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Wave Transmission and Reflection Phenomena in Liquid Helium IP
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A method is formulated for treating acoustical trans-
mission and boundary value problems in liquid helium II.
According to present concepts, He II is a mixture of two
fluids obeying a special system of complex hydrodynamics.
In particular, this is known to result in two virtually inde-
pendent modes of sound propagation. Therefore, a re-
formulation of the intrinsic (or characteristic) acoustical
impedance concept is required for which a matrix repre-
sentation is applicable. By similarly associating a matrix
form of impedance with plane-reflecting surfaces, boundary
conditions may be imposed. The classical requirements
(continuity of pressure and particle velocity at the
boundary) are generalized to apply individually to each
fluid component in He II. Expressions are obtained for the
reflective properties of various types of surfaces. In par-
ticular, materials which present unlike boundary con-

ditions to the two fluid components are shown capable of
partially converting one mode of sound to the other upon
reflection. For example, surfaces of highly porous sub-
stances exert unequal viscous forces and should therefore
act as such converters (with possible application for ex-
tending present frequency ranges of second sound). These
properties of reflectors are expressed in terms of refractivity
arrays. The array gives direct reflective factors for both
types of sound, plus coupling factors between types.
Examples are given for several special cases, and a form of
reciprocity is shown to exist for the coupling process. The
boundary condition is derived for still another type of
coupling, due to heat transfer, which occurs at a liquid-
vapor interface; a modi6ed form is applicable to the
resonance type (Yale) experiment.

I. INTRODUCTION second by periodical heating as demonstrated
by Peshkov.

The subject of the present paper is to develop
a scheme for the solution of boundary value
problems in this complex hydrodynamics (re-
flection, transmission). The interest of this
problem lies in the fact that particular boundaries
may a8'ect the two fields in a different manner,
producing thereby an unbalance, or coupling
between the two sound modes.

Generally speaking, there are two reasons for
this: (1) heat absorption or rejection by He II
is accomplished by the transition p,~p„, or vice
versa, (2) the boundary conditions are different
for v and v, since the superBuid liquid can slip
along solid walls.

(1) has been used to transform second sound
generated in the liquid into ordinary sound in
the equilibrium vapor phase detectable by a
microphone (Yale). ' (2) could be used to generate
second sound mechanically which would be ad-
vantageous for high frequencies. The practical
application of this principle is not so obvious,
since longitudinal waves involve particle mo-
tions perpendicular to the plane of a radiating
surface, whereas the difference in boundary con-
ditions exists only for the tangential velocity

HE macroscopic hydrodynamic equations of
liquid helium II have been developed by

Tisza' ' and Landau. "' Whereas these inves-
tigators started from different molecular assump-
tions, most of their macroscopic results were
identical. Actually Tisza' has recently shown
that these results can be obtained from very
general assumptions leaving the molecular inter-
pretation open to a large extent. Whatever dif-
ferences do exist between the two theories are
irrelevent for the problems discussed here.

The essence of the complex hydrodynamics of
helium II is the presence of two interpenetrating
liquids ("normal" and "superfluid") of different
densities

P = Pa+Psi

velocity fields v„, v„and correspondingly two
modes of longitudinal sound propagation. In the
first sound (pressure waves) the two liquids
move in phase; in the second (temperature
waves) the two velocities are out of phase so as
to give no net transfer of matter. The first sound
can be generated by an ordinary transducer, the

*This work has been supported in part by the Signal
Corps, the Air Materiel Command, and O.N.R.' L. Tisza, J. de phys. et rad. (8) 1, 165 and 350 (1940),

s L. Tisza, Phys. Rev. V2, 838 (1947).
L. Landau, J. Phys. U.S.S.R. 5, 71 (1941)."L.Landau, J. Phys. U.S.S.R. 8, 1 (1944).

' C. Lane, H. A. Fairbank, and W. M. Fairbank, Phys.
Rev. 'F1, 600 (1947).
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components. An artifice to circumvent this dif-
ficulty consists in using surfaces of porous
materials, thereby creating a region of helium
where the direction perpendicular to the radiating
surface proper can be considered —from the
microscopic point of view —tangential to the
walls. (This application is analogous to the pos-
sibility examined by Lifshitz' of generating
second sound by the oscillations of a small
sphere, which, however, was shown by him to be
ineIIicient. )

The properties of such surfaces (briefly semi-
imper~ious surfaces) can be conveniently de-
scribed in terms of an acoustic impedance, which
in the complex hydrodynamics of helium II will
have the form of a matrix.

