, as pointed out by
Moglich and Rompe, ' very few quantitative
measurements have been made of the displace-

"H. Frohlich and N. F. Mott, Proc. Roy. Soc. 1'71,
496 (1939) show that the e6'ect of screening is negligible
for electrons having small ( X [.
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ment with temperature of the loag wave ab-
sorption limit. These authors state that for
many substances the displacement is of the mag-
nitude of 1A per degree at 5000A but give quan-
titative data only for ZnS and CdS. For CdS the
value of the Restrahlfrequenz was not available
to the writer.

For ZnS the Restrahlfrequenz is 10"sec. '.
The longitudinal frequency is then 1.22X10"
sec. '. (58) gives an energy broadening of 7.85
X10 "erg per degree due to electron collisions.
(The elfective mass of an electron in the upper
band has been assumed equal to the mass of a
free electron. )

The experimental results for ZnS are 8.43
X10 "erg per degree shift from 77' to 290' and
12.9&10 "erg per degree from 290' to 478'.

In view of the approximation (23), it seems
more appropriate to compare (58) with the
higher temperature results. It will be seen that
(58) agrees with the high temperature results
provided one assumes that the effective mass of
the hole in the lower band is approximately one-

fourth the mass of a free electron. This is in

agreement with the viewpoint of Mott and
Gurney~ that the effective mass of a positive
hole in a broad lower band, such as exists in

sulfides, is much smaller than the mass of a free
electron.

The statement of Moglich and Rompe, that
the temperature displacement of the absorption
limit is of the same order of magnitude for many
substances, may be understood from (58).

Let U~" be a constant equal to the approximate
restoring force per unit displacement of a lattice
particle. Then"

v(I)' = (I /4s') (2 U&"/3I).

Thus, in (58) one may replace (3Ev(l)') by
(&/2s') U~", (U~"a') should be roughly a con-
stant for ionic crystals according to the Madelung
theory. " Therefore the only variable in (58)
between different substances would be v(I) in the
denominator. Since the wave-length of the
Restrahlfrequenz lies between 20@, and 150p, for

"N. F. Mott and R. %'. Gurney, E/ectronic Processes
in, Ion&. Crystals (The Clarendon Press, Oxford, i940),
and Chapter V, No. S, p. 76.

so Reference 22, p. S4.
» Reference 14, Eq. (4), p. 77.

most substances, it will be seen that the variation
in (58) should not exceed a factor of 3 or 4 in

most cases. However, the effective mass of the
hole introduces an additional variable in (58) as
noted below.

In addition to the results given by Moglich and
Rompe, Fesefeldt' has reported some measure-
ments of the displacement with temperature of
the absorption peaks of KI and RbBr. Although,
as Mott and Gurney" point out, these peaks are
probably excitation levels rather than the ab-
sorption limits, it is interesting to compare these
results with the broadening predicted by (58).

sub-
stance

Shift in ergs/degree
(from Fesefeldt) vO}+

hB/T from
(58) (in

ergs/degree)

KI i9.i X ip-~s (at 23') tO S.PSX iPI2 23X ip Ie

iS 2X10 ~ {at 493')

RbBr i2X jp &s (87 to 493 ) 4.49X ipI2 24.7X ip

* The actual maximum transverse frequency, as given
by Barnes, reference 24, has been used in computing v(l).

Thus it will be seen that the broadening com-
puted due to the collisions of either the electron
or the hole is already greater than that ob-
served. "The results may be understood on the
basis that here one is dealing with excitation
lines. If the exciton is considered as a positive
hole coupled to an electron, the collisions of the
pair may be expected in many cases to be of the
same order of magnitude as given by (58), but
somewhat less since the effects of the polariza-
tion perturbation field on the hole and electron
would tend to cancel, depending upon their
separation.

so that
Z = lq'+2lEq cos8+kuoq,

—sin 8d8 =dZ/2lXq.

(60)

Similarly, in the second integral of (35) substitute:

2; = lq +2lXq cos8—husq. (62}

~ Reference 29, Chapter IV, Sections 6 and 7.
» For the narrow filled bands of the halides the effective

mass of the hole should be equal to or greater than the
mass of a free electron.

APPENDIX I. DERIVATION OF EQS. (35) AND (3l)

In the first integral of (3S) it is desired to replace the
variable 8 by Z where 2=8{K')—B(K)+Agog.

