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As shown by Rayleigh, a considerable number of acous-
tic phenomena are known which involve the viscosity of
the medium and require the solution of the hydrodynamic
equations to a higher degree of approximation than is
customary in elementary treatments of the theory of
sound. Among these are the Quid streams that occur near
intense sources of sound (e.g. : the "quartz wind").

The general equations of these second-order acoustic
phenomena are developed in a systematic manner. When
viscous forces are neglected, the eEects are of three kinds:
(2) those that can be ascribed to the inertia of acoustic
energy, (2) those arising from radiation pressure, and (3)
those caused by the variable compressibility of the medium.
All of them result in the production of overtones of the
fundamental vibration. In certain cases, this distortion can.
become very large, being unlimited except by the viscous
forces. However, even when the average value of the
gradient of the radiation pressure does not vanish, it does
not, on the average, cause an acceleration of the Quid.
Such gradients are balanced by the elastic rather than by
the viscous forces.

When the latter are introduced into the calculation, a
fourth eHect appears: the irrotationa1 motion in the sound
wave generates vorticity as a second-order effect. This

vortex motion will ultimately approach a steady state,
being generated and resisted by forces that are independent
of the time. Both generating and resisting forces are vis-
cous, and consequently the steady motion is independent
of the magnitude of the coefficient of viscosity. However,
the resisting forces depend only on the shear viscosity of
the medium, while the generating forces depend also on
the bulk viscosity. It is suggested that the ratio of the
bulk and shear coefFicients of viscosity can be determined
by studying these phenomena.

Calculations of the velocity of the stream generated by
a beam of sound show that it is proportional (1) to
b=(4/3)+(v'/s), where v' and j are the bulk and shear
viscosities, (2) to the power being radiated in the beam,
(3) inversely to the square of the wave-length, and (4)
inversely to p~c', where p is the density and c the sound
velocity of the medium. The maximum value of the steady-
streaming velocity depends on the resistance offered by
the walls of the vessel or room in which the experiment
is performed. The time required to set up the steady state
is, of course, inversely proportional to this resistance, and
the Row is apt to become turbulent when the resistance
is low.

INTRODUCTION

'HE subject matter of this paper cannot be
outlined more clearly than by quoting

from the hrst paragraphs of Lord Rayleigh's
paper' "On the circulation of air observed in
Kundt's tubes, and on some allied acoustical
problems":

Experimenters in acoustics have discovered more than
one set of phenomena, apparently depending for their
explanation upon the existence of regular currents of air
resulting from vibratory motion. . . such currents,
involving as they do circulation of the fiuid, could not arise
in the absence of friction. . . . And even when we are
prepared to include the inRuence of friction, we have no
chance of reaching an explanation if, as usual, we limit.
ourselves to the supposition of infinitely small motion and
neglect the squares and higher powers )of the velocityj.
. . . The more important of the problems relates to the
currents generated over a vibrating plate, arranged as in

~ This work represents one of the results of research
carried out under contract with the Bureau of Ships and
0$ce of Naval Research, Navy Department.

'Lord Rayleigh, Scientific Papers (Cambridge Univer-
sity Press, Teddington, England), No. 108, p. 239; Phil.
Trans. 175, 1 (1883).

Chladni's experiments. It was discovered by Savart that
very fine powder does not collect itself at the nodal lines,
as does sand in the production of Chladni's figures, but
gathers itself into a cloud which, after hovering for a time,
settles itself over the places of maximum vibration. This
was traced by Faraday' to the action of currents of air,
rising from the plate at the place of maximum vibration,
and falling back to it at the nodes. In a vacuum the phe-
nomena observed by Savart do not take place, all kinds
of powder collecting at the nodes. . . . I Another j problem
relates to the air currents observed by Dvorak in a
Kundt's tube, to which is apparently due the formation of
the dust figures.

