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An analysis is made of the transients in Townsend discharges for certain stepwise variations
in the stimulating photoelectric current from the cathode, while the voltage across the tube
is held steady. The method of analysis can be readily generalized to include any type of varia-
tion in the photoelectric current. The steady-state current, including the effects of metastable
molecules produced in the gas, is also derived; from this result it is shown that the second
Townsend coefficient is a function of the electrode spacing. The work also suggests experiments
which can separate the radiation, ion, and metastable contributions to the second Townsend

coefficient.

1. INTRODUCTION

E shall consider in this paper only gas

discharges between infinite plane-parallel
electrodes, operating below breakdown. Under
these conditions, the current through the dis-
charge is not self-sustaining, but must be
stimulated by a primary current 4,. This primary
current is usually obtained by illuminating the
cathode with a source of light which is external
to the discharge. It is well known that the
steady-state current through the discharge, under
these conditions, is given approximately by an
expression of the form:

1 =19 exp[ (X —x0)]/
[1—v(exp[ai(X —x9]—1)]. (1)

In this, X is the separation of the electrodes, and
a;, 7, and x, are considered to be functions only
of the gas pressure and the electric field and are
independent of X.

In (1), ay, called the first Townsend coefficient,
is interpreted as the number of ionizing collisions
which one electron makes while traveling one
cm in the direction of the electric field, and x,
is interpreted as the distance that an electron
must travel before acquiring ionizing energy.
v is interpreted as representing the number of
electrons emitted from the cathode under the
influence of events which occur in the discharge,
as we shall describe more fully below.

Our fundamental picture of a gas discharge
will be as follows: An electron which leaves the
cathode encounters a certain number of gas
molecules while traveling to the anode. If one
of these collisions is inelastic, there may be three
possible results: (1) the molecule may be ionized,

with the simultaneous release of an electron;
(2) the molecule may be excited to a level from
which it can decay by radiation ; (3) the molecule
may be excited to a metastable level. Subse-
quently, electrons may be emitted from the
cathode (1) upon impact of a positive ion, (2)
when radiation from an excited molecule strikes
the cathode, and (3) when a metastable molecule
strikes the cathode. (2) above is, of course, an
example of photoelectric emission. Processes (1)
and (3) have been studied experimentally by
Oliphant,! and theoretically by Massey? and
Cobas and Lamb.?

As we shall show formally in later sections,
this mechanism leads to an expression for v in
Eq. (1), which is the sum of three terms, one each
from the electron emission caused by radiation,
ions, and metastables. It is of great interest to
be able to separate these terms experimentally.
This separation cannot be performed accurately
by measurements of the steady-state current
through a discharge but, as Engstrom and Hux-
ford* have pointed out, it can be made by an
analysis of the transient currents.

The basis for the separation lies in the different
times required for radiation, ions, and meta-
stables to produce effects at the cathode. Sup-
pose that the discharge is initiated by an electron
leaving the cathode. At a field of 50 volts/cm, an
X of 1 cm, and a pressure of 1 mm, this electron
and the ones released by ionization in the gas
reach the anode in the order of 10~2 sec. The

1 M. L. E. Oliphant, Proc. Roy. Soc. A124, 228 (1929).

2H. S. W. Massey, Proc. Camb. Phil. Soc. 26, 386
(1930) ; Proc. Camb. Phil. Soc. 27, 460 (1931).

3 A. Cobas and W. E. Lamb, Phys. Rev. 65, 327 (1944).

¢+ R. W. Engstrom and W. S. Huxford, Phys. Rev. 58,
67 (1940).
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time required for an excited molecule to radiate,
and for the radiation to reach the cathode and
produce a photoelectron, is also of the order of
10~8 sec. An ion, drifting under the field, does
not reach the cathode for about 10—¢ sec., while
a metastable, which must reach the cathode by
diffusion, requires the order of 10~3 sec. Thus,
transients should show three relatively distinct
phases, governed by these differences in time
required to produce new electrons at the cathode.
These three phases are shown schematically in
Fig. 1.*

The first phase, of duration about 1078 sec., in
which the first electrons are crossing the tube
and new photoelectrons are being produced, is
probably too short for observation by present
techniques. Accordingly, we shall not analyze
its form but shall show how to allow for its effect
upon other phases.