Section II will contain the matrix formulation
of the general wave propagation in helium II
whereby an intrinsic matrix impedance will be
defined. Sections III, IV, and V will contain the
discussion of transmission and reflection of
various surfaces characterized by diA'erent im-
pedances.

II. V/AVE PROPAGATION IN HELIUM II.
INTRXNSIC IMPEDANCE

The hydrodynamic equations and in particular
the equations of wave propagation in helium II
can be described in two diA'erent sets of coor-
dinates. In the first set (called brielly the
x-scheme), one considers the displacement vectors
of the two fluids x„, x, and the corresponding
velocities x, x,. In the second set (briefly the
$-scheme) one considers "normal coordinates"
$1, $2 introduced by Tisza' corresponding to the
two modes of sound propagation. (Also x„, x, are
identical to $„, P, in Tisza's notation. ) The trans-
formation connecting these schemes is

x.= h+b, 4 = (p.x.+p.x.)/p
(2)

x.= $1—(p./p. )b, 6= (p./p) (x-—x.)
Obviously &1, refers to a "center of mass" motion
(first sound) and $2 to a "relative motion" with
vanishing net flow (second sound). The general
wave motion in the interior of the liquid can
most conveniently be described in the )-scheme.
On the other hand, the boundary conditions, par-
ticularly at semi-impervious surfaces can be
expressed rather in the x-scheme. Hence the

' E. Lifshitz, J. Phys. U.S.S.R. 8, 110 (1944).

transformations between the two schemes are of
interest. These can be represented best in a
matrix form. We consider only plane waves
traveling in one direction and define the following
two component "vectors. "

(Xee ) ( $1)

and their adjoints

X*= x„,x„ (Ba)

We write (2) in matrix form,

X=Sg )=S—'X
with

t1 1 l 1 t'c2 1

(1 —a) 1+a. E1 —1j

where the abbreviation e= p„/p, is used. S is
self-adjoint (does not change if rows and columns
are interchanged); hence the adjoint relation-
ships are

X~=+8 g*=X*S '

The density of the kinetic energy is

2 peezee + 2 peze 2 pal + 2 p&(2

(4a)

(6)

This expression suggests the definition of a
generalized intrinsic impedance

PPC1 0
!z„=!

& 0 Opc2&

and the intensity appears then as

V = 25*Zopf,

in close analogy with the usual acoustic case.
Zo~ is a diagonal matrix because we neglect the
coupling terms between the two sounds. This
coupling term is proportional to the coeiticient

where a dot above the symbol indicates the time
derivative. The last two terms correspond to the
two modes of sound propagations. The total
energy flow, or intensity, is obtained by multi-
plying each energy density of Eq. (6) by its cor-
responding wave velocity, c~ and c2.

'r =
2 Pcl)1 + 2 P(XC2$2
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of thermal expansion and is extremely small

(see Lifshitz and Tisza).
Equation (9) suggests the definition of a

generalized pressure

f pci$i iPi=Z„j=
i
E npcmpq)

The intensity is then

(10)

v=8'&i= mph'(. (9a)

The physical meaning of Pg is more apparent
from an alternative form which we are now going
to derive.

One has for a plane wave of phase velocity ci

~ ki=~p/p (12)

$2= —csV f2,

—~ b=~p/p

(11a)

(12a)

(13a)

hence, apcs(q ——M„and

)~Pq
&~P.) (14)

Here AI'„ is the excess of the "osmotic pressure, "
introduced by Tisza," which plays the same
role for second sound as the excess of ordinary
pressure for 6rst sound.