With the advant of piezoelectric generators of
sound, these eHects were rediscovered. Strong
currents of air ("quartz wind") or hquid appear
in front of the vibrating surface of the crystal.
In the case of liquids, these currents are fre-
quently great enough to disturb its free surface.
Unless great care is exercised, they may vitiate
intensity measurements with a Rayleigh disk. It
is possible that this eHect was actually discovered
by Rayleigh, who performed the following experi-

' Michael Faraday, Phil. Trans. 299 {1831).
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ment: ". . . when the corresponding fork,
strongly excited, was held to the mouth [of the
Helmholtz resonatorj a wind of considerable
force issued from the nipple at the opposite side.
This effect may rise to such intensity as to blow
out a candle upon whose wick the stream is
directed. . . . Closer examination revealed the
fact that at the sides of the nipple the outward
flowing stream was replaced by one in the op-
posite direction, so that a tongue of fIame from
a suitable placed candle appeared to enter the
nipple at the same time that another candle
situated immediately in front was blown away. "

Although Rayleigh summarized his calcula-
tions in Theory of Sound, ' his results appear to
be virtually unknown. At lest two different and
incorrect explanations of the quartz wind can be
found in recent literature, while the correct
explanation appears to be virtually unknown to
the experimenter. It is even possible that Ray-
leigh himself gave an incorrect explanation of the
resonator experiment just described. %ithout
giving adequate reasons, he says: "The two
effects [flow and counter-flowj are of course in

reality alternating, and only appear to be simul-
taneous in consequence of the inability of the
eye to follow such rapid changes. " It is at least
possible that the streams are steady and that
this is an e8ect similar to the others described
above.

In the following pages, a systematic account
of the theory of second-order acoustic effects
will be developed. In the first part, acoustic
radiation pressure and the inertia of acoustic
energy will be considered. It will be shown that,
as Rayleigh knew, these cannot cause the phe-
nomena described above. However, the structure
of this mathematical theory will be useful in the
second part, where the second-order viscous
forces will be considered, and in the third, where
;~ calculation mill be given of the steady Row
produced by a sound beam of circular cross
section. The remarkable fact will appear that the
steady flow "is independent of the value of the
coegcierlt of viscosity We cannot, . therefore,
avoid considering this motion by supposing the
~mefFicient of viscosity to be very small, the

3 Rayleigh, 7 heory of 5oued (MacMillan Company, Ltd. ,
London, 1896), Vol. II, p. 217.' Reference 3, Vol. II, p. 333.

maintenance of the vortices becoming easier in
the same proportion as the forces tending to
produce the vortical motion diminish. " '

The First- and Second-Order Equations of
Acoustics

The general equations of hydrodynamics for a
non-viscous fIuid are

(Bp/81)+V (pu) =0

[8(pu)/Bt]+pu Vu+uV (pu) = —Vp, (2)

where p is the density, p the pressure, and u the
velocity of the Auid. For the present purposes, it
will be supposed that p is a function of p only;
then

VP = C~Vp, (3)

where C is a function of p which has the units
of a velocity. This presupposes that the motion
is isentropic.

The essential idea of Rayleigh's treatment of
the problems discussed in the introduction, is
that some of the terms in Eqs. (1) and (2) are
sometimes much less important than others. In
different circumstances, different terms will be

' Reference 1, p. 246.

PART I. ACOUSTIC RADIATION PRESSURE AND
THE INERTIA OF ACOUSTIC ENERGY

The question is sometimes asked, why the
velocity of sound does not function in acoustic
theory in the same way that the velocity of light
functions in relativity theory. From the stand-
point of the latter, the question is foolish, for
the velocity of light is both that, and also the
maximum velocity with which any kind of signal
or object can be transmitted. The velocity of
sound is not maximal in the same sense. Still, the
principle of the inertia of energy is not very
directly connected with the principle of maximal
velocity, but rather with the equations of motion
of matter. Consequently, it would be expected
that acoustic energy mill display an inertia. that
is much greater than the inertia of electromag-
netic radiation, in the inverse ratio of the squares
of their velocities of propagation. It will be
shown that this expectation is correct, provided
the proposition be given a suitable interpreta-
tion.
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p= pp+&p +&'p2+- --

u+up+�S&+¹u2+
(4.0)

(7.0)

~*After the special units have served their purpose of
providing a perturbation parameter, one may always
return to the c.g.s. system, for which N 1, C=c. This vri11
be done in the following pages.

negligible and others mill be important. Thus, in
acoustics, the terms Bp/Bt and Vp are important;
in hydraulics, the term V (pu) becomes more
important than Bp/Bt, but Vp retains its im-
portance. In order to bring the relative im-
portance of the terms clearly to the attention, it
is useful to depart from the c.g.s. system of
units and to introduce one that is specially
adapted to the problems under consideration.