Utilizing (i') and (31) one obtains:
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The results of these substitutions are:

r = (~a'a'}Pk'(2 )'lE'y'

f f q(sin'lZ/2k)(Z/2k) ""dZdq

+f™~f q(sin "lz/2-k)(z/2k) 'dzdq, (63)

where Z1= lq'+2lEq+kuoq and Z —=lq'-2/Eq+kuoq
and similarly for the " limits. If now one interchanges the
order of integration, the limits of the variables are:

Case No. ); Assume that

= =lq'+2lKq cos8 —h, v. (68)

Using (47), one then obtains, after changing the order
of integration:

~(H}=
I
azC2u T(~I{2)—~~(1))~g

X I 18(2~)4k'v'E(-M(1)+ 3I(2})31(l)3f(2}j '

Xf' '*fq'(sin'(l:/2k}:}(z/2k)~dqdz, (69}

APPENDIX II. DEMVATION OF EQ. {49}

In (48} replace the variable 8 by " where z=E(K'}
—E(it) —ks

E~kuo /2l.

It is then found from (61) that

Z minimum = —l(A. —kuo/2l)".

" max may be replaced by infinity. From (68},
min = —{lE""+hv).

(65) The limits of q are:
(70}

and that the limits of q in the first integral of {63)are:

Range of Z

7 min too

Oto Z max

Upper limit of q

(K -tItuo/2l )+f(duo/2l -K)&+8jl]&

(K —Auo/2l)
+[{Auo/2l —K)o+Z jl]&

Lo~er limit of q

(K -Auo /2l)
-[{Auo/2l —K)~+7 /E]~

—(K+Auo/2l)
+[{Auo/2l +K)2+7jl]&

Similar expressions apply to z minimum and the limits
of q in the second integral of {63)except that the sign of
(kuo/2l) is changed.

Z max and z max are so large that they can be replaced
by infinity.

Case No. 2:
K~kuo/2L

This di6'ers from the previous case by the fact that

Z minimum =0

{66)

and the limits of q from minimum to z=0 in the second
integral of (63}are as follows:

—(K -Auo /2l)

pl K) [(K kuo/2l)o+s jl]~

(K+auo /2l)
+f(K+kuo/2I)o+s/l]~

{K+kuo/2l)—[(K+Auo /2l)o+s jl]&

-(K -Suo /2l)
+[{K-duo/2l)2+s/l]&

Performing the integration in (63) over q, one then
obtains a result analogous to (7):

I' = [ns'D'/(2(2z)z/K) g f (2/k")-
~(K-&& 0/2l}2

X (E—kuo/2l) I.(K—kuo/2l)s+Z/l j){sins(lZ/2k}}

X (Z/2k)~dZ+ f (2/kz)(K+kup/2l)
~(K+AtsoIZg)2

X t (E+kuo/2l)s+z/l j&(sin2(tz/2k))(z/2k) 'dz . (67)

The evaluation of (67) in accordance with (10) and use

of (34) then yields (36) and (37).

Range of s Upper limit of q Lower limit of q

s minimum to (K+Auo/2l) (K +duo/2l)
s ~ -l{kuo/2l -K)& +[(K+Auo/2l)q+s jl]~ —[{K+Auo/2l)o+s/l]~

Range of z

s min to ( —hv)

( —hv) to s ma@

Upper limit of q

Kg[Ko+(h +s)/l]&

K +[Ko+(h v+s) /l]&

Lower limit of q

K —[Ko+{hv+s) jl]&
{71)—K+[Kq+(h. +s) jl]&

Integrating with respect to q in (69),

I'(H) = Pa C'kT(M(2) —M(i))'j
X I 18(2x) v l(M(1)+3E(2))31{1)-V(2)j '

Xf dz[(Ks+(kv+z)/l)&
-(lE +hv)

+Es{E'+(hv+z)/l)&(sin'(tz /2k)}("/2k) 'j. (72)

Evaluation of {72) in accordance with (10) leads to a
quadratic expression in E'. For small values of E (/E2,
the kinetic energy of the electron, small compared to hv,

the energy of the phonon) one retains only the important
term which gives (49).