Although the impedance in the x-scheme is not
necessary to the solution of boundary value
problems, its formulation does give useful
insight to the manner in which the boundary con-
ditions for such problems may be introduced.
Since the intensity is invariant, one has

PZ (=X*8 'Z 8 'X=X*Z X

Equation (12) is the equation of continuity
(compare Tisza) and finally

(13)

I' and p are the pressure and density, respec-
tively. From Eqs. (11), (12), and (13) one has

pci$i hP. ——

The analagous expressions for second sound are,
according to Tisza, '

so that

and hence
Zp ——8—'Zp)S-'

f (p./p. )ii+im
Zo, =(p„p,/p)i i. (16)

Cl C2 (p~/p~)CI+CQ)

and
('P( =X'P,

P =S 'Pg=

Here p and p, are the excess sound pressures of normal
fluid and superRuid considered by Landau. ~ Accordingly

Pa P & ~+~Pe pa&151+p~cab

The total pressure is the sum of the two components =AP.
Hence, only the hrst sound contributes to the total
pressure! Ordinary transducers are accordingly incapable
of generating or detecting second sound.

The four-element matrix of (16) bears a close
analogy to a four-terminal electrical network in
which one set of terminals is considered to cor-
respond to the normal Quid component, the
other to the superAuid component. We imagine
a geometrical plane passed through a point of
observation perpendicular to the direction of
wave propagation. Then, for outgoing waves
only, (p„p,/p)[(p„/p, )ci+c2j is the impedance
experienced by normal ffuid when motion of
superffuid across the plane is prohibited. To
extend the analogy, the transfer impedance,

(p p, /p)(ci —c~), is the pressure which must be
exerted against the superffuid to suppress its
motion for unit velocity amplitude of normal
fluid (or the reverse for the other off-diagonal
element). Similarly (p„p,/p) [(p,/p„)ci+cz) is the
superffuid input impedance for normal ffuid
"clamped. "

As will become apparent in Section III, the
boundary conditions imposed by the porous re-
flectors mentioned earlier may be introduced
most logically in the x-scheme. For example, a
thin layer, or region, exhibiting viscous proper-
ties serves effectively as a lumped resistance
inserted in series between otherwise extended
regions possessing intrinsic (or characteristic)
impedance Zo,. After expressing in this manner
the net resulting x-scheme impedance presented
at the layer, conversion is made to the $-scheme
for application of the boundary conditions de-
rived in Section II.'

6 It is of interest to express the generalized pressure in
the x-scheme. One has
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III. 3OUNDARY CONDITIONS AT A PLANE-
REFLECTING SURFACE

Ke proceed now to derive the boundary con-
ditions which hold at a reflecting surface. In
order to keep the problem purely mechanical for
the time being, the conditions will be derived
first for the case of a boundary which is a perfect
heat insulator. That is, no interchange p,~~p„
will occur; and any unbalance introduced
between the two modes of propagation will be
due solely to unequal viscous forces on the two
Huid components.

The boundary conditions of classical acoustics
are that particle velocity and particle pressure
must both be continuous across any interface.
(This is equivalent to specifying continuity of
velocity and energy flow. ) The same is true for
the case of He II, except that here both the
velocity and the pressure are matrices. Having
derived a relationship in the x-scheme in terms
of true particle velocities and pressures, we may
then transform to &-coordinates; the latter system
is preferable for dealing with the distribution of
energy How between the two modes of propaga-
tion.

Let the incident sound energy of He II travel
along the positive y axis and encounter a bound-
ary surface defined by y =0 in Fig. 1. In general,
there will be some energy reflected back in the
negative y direction, and some will continue
through the interface (where it may or may not
involve two modes, depending upon whether
liquid He II is involved for y) 0).

Let X; represent the true particle velocity due
to incident waves and X„ that due to reflected
waves; then the effective velocity experienced by
the interface is just the sum of these, or X;+X„.
In order to specify the requirements on pressure,
a matrix impedance Z is assigned to the re-
flecting surface. This matrix determines the
reflectivity characteristics. The effective pressure
driving the surface then becomes the product of
Z, times the particle velocity, or Z, (X,+X,). But
the pressure supported by the standing-wave
system must be identical with this value, and is
given by Zp, (X;—X,). The reversed direction of

BOUNDARY (y=O)

INCIDENT

ENERGY
TRANSMITTEO

= ENERGY

ysP

REFI ECTEO ~(Xi++~

ENERGY CONTINUOUS

FIG. i. Reflection of sound in helium II from plane
boundary.

propagation for the reflected wave accounts for
the minus sign. Combining, we have the bound-

ary condition

Zp (X;—X,) =Z (X;+X„)

in the x-scheme. Since our concern is primarily
with the relative amounts of first and second
sound reflected, transformation is made to the
g-scheme. Employing (4) and (4a), we have

(18)

where Z~ is now the characteristic impedance for
the surface in the $-scheme. The same relation-
ship as used before holds for transforming
reflector impedances from one scheme to the
other, namely

Z) ——SZ S.