The second phase, of duration about 10 sec.
and characterized by the first arrival of ions at
the cathode, has not previously been analyzed.
We shall obtain its form and shall show how,
under certain conditions, it contains discon-
tinuities in the current.? Observation of these dis-
continuities may afford a convenient method of
measuring a; and the ion contribution to 7.

The third phase, of duration about 10~3 sec.
and characterized by the first arrival of meta-
stables at the cathode, has been studied by
Engstrom and Huxford.4 We shall analyze it by
a different method and in somewhat greater
detail, thus obtaining a different form for the
results.

We shall perform the analysis by setting up
boundary value problems to be satisfied by the
densities of ions and metastables in the gas.
Different types of transient are then obtained
by solving these problems subject to different

* Note added in proof: In this paper, the phenomenon
termed “‘imprisonment of resonance radiation’” has been
ignored. The significance of this phenomenon, which was
first studied theoretically by K. T. Compton (Phys. Rev.
20, 283 (1922)) was brought to our attention by T. Hol-
stein (see Phys. Rev. 72, 1212 (1947)). As a result of this
phenomenon, the time required for radiation to reach the
cathode, instead of being short, may equal or exceed the
transit time of ions. The analysis of this paper is valid
whenever the two times are significantly different; if the
two times are approximately equal, a more complicated
analysis will be necessary.

8 This part of the present paper was presented before
the American Physical Society on May 3, 1945. See
Phys. Rev. 72, 184 (1947).
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initial conditions and to different forms of 7, as
a function of time. Steady-state currents are also
found by getting the time-independent solutions
of the boundary value problems; from the steady-
state currents, we can evaluate vy in (1) above.
This process leads to no new results for the con-
tribution of ions to v, but, for the metastable con-
tribution to 7y, shows that vy is not in fact a
constant but is dependent upon X.

Sections II through V will be devoted to the
formal solution, and Section VI to a discussion
of the results. A list of frequently used symbols
is given below.

We shall assume that a; and xo are constant
from point to point within the discharge. For a
discussion of these assumptions and a general
survey of the field we refer the reader to Loeb?®
and to Druyvesteyn and Penning.” We shall
neglect collisions of a molecule with more than
one electron, and collisions of ions or excited
molecules with each other.

List of Symbols

The following symbols are frequently used throughout
this paper. We have not listed symbols which occur
infrequently and in only a limited part of the paper.

a;=number of ions formed per electron per cm; equals
first Townsend coefficient.

am=number of metastables formed per electron per cm.

ar=number of radiating molecules formed per electron
per cm.
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F1c. 1. Sketch of a discharge transient. fp=stimulating
photo-current. i,=radiation steady state. ¢;=ion steady
state. ¢=true steady state. f,=duration of radiation
transient. f;=duration of ion transient. The scales are
broken in order to display the entire transient.

S L. B. Loeb, Fundamental Processes of Electrical Dis-
charge in Gases (John Wiley and Sons, Inc., New York,

1939).
7M. J. Druyvesteyn and F. M. Penning, Rev. Mod.
Phys. 12, 87 (1940).
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Ai=a;X.
Am=anXM;M,.
v=parameter occurring in steady state discharge cur-
rent; very nearly equals second Townsend coefficient
divided by a.
vs=number of electrons released from cathode per
positive ion striking.
ym=number of electrons released from cathode per
metastable striking.
v»=number of electrons released from cathode per photon
striking.
n=1—fo.
t2=current density in electronic charges per cm?.
1 subscript: denotes a parameter characteristic of positive
ions.
19=stimulating photo-current from cathode, in electronic
charges per cm?2,
i, =current density carried by ions.
i_=current density carried by electrons.
x=square root of diffusion coefficient for metastables.
A=square root of reciprocal of time constants for
metastable decay.
m subscript: denotes a parameter characteristic of meta-
stables.
M ,=ratio of i_ to current of electrons leaving one cm? of
cathode.
M;=amplification of %o resulting from ion effects.
M, =amplification of %, resulting from metastable effects.
M,=amplification of 7, resulting from radiation effects.
N, N,, N.=parameters occurring in boundary conditions
for metastable diffusion.
p=density of ions or metastables, as shown by subscript.
P;=density of ions when expressed in the moving co-
ordinate system y.
r subscript: denotes a parameter characteristic of radiation
or radiating molecules.
t=time in sec.
r=dimensionless time used in ion flow=v/X.
T =dimensionless time used in metastable flow = x%/X2
O =effective solid angle presented by cathode to radiation
from the gas.
v=ion velocity.
x=distance from cathode in cm.
xo=distance in cm which an electron must travel to
acquire ionizing energy.
X =electrode spacing.
¢=dimensionless x=x/X.
£o=dimensionless xo=x0/X.
y=moving coordinate in ion flow =x+-ut.