In such a system, let the unit of length be X
cm; of time, rsec. ; of velocity, Ucm sec. '. The
unit of density is immaterial, since the equations
are essentially homogeneous in p. In these units
the equations become

(Bp/Bl)+XV (pu) =0, (4)

[B(pu)/Bt J+X[pu Vu+uV (pu)$
= —(&C'/ U') V p (5)

where the numeric

A" = UT/X.

To insure that the system of units will serve its
purpose, the units X and T are to be chosen so
that Bf/Bt and Bf/Bx are of the same order of
magnitude, f being any of the functions p, u.
The unit U could be chosen in any of a number
of ways: so that X=1, or so that C/U 1, or so
that u/U 1.The third is the choice appropriate
for most problems. Having thus defined the
units, acoustics may be de6ned as consisting of
those hydrodynamic problems for which N&&j.

and EC/U 1. (Hydraulics is apparently those
hydrodynamic problems for which N&&1 and
AU'/C' 1.)

Introducing the quantity

c(p) = &C(p)/ U,

Eq. (5) becomes

.V[B(pu)/Btj+Eo[uV (pu)+ pu Vu J
= —coV p. (7)

The numeric N is now to be treated as a per-
turbation parameter, ** and the expansions

are introduced. The zero-order equations are then

Bpo/Bt =0,

cp~V'pp =0,

(4.0)

(7.0)

where cO
——c(pO). Hence, po ls a constant, which

fact may be used to simplify the 6rst- and
second-order equations:

(Bpg/Bt)+pOV uo ——0,

pO(BuO/B~) = —c00Vp, ;

(Bpo/Bt)+pOV ug+V (pguO) =0,

(4.1)

(7.1)

(4.2)

Integrals of the First-Order Equations

The equation expressing the conservation of
acoustic energy is derived by multiplying Eq.
(4.1) by cOop&/pO, and Eq. (7.1) by u„and
adding. The result is

(BW/Bt)+V J=O.
'I'he quantity

W 0 pro + oco pl /p0

is the acoustic energy density, while

J= cp'pinup (10)

is the acoustic energy How.

The conservation law of acoustic "momentum"
is obtained by multiplying Eq. (4.1) by uO, and
Eq. (7.1) by p&/po and adding: the result is

BJ——+po(uo'Vuo+uOV'uo)
Co" 8$

—V(W —pouo"")+pouoVX(VXu0) =0 (11)

lt will be noted that the time derivative of J/c0'
appears in Eq. (11). Thus the acoustic mo-
mentum is related to acoustic energy How in the
same manner as the corresponding electromag-
netic quantities. Also that, instead of the total
energy density, W, Eq. (11)contains the Lagran-
gian diA'erence between the potential and kinetic
energy densities.

The last term in Eq. (11) usually vanishes,

pO(Buq/Bt) +(B/Bt) (pyuO) +po(uo ' VuO+uOV ' uo)
= —c00Vpo+cO(dcO/dpo)Vpp (7..2)

The Eqs. (4.1) and (7.1) are the equations of
elementary acoustic theory, while Eqs. (4.2)
and (7.2) are less familiar.
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(Bplr/Bt) +poV ' ill =0, (4-I I)

po(Brlr/Bt) = co V prr
—V[porro'+oo(«o/&po) pr']. (7-I I)

The term in «o/dpo would disappear if the
medium obeyed Hooke's law. Thus, only the
term in porno' needs discussion. This functions like
an additional (known) pressure, and may there-
('or be called the acoustic radiation pressure:

+= popo (13)

which is thus given by twice the kinetic energy
density. In gases, the term

H= co(dco/dpo) pro (14)

will be of the same order of magnitude as P. In
liquids, H will be much less than P.