APPENDIX IG. DERIVATION OF EQ. {58}

One again uses (48) with D' from (56} in place of
D(H)'. Proceeding again as in appendix 2 one obtains

P(H}=e'kT(2 Mskz(l)slsK)z'f f(t/q)
X (sin'{tz/2k) }(z/2k} 'gd-" (73)

min and the limits of q are given by (70) and {71),re-

spectively.

I'(H) = e4k T(2a'Mh'v{l)"-lK) '

Xf'
log([K+(K'+(k (l)+z)/l)& j

X I:E—{E+(h.(l)+z)/l)~j- }
X (tz/2k}/(z/2k)'dz. {74)

'I'he pole in the integrand when ."-= —hv{l) is due to the
fact that the substitution (68) is not valid at the point
q= 0.

One readily finds that the integration in (73) over a
small region around the point q=0 tends towards 0 as the
volume of the region is reduced.

Equation (74) may then be evaluated in accordance
with (10):
I'(0) =84kT(2a'Mav(l)'l) '

$(1/E) logL(E+ t (E'+hv(l)) jl j&}
X{-E+I (E'+hv(l})/lg&) 'jjt.
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As X~0 the quantity in the brackets approaches
2D/(hv(l)) j& and the derivative with respect to X of the
quantity in brackets~.

Thus for sufficiently small X one obtains (57).

APPENDIX IV. COLLISIONS IN A SLIGHTLY PER-
TURBED NON-VIBRATING LATTICE

In the calculations of collision probabilities the treat-
ments given in this paper have taken into account the
motion of the lattice particles. It is also of interest to
consider a procedure, similar to that usually used in
computing the thermal scattering of x-rays, in which the
lattice particles are considered "frozen" in a particular
displacement and the deviations from periodicity cause
the electron collisions. A non-polar monatomic lattice will

be considered in. this manner.
It mill be noticed that in this case the collisions are

elastic, i.e., there is no transfer of energy between the
electrons and the lattice.

The perturbation energy, W, will again be given by

IV=(x(r) grad V)

where x(r) is given by {24).
If the electron wave vector changes from K to K' as a

result of a collision, the matrix element of S' will be:

W(K', K) =fr/(K') {x(r) grad V)p(K)dr(electronic). (75)

Hence, the condition in Fq. (31), K'=K+q still hows,
so that from (32)

I W{K' K) l'= (l a(9) i'+9'C')/9Mn, (76)

where ~a{q) ~' is the square of the amplitude of the coeffi-
cient in the q term in the Fourier analysis of the deviation
from an ideal lattice.

Therefore, the average collision probability, P, is given
by

P =Z g
~

W(K', K) (

' sin'Pt {E(K')—E(K))/2h j
~ t:(E{K')-E(K))/»j-. (»)

It will be noted that the value of P is determined
primarily by the transition probability to states for which
the electronic energy is nearly conserved, i.e.,

E(K') =E(K),
while in the vibrating lattice the important states were
those for which E(K')=E(K)&hv. The difference is of
importance only when the initial electronic energy is of
comparable magnitude or smaller than the phonon hv.

Equation {77) will be approximated by an integration
over the electron wave vector space. Take coordinates
about the origin. The only variable in the integration is
then K', for from (1'):

E(K') —E(K) = l{E')2-lE'.
Let z= E{K')—E(K)

P f =L{4C'la(g) l~)/9Mn5(1/7t')(na')(2m) '

X {4~/2l) (z/i+SO) & sin'(tz/2h) /(z/2h) ~dz. (78)
The solution for P which is proportional to time is34

P = (2a3&k TZt)/(9gMup~M) {79}
which is identical except for a correction term with Eq.
(36) for the case of large X when the motion of the
lattice particles are taken into account. This agreement
was to be expected since, when the electron energies are
large, the electrons are moving rapidly with respect to the
lattice so that the motion of the lattice particles may be
neglected to first approximation.

However, (79) is different from (37) when E is very
small since according to (37) the collision probability is
then independent of E. This is also to be expected since
for small electron energy the collision probability depends
upon the number of states for which the increase in
electron energy equals the energy absorbed from the
lattice so that energy is nearly conserved.

~ In order to compare the collisions in this case with
those for a vibrating lattice, one can choose ja{|t)P equal
to the average square of the displacement in thermal
motion at high temperatures. Then from (22)

Lla(g) F]=&7'/(nay).