II. AMPLIFICATION BY IONIZATION AND
RADIATION

We shall assume that electrons cross the tube
in negligible time. As a result of ionizations in the
gas, more electrons reach the anode than leave
the cathode. Suppose 7, electrons leave one sq.
cm of the cathode at some instant, and let # be
the number of electrons per cm? which reach a
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distance x from the cathode. Then:

dn/dx=amn,

n=mngexpa;(x —x9), x>x,. (2)

For x <xo, n=mn,.

Let o, be the number of excited molecules
created per electron per cm. (By excited, we
shall mean that the molecules are raised to a
level from which they can radiate photons of
sufficient energy to eject photoelectrons from the
cathode. Thus metastable molecules are not
excited in this sense.) The number of excited
molecules per cm? created in a distance dx is
andx, if x is greater than x,, the distance an
electron must travel to acquire excitation energy,
and # is given by (2) above. For brevity, we shall
neglect the difference between x, and x,; the
difference can readily be included if desired. If
x is less than x,, the number of excited molecules
is 0.

Let ©/4r be the probability that a photon
radiated at the distance x will reach the cathode.
© =27 if absorption in the gas is negligible. Let
v- be the number of secondary electrons per
photon. Then we have for the number of
secondary electrons:

X
o f (©/47) exples(x—xo) Jdx.
zo

However, these secondary electrons can produce
more secondary electrons, and so on. We assume
that all these secondaries are emitted in neg-
ligible time, so that the effect of radiation is to
increase the number of electrons leaving the
cathode from 7, to:

- ¥ i
nOZla,fy,f (©/4r) exp[a,(x—xo)]dx}

i=0 £0

=no/{1-—a,‘y,£j(®/4r)

X exp[ai(x —x0) Jdx l , (3

when the geometric series converges. We shall
call the factor by which #, is multiplied M,, the
multiplication factor for radiation.
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III. EQUATIONS FOR THE ION AND META-
STABLE DENSITIES

I.et p.(x, t) be the density of ions and pn(x, t)
the density of metastables at time ¢ at a distance
x from the cathode. We assume that the ions have
a uniform velocity », so that the current of ions
per cm? at any point is —vpi(x, ). We assume
that the metastables move by diffusion with a
coefficient &2, so that the current of metastables
per cm? is —«%(dpn/dx).2 Thus, the flow equa-
tions for p; and p,, are:

dp;

—*(vp) Si(x, 1),

dpm apm
() s
at

where S; and S,, are functions, now to be set up,
which give the numbers of ions and metastables
created per cm? per sec.

Let v: be the number of electrons liberated per
positive ion striking the cathode, and vy the
number of electrons per metastable. Then the
total number of electrons leaving the cathode
per cm? per second is:

Mfl:i0+71‘vpi(0v t) +7m"2pm'(01 t):l,

in which a prime denotes 8/dx, and o is the
primary current density measured in electrons
per cm? per sec. To get the number of electrons
per cm? per sec. at a distance x from the cathode,
we multiply by unity for x<x, and by
explai(x—xo)] for x>xo. If a;is the number of
ions formed per electron per cm, and a, the
number of metastables, we have:

dp. dp, 0, x <Xy,
o e |a,—1W,|:io+'yivp.(0, )
+vmi?on' (0, t) ] explai(x—x0)], x>x¢. (4)
dom K262p,,._ {0, x <o,
ot 9x? anM [io+y2pi(0, t)
+vurpa’ (0, )] explai(c—x0)], x=x0. (5)

[n these, we have taken the minimum distance

® These assumptions require that X equal many mean
free paths. If the assumptxon that «; is constant is met,
we may expect that this 1s met.
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at which metastables are formed to be the same
as that at which ions are first formed, namely, x,.