We may solve (18) for the amplitude g, of the
reflected waves to obtain the following matrix
in terms of the incident waves gf

(+ 11 + 12)
$„=(zpr+Z2) '(Zpc Z—2)g, =—

i
(20)

4A 21 A 22)

The diagonal elements AI~, 222 represent the
fractional amounts of incident first- and second-
sound amplitudes which are reflected unchanged.
Conversely, the diagonal terms A», A» represent
transfer of amplitudes between modes. However,
a more significant property of the reflector is the
manner in which intensities leaving its surface
are divided between first and second sound. For
our purposes therefore we allow only one mode
of sound at a time to strike the surface and build

up a repectillity array. This array, which must not
be confused with a matrix, may be written:

Reflectivity =
Fll Ylr/Yli + ll

F21 Y2r/ Yll'. (Pa 2/P Cl)+rC21

+12 Ylr/ Y2i ( C1/Pr» )PAC122

+22 Y2r/ Ypr' ~ 22

(21)
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Thus, if unit intensity of first sound strikes the
surface, then intensities Fi~=A~j' of 6rst sound

&~i=(p c2/p, i'&)Ami' of second sound will

leave the surface. Similarly, for unit incident
intensity of second sound, intensities F&2 of hrst
sound and F22 of second sound will be reflected.
In this manner, the diagonal elements play the
roles of ordinary reflection coefFicients, while the
o8'-diagonal elements act as transfer factors.
Evaluation of the reflectivity array mill be given
for speci6c cases in the following section.

DT. SPECIAL REFLECTING SURFACES

We now turn to the examination of specific
cases of reflecting boundaries, still restricting
ourselves, however, to the purely mechanical
case, i.e. , no transition between fluid components.

The types of reflectors in which we shall be
interested may be divided logically into two
main categories; (1) impervious surfaces and (2)
semi-impervious surfaces (a third category com-
prising pervious boundaries' mill not be con-
sidered here).

1. Impervious Surfaces

This category includes any boundary which is
permeable to neither normal fluid nor super-
fluid. As a result the perpendicular component
of the internal convection peculiar to second
sound is prohibited at the surface (since we have
specified infinitely poor heat conductivity).
Therefore, $i is zero at y=0, so that all second
sound is reflected. We have for the impedance
and the reflectivity

(Zi 0)
Zi ——

~ (; Reflectivity =
Lo 0)'

Y1~/ Y 1f
pC1 Zl

pC1 +Z1
pi./yi' =0

(22)

Y2~/Y1 i 72r!72~ 1

where Z~ is the usual mechanical impedance of
the surface to an ordinary acoustic wave (and
therefore the impedance experienced by normal
sound). For the element yi„/yi, the absolute
magnitude of the ratio is used, sinze Z& may have
reactive components. Note the diagonal nature
of this reflectivity array, which indicates no
coupling between modes of propagation. In par-
ticular for a very thin membrane (thin com-
pared to a first-sound quarter wave-length) with
lorn heat conductivity and surrounded by liquid
He II, the mechanical impedance will reduce
simply to pc&. This results in complete trans-
parency to first sound. The array becomes:

ferent viscous drag to the two fluid components
of He II. We shall consider only the most
idealized situations. The unequal viscous drag
will be supposed due to the presence of a porous
or honeycomb structure through which super-
fluid may pass unhindered (zero viscosity is one
of the properties of superfluid) but which
presents ordinary viscous friction to the normal
fluid component. Furthermore, the honeycomb
will be considered so thin wailed that negligible
Huid is displaced by its presence, but sufticiently
rigid not to participate in the mechanical vibra-
tions. This highly artihcial condition may then
be represented mathematically by introducing a

Reflectivity =
(Membrane)

0 0

0 1
(23)

Its signifjcance is that ideally such a system mould
constitute a mode 6lter, transmitting all hrst
sound, but still reHecting all second sound.