Because of the similarity between the equa-
tions for p~~ and pi, physicists will find it easier
to think about pg~ than about p2. In particular,
propositions arrived at intuitively (that is,
derived from experience with elementary acoustic
problems) will usually apply to prr and not to po.

Fortunately, the necessary correction is simple:
it is only necessary to take the "inertia" of
acoustic energy into account and add W/coo to
pry in order to obtain p2,

The Solution of the Second, -Order Equations

Certain general conclusions can be reached
about the second-order e6'ects in simple har-
monic sound fields. In these cases, neither P nor
H will contain terms of the fundamental fre-
quency, but both will contain constant terms
and terms with the double frequency. The latter
mill result in the generation of the second har-

since only solutions for which V'Xuo=o are of
interest. This will be assumed in the following.

Simyli6cation of the Second-Order Equations

The second-order equations are seen to contain
several combinations of terms that also appear
in the conservation laws. The former can there-
fore be simplified by introducing a quantity p~~,

defilned by
p2= prr+ W/co'. (12)

The quantity p~i obeys equations that are much
simpler than those for p~, and much more
analogous to the 6rst-order equations:

monic in the sound field —a phenomenon that
has been observed at even moderate sound inten-
sities. In certain cases, notably that of the plane
wave, the amplitude of these harmonics will

increase until they are limited by the viscous
forces which have thus far been omitted.

Because of interference and the divergence of
sound rays, the time-constant terms in P and
H will, in general, depend on position. Thus,
there will be a constant pressure gradient, and
one might expect that this constant gradient will

produce a constant acceleration of the fluid,
whose velocity would thus increase until the
viscous forces balance the pressure gradient. The
end result would be fluid streaming at a constant
velocity, proportional to the acoustic energy-
gradient and inversely proportional to the coef-
6cient of viscosity. These might account for the
phenomena described in the Introduction. Un-
fortunately, however„ this reasoning is faulty.
The constant part of the gradient of P+H is
balanced, not by the viscosity of the fluid, but
by its elasticity. Thus neither P nor H caust.

streaming of the Quid.
This is very simply proven: p~~ may be

eliminated between Eqs. (4-II) and (7-11) by
taking the gradient of the former and the time
derivative of the latter; the result is

po(B rlr/Bt ) —poco VV 'llo
= —(B/Bt) [V(P+H) j. (15)

Since only the time derivatives of V'P and V'H

appear, the first-order velocity u& is independent
of the constant parts of these gradients. This
result would not be essentially altered by intro-
ducing the viscous terms. On the other hand, if
u& is eliminated from the equations, the result is

po(B'prr/Bt') poco'V'prr =—V'(P+H) (16)

Thus the constant parts of gradients will produce
a constant part of p~~.

Consequently, neither radiation pressure nor
the failure of Hooke's law can be invoked to
explain the fluid streams mentioned above, and
it becomes necessary to proceed to a study of the
viscous forces.

PART IL THE EFFECTS OF VISCOSITY

%hen the viscous forces are included, the
equations become (in the X, T, U system of
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units):
(Bp/Bt)+NV (pu) =0 (17)

that the 6rst-order equations are

(8pr/Bt) +ppV 'uo =0, (17.1)
.V[B(pu)/Bt]+N'rtuV (pu)+ pu Vu]

= —c'V p+(NT/X') E((4/3) v+ v') pVV u
—vpX(VXu)]. (18)

The quantity vp is the ordinary coef6cient of
shear viscosity, so that v is measured in cm'/sec.
For an ideal gas, the bulk viscosity, v', is zero;
for liquids it is presumably difkrent from zero,
although no measurements or calculations of its
magnitude have been made. e For convenience
the abbreviation

b = 4/3+ v'/v

will be used: it is a numerical characteristic of the
fIuid, and its value will presumably be somewhere
between 2 and 10 for liquids, and near 4/3 for
gases.