As auxiliary conditions to (4) and (5), we
must know the forms of p;(x, ) and pn(x, £) when
t=0. These depend upon the type of transient
being studied. In addition, there are certain con-
ditions imposed upon p; and p. at the electrodes.
For p;, there is only one condition, which can be
derived from the flow conditions at the anode:

pi(X, £)=0. (42)

The conditions on p, are more complicated. We

expect the boundary conditions to be homo-

geneous in p, and p,’, and hence to be of the
form:

Pm(oy t)—

pn(X, )+ NoXps' (X, £) =0,

which implies a relation between the density
and the metastable molecular current at the
boundaries. If both electrodes are of the same
material, N,=N,=N. The sign is different in
these two conditions because the normals to the
two electrodes are oppositely directed.

To evaluate N, we proceed as follows: The
number of particles crossing unit area per sec. at
any point because of the random thermal motion
is pm(BT/2wm)}. Considering also those which
cross because of diffusion, the total number
crossing unit area per sec. in the negative x
direction is pn(kT/27xm)t+1k2p,’. The number
crossing in the positive x direction is

pm(RT/27m)} — 2 pw,

N.Xpn'(0, ) =0, (5a)

so that the net flow is «%p,’ in the negative x

direction. From continuity, «2p,’(0, £) must equal
the number of metastables destroyed at the
cathode per cm? per sec. The work of Oliphant!
indicates that one electron is emitted for each
metastable destroyed, and hence that v,, is the
probability of destruction for a metastable
striking the cathode. Therefore:

YmLpm(0, ) (RT/27m)}+56%pm’ (0, £) 1= *pn' (0, 1).

Thus:

N=(/X)Q2xm/kT)}(vn'—3).  (Sb)

Using the kinetic theory expression for &2, this is
approximately

N=(4/3X)(vm—2),
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where [ is the mean free path of a metastable in
an atmosphere of normal molecules. This has
two important limiting cases; if y»=0, N is
infinite, and we must have p,/(0,£)=0. If
1/ X <~ym, we have very nearly that p.(0, f) =0.

IV. ION TRANSIENT AND STEADY-STATE
CURRENTS

In the first several microseconds, ions can
cross the tube a number of times before the
metastables have moved appreciably. To study
the operation of the tube during this interval,
we can set v, =0 in Eq. (4). Also, let ¢(w) be the
step function defined by:

1, <0,
@=1o" >0

The use of this step function avoids some trouble
with limits. (4) now becomes:

(8pi/dt) —v(dpi/dx) = s M [10+vwp:(0, £)]
XexpLai(x—x) Je(x — X)e(xo—x). (6)
General Solution
For brevity, let
¢(x) = a;: M, exp[ai(x—xo) Je(x — X)e(xo—x).

Also, transform the independent variables from
x,t to ¢t and y=x+ut, and let pi(x, t) =Pi(y, t).
y is obviously a coordinate which moves with
the stream of ions. Equation (6) now reads:

AP;/dt=[1o+vaPi(ut, t) Jo(y—ut). (6a)

We shall solve (6a) for an arbitrary form of ¢(x),
and for any variation of 7, with 2.

Solutions of (6a) which have the proper form
at =0 are also solutions of the integral equation:

Py, )=Piy 0)+ f (y—ot')
0

X [io+yaPi(t, ¢')1dt’. (7)

The current can be calculated once the ion
density is known. The current carried by positive
ions is:

X
i) =@/X) f pilx, 1)dx
0 vi+X
~ (v/X) f Piy, Ddy, (8a)

in electronic charges per cm? per sec. The number
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of electrons leaving unit area of the cathode per
second is

M. [ig+v2p:(0, £) 1= M, [io+vwPi(ut, t) ].

In addition to these electrons, we have those
which are formed in the gas and which do not
traverse the entire distance X. Since ¢(x)/M, is
the number of new electrons created per cm per
electron leaving the cathode, we get the total
current carried by electrons if we multiply the
number of electrons leaving the cathode by:

M=1+ f Co(x)/ M, JL(X —x) /X Jda.

This weights each electron according to the
distance it travels in reaching the anode.? The
current carried by electrons is therefore:

i_(8) = M,M,[io+yoP:(at, £)].  (8b)

With the aid of this, we can replace (7) by a
simpler equation. Substituting from (8b) for the
quantity in square brackets in (7), we have for
y=uvt:

P(vt, t) =P;(vt, 0)
+ f Si—ot)[i(t')/ M, M,Jdt'.