~ Pervious boundaries might constitute such a trite case
as a change in cross-sectional area of a narrow duct con-
taining He II and conducting sound. Then the effective
impedance presented at the junction would differ from
the intrinsic impedance of He II only by a linear scale
factor f. The impedance and reflectivity would be, re-
spectively,

Zg =fZog.,

2. Semi-Imyervious Surfaces

The other case we shall analyze involves re-
Hections from regions of space which present dif-

Reflectivity =
t:(~ —f)i(~+f) j2

L(l —f)/(i+f) 7'
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fi iq
R, =R, !

Ei 1&
(26)

where the scalar coefficient R2 is the flow re-

sisrance for the normal fluid component. Making
the simplest assumption that flow resistance
behaves in the classical manner with respect to
normal fluid, its definition becomes

Semi Impe-roious Rigid Screen

Let the position of the porous screen be repre-
sented by a thin layer of thickness Al at the plane
y=0. The influence of the layer will be manifest
entirely through the viscous drag opposing flow

of the normal fluid component. Treating the
problem as analogous to a lumped electrical
impedance inserted in a continuous transmission
line, the eRective impedance presented by the
screen may be written as

Rox„=gradp =A& /Al, . (27)

Ro is a real, positive quantity determined entirely
by the coefficient of viscosity of normal fluid

(essentially equal to that of He I) and the
detailed porous structure of the honeycomb.
This p„ is the excess pressure of the normal fluid

component, as defined in reference 6. Converted
to the &-scheme, the resultant impedance en-
countered by incoming waves at the plane y =0,
becomes

(24)Z. =Z,.+R.sl.

Here the first term is the intrinsic impedance of
He II, the second the added series resistance.
This series term involves the matrix

)1 iy
Z2 ——Zos+Rshl = Z(2R2! !Al.

E 1 1)
(28)

normal fluid pressure gradient' due to viscous or in the &-scheme

drag throughout all regions occupied by the
structure. %'e shall first examine the case where

only a thin layer of space is thus occupied (i.e. ,

a thin porous screen) following which the ex-
tension to a semi-infinite space will be given.

f 1 0&
R =R !0 0)

Applied to (20) the matrix for the reflected waves
ls

1 f' 1/pc) 1/pc) )
2/R2hl+ (1/pcs+1/apc2) (1/apc2 1/npc2)

(29)

all elements of which become maximum for very large values of Ro. The condition for one-half
maximum eRect is given by

Ro—
1/ pc 2+ 1/c2 pc2

For Ro greatly in excess of this value, the reflectivity would be

(30)

(Reflectivity) s„„——
(1+p,cg/p„c2) ' p.ci/p~c2

pr CI/p~c2

(peel/p~c2)

Because of the extremely low viscosity of even
the normal fluid component, porous material
fulfilling this condition would be virtually imper-
meable for ordinary liquids.

Numerical values of the four intensity ratios
' The semi-permeable membrane applicable to thermo-

dYnamic discussions (see references 1 and 2) represents
the extreme case a&here motion of normal Ruid is com-
pletely arrested.

corresponding to the reflectivity are shown in

Fig. 2. Note that the oR-diagonal elements
represent transfer from one mode to the other
upon reflection from the screen. Figure 2 illus-
trates the interesting fact that the two intensity
transfer factors are equal (F22= F2~), so that the
conversion e%ciency is the same for either mode
of incident sound. This is a type of reciprocity.
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FIG. 2. ReRectivity factors versus temperature for
thin porous screen.

The viscous properties of the thin porous
screen result in a greater impedance mismatch
for second sound than for first. Thus the factor
F» giving the reflectivity ratio for second sound
(the fraction reflected without conversion) greatly
exceeds F», This is a direct consequence of the
relatively low wave velocity of second sound
(cq/cm& 10). Thus, from (16), the impedance

(p p,/p) I (p,/p )cy+e2] experienced by superfluid
at the screen is determined primarily by ci and
therefore provides a better match for first sound.
Of course an actual reflector of this nature would
displace an appreciable amount of liquid so that
corrections would be necessary for deviation from
the idealized situation assumed for deriving the
curves of Fig. 2.