For simplicity, it will be assumed that both b

and the product vp = vopo are independent of the
density of the liquid; effects due to their variation
may be of importance, but will not be treated
here. The coefFicient of the viscous forces may be
written

NTvp /X'= N'/R,

R= UX/vp

is the Reynold's number, calculated for the unit
of velocity and the unit of length. The values of
X and U have above been Axed with respect to
the problem, but the value of X has not yet been
speci6ed. This freedom could be utilized to
assign any desired order of magnitude to the
viscous forces; however, there appear to be good
physical reasons for supposing them to be of 6rst
order. This determines X by means of the equa-
tion E=R. The unit of length thus calculated
has a simple physical signihcance in the case of
gases: it is the mean-free path of their molecules.
Since the viscous terms are introduced into the
equations in order to take approximate account
of molecular processes, this is a very appropriate
unit.

It is then obvious that the zero-order equa-
tions will be unafkcted by the viscous terms, and

' H. Lamb, Hydrodynamics (Cambridge University
Press, Teddington, England), sixth edition, pp. 573, 645;
Reference 3, Vol II, pp. 314, 320; G. Kirehhoff, Pogg.
Ann. 134, 177 (1868).

p 0(Bll0/Bt) = Cp V pr+ pp vpbVV ' uo
—povoV X (V Xup), (18.1}

and the second-order equations are

(Bpp/Bt)+poV ur+V (pruo) =0, (17.2)

po(Bur/Bt) +(B/Bt) (p»o)
+poLuo Vuo+uoV lip] co Vpp

+ppvpbVV up —ppvpVX (V Xup). (18.2)

Eff'ects due to the failure of Hooke's law have
been omitted, although they may be of im-
portance in problems involving distortion.

The conservation (or better, the dissipation) of
acoustic energy is then derivable from the 6rst-
order equations as before, and results in the
equation

(BW/Bt) +V.J= povohbu 0 Vuo
—uo VX(VXuo)] (20)

Similarly, the dissipation of acoustic mo-
mentum is expressed by

2CO (BI/Bt)+poLup Vuo+upV lip]
+V(W —ppttp )+ ppupX(V Xuo)

= vobprVV uo —voprVX(VXuo). (21)

Setting O'Xuo=0, and introducing pII as before,
Eqs. (17.2) and (18.2) are seen to be equivalent to

(Bprr/Bt)+poV ur (vob/cp')uo V——(Bpr/Bt), (17-II)

pp(Bu, /Bt) = Cp'Vpr—r V(pppt—p')

+ppvpbVV ur ppvpVX(VXur)
—prvobVV up. (18-II)

Equations (17.2) and (17-II) show that neither

p2 nor pal are conserved. In the previous part, it
was noted that pzz obeyed laws that would be
expected by physicists who rely on physical
intuition, while p~ did noi. The reason that pyg

is no longer conserved is clearly to be found in the
dissipation of acoustic energy by the viscous
forces. There appears to be no convenient way
of introducing a relevant quantity that is con-
served.

The Second-Ordex Motion of the Fluid

Elimination of prr between the Eqs. (17-II)
and (18-II) results in the equation
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p p(a'u~/at') pp—cp'V V u,
+ppvpbV(a/at)(V' ug)

ppvp—(a/Bt) VX(VXug)
= —V(a/at)(ppup') bv—p(a/at) [p,VV up]

—bvpV/up V(apg/at)]. (22)

'1'his equation can be simplified by introducing
the divergence and rotation of the velocity

in terms of which

V @) Dly

V'-A) = —R),

(26)

This equation is most conveniently handled by
introducing the scalar and vector potentials
defined by

a= V.u, R=VXu. (23)
Q) = —VQ)+ V XA). (28)

"I'aking the divergence of Eq. (22), the rotation
R) is eliminated:

8'D~/atp cppvpD—, vpbv'(—BDg/at)
V'(a—u p'/at) —(b vp/pp) V. L (8/at) (pgVDp) ]

(b o/p—o)V'[uo V(ap /at)]. (24)

Taking the rotation of Eq. (18-II) similarly
eliminates D).

(BRi/at) —vpVPRg = (bvp/pp')V pi XV(apg/at) (25).

It is worth noting in more detail than above
that when the first-order quantities are simple
harmonic functions of the time, the right side
of Eq. (25) is independent of the time. For, let

P~= p~cpP=P' cosnt+P" sinnt,

where P and P" are functions of the space coor-
dinates only „ then

co'Vp) =VP' cosnt+VP" sinnt,
(cpP/n) V(a p~/Bt) = —VP' sinnt+VP" cosnt,

whence

Vpg X V (8pg/at) = (n/cp') VP' XVP".