Substituting this back into (8b):
1_() = M M,[to+v2Pi(vt, 0)]

v f $t—ot)i_(()dt. (9)
0

This equation can be solved for 7_(¢), then P;(ut, 1)
can be computed from (8b), and P(y,?) and
i,(t) can be computed from (7) and (8a), re-
spectively.

Equation (9) is readily solved by Picard’s
method. Let:

i) =3 i),

1:—(0) (t) = M7M0[i0+7ivpi(vlr 0)]1 (10)

¢
1D (f) ='y;vf o(vt—ot")i_™(¢)dt,
0
n=0,1,2, ---
9 W. Shockley, J. App. Phys. 9, 635 (1938).
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If the sum exists, it is obviously the required
solution.

Steady-State Current

Before applying (10) we derive the ‘‘steady-
state” current. This has significance, in the first
place, only if 79 is constant and in the second
place only if the ions can traverse the tube many
times before metastables begin to reach the
cathode in appreciable numbers. Under these
circumstances, this steady-state current will be
sensibly reached before the beginning of the
metastable transient.

We find the steady state ion density p;(x, «©)
by setting 9/dt=0 in Eq. (6) and integrating.
The constant of integration is determined by the
condition that p;(X, f) =0. The result is:

bim (io/v)[ f X¢<x’>dx'] / [1 - f X¢<x’)dx'].

The current is then found by applying formulas
(8a) and (8b). If ¢(x) is given by Eq. (6), the
current has the well-known form:

ii='i0]‘/[r exp[a;(X——xo)]/(l +‘Y¢M,-—‘)‘,‘.A/[,-
Xexplai(X —x0)]). (11)

Pulse Transient

By a pulse transient we mean one resulting
from a single pulse of stimulating current oc-
curring at t=0. For this transient 7=0 for ¢t >0.
We assume that », primary electrons are released
from the cathode in negligible time at t=0 and
that these are instantly increased to M,n,, where
M, is defined below Eq. (3). Then:

Pi(y, 0) =nop(y).

We now find P; and the current by substituting
into Egs. (10), (8a), and (8b).

When we return to our original assumption
about the form of ¢(x), that is, to the form of
Eq. (6) with a constant «;, we obtain the fol-
lowing results:

pi(x, t) = a:M no exp[A(§—%0+7)]

XY (AMpyie-As)nl,(r, £, £, (12a)

n=0
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i/awMmo=(4:)" exp[4(r— &) ]
X { exp[max4;(1—7), 0]

—exp[max4;(£&—7), 0]

+§ (Aulf,-‘y,e"’“e“)"f In—l(T,) £01 0)

n=1 r—1

X (exp[4:(' —1+1)]
—exp[max4 (7' —r+&), 0])dr’ l

+Mvi(A) " exp[Ai(r— &) ]
X (exp[4:(1—£0)J+A:k0—1)

XY (A:iMyie—A#9) T, (r, £, 0). (12b)

n=0

These are expressed in terms of dimensionless va-
riables r=vt/X, t=x/X, fo=x0/X,and 4;=a;X.
The symbol maxA4, B means that we use the
larger of A or B. Also:

min(r+£—§0), 7
I"(T9 SO) E) = I"—l(T,: EOY O)dT’,

r4E—1
IO(Tv %o, E) = €(€+T—' 1)5(50*5_7)
In order to express the current we need only

the I,.(r, &, 0), which are functions of only two
variables. The first three of the I,(r, &, 0) are:

Io(7, £0,0) =1, £<r<1.
_[r—2¢, 260 < <144,

11(7', EO;O)_ 2_1_ 1+EOSTS2
%(7_350)2, 3EOS731+2501

=3 —1-2802 -3+ o=y
L& 0=1 g gy 1425<r <24t

3(3—1), 2+4+£<r<3.

Others can readily be generated from the defi-
nition. The functions are zero outside the given
ranges of .