Extended Semi-Impervious Region

Perhaps a more practical reflector for con-
verting first sound to second, or the reverse,
would be provided by the plane face of an
extended porous medium. Thus the interior
honeycomb structure of, for example, a sintered
material should provide differential viscous drag
to the two Ruids. For the case of pulsed energy,
the structure could be considered infinite in
extent (short enough pulses do not detect thick-
ness of a reflector until the reflection process
has been completed).

Here again the true situation can be approxi-
mated only crudely by visualizing all regions for
y&0 as endowed with viscous properties (with
respect to normal Ruid) and determining the
resulting characteristic impedance. Space does
not permit complete analysis of this case, but it
may be shown that in the extreme situation the
Row resistance R mill be sufhcient to suppress
virtually all normal Ruid vibration. This occurs
when R&&cop.

Under such circumstances the mode corre-
sponding to second sound reduces essentially to
vibration of superfluid only, without attenua-
tion, and with eAective wave velocity

v2~L(t4cl +p»c2 )/p] .

The mode corresponding to first sound, however,
degenerates to an over-damped motion, for which
the resistance to normal fluid vibration virtually
precludes Row of energy.

Accordingly, this boundary should reflect a
greater relative proportion of first sound than did
the thin porous screen. Furthermore, the more
drastic modifications of the boundary conditions
should result in numerically greater coupling
factors, F~~ and F~~.

V. PHENOMENA INVOLVING HEAT TRANSFER

Thus far analysis has been simplified by the
assumption of zero heat Row between the liquid
He II and the reflector. We may now include the
eEects of such heat interchange. This process
occurs for example when the boundary is formed

by the liquid surface in equilibrium with its
vapor, and is the case investigated experimentally
by Lane. ' Such a liquid-vapor interface provides
coupling between the two types of sounds in the
liquid and the classical sound in the vapor. For
simplicity we consider only perpendicular inci-
dence of sound waves against the free surface.

Coupling takes place due to periodic evapora-
tion and condensation of helium at the surface.
The situation for helium differs markedly from
that of a classical liquid in equilibrium with its
vapor. For ordinary liquids the temperature
fluctuations accompanying the evaporation-con-
densation process occur only at the interface,
being thus localized by the condition of adia-
baticity. However, in He II an adiabatic means
for heat transfer is provided by second sound.
In this manner, temperature fluctuations oc-
curing at the surface may be detected at (or,
reciprocally, generated from) well submerged
positions. We show, in fact, that the impedance
encountered at the surface by incident waves of
either first sound, second sound, or the vapor
mode involves all three modes. This has a direct
bearing on acoustical resonance methods such as
employed by Lane.
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To establish the boundary conditions existing
at the interface it is necessary to consider both
the temperature fluctuation and the heat flow

inherent in second sound. Uariations in tem-
perature are produced by the varying relative
concentration of normal fluid according to an
empirical relationship deduced from experiment

continuity. This must take into account the
alternate changes in material volume due to the
periodic interchange between liquid and vapor.
The evaporation rate is fixed by the heat transfer
characteristics of second sound in He I I accord-
ing to a relationship given by Tisza. ' Therefore
we have

Ap„/p„=rhT/T. (32) heat flow= p,Ls, =sT($2;+$2„), (36)

The factor r has been evaluated numerically as
about 5.5. Equation (12a) relates this concen-
tration to incident and reflected waves so that

Ap /p = —V )~=1/c~(&2; —ki,)=rhT/T (33)

(where the sign has been reversed for the re-
flected wave velocity). For purposes of com-
putation we now make the assumption that the
vapor pressure fluctuations which occur at the
surface are given directly in terms of AT/T by
means of the Clausius-Clapyron equation. Al-

though this is probably not the physical situation'
the assumption suffices for specifying conditions
of resonance. Hence the vapor pressure p, is