This is perhaps the first indication that the
theory of the fluid streams generated by sound
sources is governed by Eq. (25). It also indicates
that the vorticity generated by a sound wave
will approach a steady value after a suSciently
long time. The length of this time depends on the
value of the viscosity coeScient vo, but the
steady state itself does not: it is determined by
the equation

Rl (b/pp') Vpi X V(ap~/at). (25a)

The general procedure to obtain the velocity
u) will involve two steps, the first being the
solution of Eqs. (24) and (25). Then u~ itself can
be obtained from D) and R) because of the vector
identity

V~u) = VD) —V'X R).

Equation (28) indicates that the irrotational and
incompressible parts of the motion can bc
treated independently. Only the steady state
of the latter will be considered further, the dis-
cussion being based on Eq. (25a).

n R) ——0, (29)

n being the unit normal at the boundary, while
the divergence theorem results in

~
Rods=0. (30)

The Diffusion of Vorticity

'I his equation has the general form of Fourier's
equation for the conduction of heat or the dif-
fusion of matter. Hence vorticity is generated in
those regions where its right side is difII'erent from
zero, and diffuses into other regions. However,
the analogy to heat conduction and diffusion is
not complete.

Being a partial differential equation, Eq. (25)
has many solutions, and that solution appropriate
to the given problem is determined by the
boundary condition. In the case of heat flow, this
is usually one of two: if the boundaries are
thermally insulated, the normal component of
the temperature gradient will be zero on them;
if the boundaries are kept at a fixed temperature,
this fact serves to determine the special solution.

Neither of these boundary conditions applies
to vorticity. This is perhaps to be expected, since
vorticity is a vector rather than a scalar. In fact,
the accepted boundary condition is not for-
mulated in terms of R) but in terms of u), and
requires that all components of the latter vanish
on the walls of the container.

For simplicity, let it be supposed that there is
no free surface, so that u) vanishes at all boun-
daries of the fluid. Then an easy application of
Stokes' theorem shows that
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These are the only conditions restricting the
solutions of Eq. (25) that can be formulated in
terms of R~ alone. They are very weak condi-
tions, and do not suffice to determine the solution
uniquely. This latter step must bc postponed
t&ntil uq has been found from Eqs. (27) and (28).

Because of this difference in the boundary
conditions, vorticity may be generated at the
walls of the containing vessel in a manner that
is quite difl'erent from the influx (or efflux) of
heat in the thermal analogy. Consequently also,
the steady states of vortex distribution will be
quite diferent from those familiar in the theory
of heat. If these general considerations are not
kept in mind, the reader may be surprised at
some of the results obtained when the above
equations are applied to a special case.

PART III. THE FI 0% CAUSED BY A BEAM
OF SOUND

lii order to simplify the calculations, consider
a long tube of radius ro, whose walls are rigid,
~nd whose ends are closed by some material that

permits an axial sound beam to enter and leave
the tube without reflection. These ends prevent
fluid from entering or leaving the tube; the
latter is long enough so that at its center all
e8ects due to the ends may be neglected, except
that the total How through any cross section
must be zero.

If the axis of the tube is the s axis and r the
perpendicular distance from the axis, the
pressure variations in the sound beam will bc
assumed to be

Pi = p~cp' P(r) s——in(ks —nE). (31)

This requires some justification, since it neglects
both the divergence and the attenuation of the
beam. The former is justified if the wave-length

(= 2s/k) is very small compared to the diameter
of the beam. The latter would not be justified
except that only the ultimate steady state is to
be investigated here, and by Eq. (25a), this is

independent of the viscosity except as the latter
enters into p~. It is thus permissible to consider
first the case of negligible attenuation, and to
reserve until later the complications resulting
from attenuation of the sound beam.

Using Eq. (31), Eq. (25a) reduces to

0 65SG

I

J'

K = bk/2pp'cp', (33)

and p is the azimuthal coordinate. This equation
has the special solution

R& ——f(r)( —i sing+i cosg),
where

—PR& K(d'P/dr') (——i sing+ j cosP),—(32)

where

f(r) = (K/r) rP'dr+2f3r+y/r, (35)

P and y being constants of integration. 'I'he value
of y must be zero, since infinite values of the
vorticity are impossible; the value of P remains
indeterminate, since both Eq. (29) and Eq. (30)
are satisfied for any value of P.

The calculation of the vector potential A~ can
be avoided by noting that if I& =N»=0,
u|, =g(r), then

R|———(dg/dr)( —i sin@+j cosg),

so that
Frc. i. dg/dr = f(r). —(36)
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That solution of this equation is required which

makes g(ro) =0, since uq must ~anish on the wall

of the tube; this is given by

t'o

a(r) = f(r)«

problem; it remains to consider the numerical
relations.

In order to carry the calculations further,
suppose that the sound beam has the radius r~,

and a constant intensity throughout; then

~vhcre

I'(s, r)P' (s)ds+P(ro" r '-), (37)—--
P(r) =Pa, r & r„.

=0, r) rj. (40)

It will bc found that the velocity of the stream
is proportional to

I'(s, r) =s log(ro/r) when s & r,
=s log(ro/s) when s & r. (38)

r0

rg(r)dr =0,

Until this place, it has not been possible to
assign a value to the constant of integration, P.
The condition that there be no net flow through
the tube can now be imposed:

G = -'&&0'r s2, (41)

so that it is convenient to calculate this quantity
for several special cases.

First, suppose that the medium is water, that
the beam has a radius r~ ——1.5 cm, while Po = 10'ph
(=0.1 atmos. ). Since co=1.5X10' cm/sec.

G = ~&bk' X 10 ' cm/sec. (water).

P = (E/r04) (rr0-' —r')P'(r)dr.
~o

If the frequency of the sound is 24 megacycles,
4=10', and hence G=1.57b cm/sec. It will be
expected, therefore, that these streams will

r become appreciable only at frequencies above
1 megacycle, and have a negligible velocity at
lower frequencies. This is in agreement with ob-

This completes the formal solution of the servation.
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If the medium is air, the value of X is much
larger because it is inversely proportional to the
square of the density and the cube of the sound
velocity. Supposing the sound beam to have the
same radius and intensity, it is found that

G =95.0bk' cm/sec. (air).

For a frequency of 1 kilocycle, k=0.19, and
hence G =3.4b cm/sec. Consequently, these
streams should become important in air at fre-
quencies above several hundred cycles. This is
perhaps in agreement with Rayleigh's resonator
experiment mentioned above, which was per-
formed at 256 cycles per second.

While the velocity of the stream is proportional
to G, its value will vary across the section of the
tube which confines it. The direction of How will
coincide with that of the acoustic energy on the
axis of the beam, and will be compensated by a
counter-How near the walls of the tube. The
complete expression for the velocity is most con-
veniently written in terms of the ratios

x=r/rp, y=r)/r„

and is

Graphs of g as a function of x, are given, for
various values of y, in Figs. 1, 2, and 3.

The maximum value of g occurs on the axis
and depends on the resistance oR'ered to the Hov

by the confining tube. When the radius of the
latter is infinite, the maximun& value of g becomes
logarithmically infinite. On the other hand, when
the sound beam fills the whole of the tube, the
How stalls and g =0 everywhere.

Experimental Determination of b

The experimental determination of the nu-
merical constant b has eluded three generations
of physicists. Stokes argued that its value must
be 4/3 —i.e., that the bulk viscosity must be
zero. This hypothesis has been theoretically
verified for an ideal gas. Stokes' arguments do
not appear to be convincing in the case of
liquids, and there is a growing be1ief (based on
discrepancies between the observed absorption
of high frequency sound and that calculated on
the assumption that b=4/3) that it may have
larger values. It is hoped that these calculations
may suggest methods for its experimental
measurement.

It will be noted, however, that the above dis-
cussion shows that the streaming velocity is very
sensitive to the geometry of the experiment, and
will readily become turbulent. Consequently, the
experimental measurement of b may not be easy.