Pg = I p p./(p pg) IL»/—T

= (L/«2') I p./(p pg) I p&~(6 6)', (34)

where I. is the latent heat of vaporization at the
ambient temperature, and p, the vapor density.
The boundary requirement that pressure be con-
tinuous across the interface results in

where s is now the specific entropy and v, the
vapor particle velocity. Note that since the wave
velocity c2 does not enter explicitly into (36)
there is no change in sign for the reflected wave.
We may now express our condition of con-
tinuity

—(ig, +ig„) =-0. (37)

The first term represents source (or sink) of
volume due to second sound; the latter two con-
stitute ordinary particle flow due to He I I first
sound and classical sound in the vapor. Finally,
by combining (35) and (37) and eliminating the
time derivative, we obtain

($2 i+ $2r l (6'+b.i
(&/»& ) +(&/p&i) I

&ki' —6.&

+(&/p. & ) I I
= 0, (38)

(L/rc, ') I p, /(p p,) I pc,(&„j„)— —

= p~i(6' —ki.) = pg~u(*g*—*u.), (—35)

where i, and c, represent particle velocity and
wave velocity, respectively, for the vapor. This
states that the pressure associated with the
interaction between second sound and the surface
must support (and therefore equal) both first
sound pressure in He II and classical sound
pressure in the vapor. The minus sign preceding
the last term accounts for the reversed sense of
incidence for sound in the vapor.

The boundary condition for particle velocity
at the surface is a statement of the equation of

~ It has recently been learned from Dr. Onsager that a
dissipative process occurs at the surface which could be
taken into account by the insertion of a complex factor in
(34}.This would lead to expressions for the heights and
widths of resonance peaks in the I.ane experiment.

where the quantity P, occuring in the term for
second sound, is given by

P = ( .L)'/( .)—
Expression (38) establishes the relationship
between the two types of sound in the liquid and
the sound in the vapor. This is applicable either
to a situation involving acoustical resonance
(Yale experiment) or to the case of short pulses
where the geometry of the equipment does not
enter. Note that the above result (38) is com-
pletely analogous to an electric situation involv-
ing two different transmission lines in parallel
with a third at a common junction; each line has
a diAerent characteristic impedance. In this
respect Ppcq enters as an effective characteristic
impedance for second sound insofar as interac-
tions with the other types are concerned.



JOHN R. P ELLA M

RIGID TQP

JJJ/ J JJ/JJJJ//

~CLASSICAL
TRANSOUCKR

specified by modifying (38) for infinite top and
bottom impedances. Accordi. ngly,

(1/pci) tan(2N od/ci)+(1/ppcs) tan(2s Nd/cs)

y(1/poco) tan(2s Dh/co) =0 (39)
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Fio. 3. Coupling due to liquid-vapor interface (idealized
Yale resonance experiment}.

The Experiment of Lane and Collaborators

Condition (38) is directly applicable to the
resonance experiments conducted at Yale. 4 The
physical situation is idealized in Fig. 3. Here is
shown a vertical column of liquid He II of
depth d, beneath a column of helium vapor of
height h. Classical transducers, for ordinary
sound in the vapor and first sound in the liquid,
are provided both at the extreme top and
extreme bottom@ of the containers. In addition, a
second sound transducer is located at the
bottom. Measurements consist, in general, of
activating the second sound transducer and
detecting a signal with one of the classical trans-
ducers, or the reverse. As either the frequency or
the height of the liquid is altered, a succession of
resonance peaks is observed.

The precise conditions of resonance depend
upon a variety of factors, such as the top and
bottom impedance of the container and the in-

ternal impedances of the transducers. Only the
simplified situation of completely rigid container
ends and infinite internal impedance for all
transducers need be considered here. (That is,
classical transducers of the pressure type; and
second-second transducers of the temperatur-
i.e. , low heat flow—type. ) Also it is considered
that for the steady state, the waves become one-
dimensional and plane.

Under such conditions (not necessarily the
experimental ones) maximum energy would be
fed to the system for resonance conditions, i.e. ,

matched to infinite impedance. This condition is

gives the requirement for resonance, where v is
the frequency. This condition holds for any of
the transmitter-receiver combinations.

Additional factors, such as dissipative eHects
gccuring at the surface, would have to be intro-
duced for computing heights and widths of
resonance peaks. Furthermore, non-infinite im-

pedances would alter the conditions of resonance
(39), by modifying the effective depth d or
height h. For example, a "low impedance" type
of second sound generator (i.e. , ratio of tem-
perature fluctuation to hea, t flow, small) would
result in the replacement of the tan of the second
term by cotan. Similar alterations in (39) would
occur for other modifications in the equipment.

Note that for this particular situation involv-
ing resonance, no recourse is made to the matrix
method. For less specialized cases, however, such
as reAection of short pulses from the surface, the
previously derived matrix formulation would be
used.

UL CONCLUSIONS

The transmission and reflection of sound in
He II is formulated on the basis of a matrix rep-
resentation. A system of generalized coordinates
($-scheme) is used for expressing energy flow,
whereas true coordinates (x-scheme) are used for
setting up boundary conditions at the surface of
a re8ector. The reflectivity conditions for the
case of normal incidence are expressed by means
of transformations between these two systems.
Distinction is made between reflectors (1) for
which heat exchange with the liquid helium

plays a basic role, and (2) those for which no
heat transfer takes place. Concerning (2), it is
shown that impervious (or impenetrable) surfaces
re Hect all incident second sound. Coupling
between first and second sound occurs only for
semi-impervious surfaces for which the superfluid
component experiences less viscous retardation
than does the normal fluid. Reflectivity curves
are given for the case of a thin, semi-impervious
screen, for which transfer of intensity between
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modes may reach i5 percent. That the coupling
factor for such a surface is identical for either
type of incident sound constitutes a type of
reciprocity. Concerning (l), the boundary con-
dition governing reHection of acoustic energy
from a liquid-vapor interface is given. Special
modifications for the case of resonance are appli-
cable to the Yale type of experiment.
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The displacement between the 2s and 2P~ levels of hydrogen is calculated on the assumption
that it is caused by interaction with the radiation field; the calculation is relativistic, but the
spin of the electron is neglected. The theory gives a finite result, agreeing closely with the ex-
perimental value.

I. INTRODUCTION

ETHE' has proposed a method of calculating
theoretically the observed' displacements of

the hydrogen fine structure levels from the
positions predicted by the Dirac theory. The
displacements are attributed to interaction
between the electron and the radiation field, and
are to be calculated by the usual perturbation
method of calculating electromagnetic self-
energies. Since it is presumed that the measured
mass of an electron already includes the electro-
magnetic self-energy, the level shifts are found
by subtracting from the calculated self-energy
of the bound electron the self-energy calculated
for a "suitable" free electron. Bethe observed
that the difference between these two divergent
expressions should be finite and of the correct
magnitude. Unfortunately, the non-relativistic
approximation which he used in his preliminary
calculation' is not good enough for an exact test
of the theory, since in this approximation the
formula for the shift is still divergent after the
subtraction. An exact calculation, based on the
Dirac electron theory, presents formidable,
though not fundamental, difFiculties.

' H. A. Bethe, Phys. Rev. 72, 339 (1947).
~ W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241

(1947}.

The present paper outlines a calculation
undertaken as an interim program while the
exact calculation is in progress; relativistic
theory is used throughout, only the effects of
spin are ignored. Specifically, the level shift is
determined for an "atom" consisting of a proton
and a particle of electronic mass and charge and
zero spin. The light particle, which mill be
referred to as "scalar particle, " satisfies the
Klein-Gordon wave equation and obeys Bose
statistics. Since the system thus defined is at
least conceptually a physical system (which a
non-relativistic system is not), it is satisfactory
to find that the theory gives a convergent ex-
pression for the level shift. Further, the values
obtained are very close to the non-relativistic
approximations and to the observed shifts.

From the theoretical standpoint, the con-
vergence of the present calculation is noteworthy
and somewhat unexpected. The non-relativistic
theory, in which the self-energy before subtrac-
tion diverges linearly, gives a logarithmically
divergent level shift; and it was to be expected
that the Dirac hole theory, in which the self-
energy is only logarithmically divergent, would
give a convergent level shift. In the case of the
scalar particle the self-energy itself is quadrati-
cally divergent, and after the subtraction the