The separate terms in (12a) have a simple
physical interpretation. The first term, with
n=0, is just the initial distribution due to the
pulse of 7, electrons. The term with =1 is the
distribution set up by the preceding term, and
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so on. Each successive term or ‘“‘wave’’ begins a
time xo/v later than the preceding one, and lasts
a time X /v longer, so that the waves overlap in
a complicated fashion.

The integral

f exp(ar)Ia(r, &, 0)dr
0

will be useful. With » =0, this can be evaluated
immediately. The integral with any other value
of n can be expressed in terms of the integral
with 7 decreased by unity by means of the
definition of I,. Thus, by induction, we find:

k.

f EXp(aT)In(T, Eo, O)d‘r = (e’l — euED)ﬂ+1/an+l X

0

For a =0, this gives:
f I”(T! EO, 0)dT= (1 -EO)"+I.
0

With these results, we can readily compute the
total number of electrons which leave the
cathode and the total charge transferred through
the tube. The first quantity is seen to be:

noM,/ {1+v:M,—~v:M, exp[ai(X —x0)]}.
If we let:
M= {14~v:M,—v:M, exp[a:(X —x0) ]},  (13)

the total number of electrons leaving the cathode
is noM,M; and the total charge transferred is

noM,M;' exp[a;(X—xo)].
In this notation, Eq. (11) becomes
’l:,"—‘ioMrM;' exp[a,-(X—-xo)]

for the steady-state current, which is seen to be
consistent with the value of the total charge
transferred as the result of a pulse.

Finally, it should be noted that the product
M,M; has the form:

x
M.M;= ( 1 —ar'yrf (©/4r) exp[ai(x—xo) Jdx

Fvi—7: explai(X —x0)] (13a)
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Operating Transients

By this term, we mean those transients which
occur when 7, is changed abruptly from zero to
a steady value (the rise) or when %, is changed
abruptly from a steady value to zero (the fall).
It is readily shown that the rise and fall have the
same shape, so that we shall solve only for the
rise.

We can find this transient by integrating the
pulse transient over a suitable time variable or
by usings Egs. (10) with P;(»t,0)=0. The
currents carried by ions and by electrons are:

m+1 £—£o
1’+(t) ='i0M,A s‘f dff eAiE—ko—1")
T t—1
X[Z(”’MO"L(T’, so)]df’. (14)
0

1_() =1 M, M3 (viM)"Tu(r, &),
0

and the positive ion density can be found by
application of Egs. (7) and (8b). The J.(r, &)
are given by:

<0,

0,
Jo(r, &) ={
1, 720;

—%o
Ja(r, §0) =4 f eAil—t= J (7', Eo)dr'.
7—1

As with the pulse transient, the individual terms
have a simple interpretation. The first term, with
n =0, represents the direct effects of the primary
current. Ions formed by the primary current
release new electrons from the cathode, whose
direct effects are given by the second term, and
so on. Unlike the terms in the pulse transient,
these terms do not rise from zero and fall back
to zero but instead rise from zero to a constant
value. The nth term starts from zero at r=né,
and reaches a constant value at r=n. It is
readily found that the constant value, which we
denote by substituting 7=, is:

Ta(, &) =[expA:(1—&)—1]"

The form of Egs. (14) is not convenient for
large values of ¢ or 7. We can find an approxi-
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mate form for large 7, however, by making use
of the property just mentioned. For r equal to an
integer %k all the J,(7, &) for which <k have
attained their limit while the others are still
rising. Neglecting the terms which have not
attained their limit, the electron current, for
example, is:

k
i(r=k) =t M. M, 3 (v.M,)"
n=0

X [expa, (X —xo)—1]*. (15)

Letting £— =, we see that this gives the steady-
state electron current, provided that we are
below breakdown.

Equation (15) can be used to estimate the rise
time of the current, that is, the time required for
the current to attain some specified fraction of
its steady-state value. Since the current estimated
by means of Eq. (15) is always too small, the
resulting time is always too large.

V. METASTABLE TRANSIENT AND STEADY-
STATE CURRENTS

After the metastables begin to move appre-
ciably, we must solve Egs. (4) and (5) simul-
taneously. To do this exactly would be a difficult
task; we can get a reasonably accurate solution,
however, if we assume that, at each instant, the
ion density has the steady-state distribution
corresponding to the instantaneous value of the
electron current leaving the cathode. In other
words, we can drop p;(0, £) from the right member
of Eq. (5) provided that we multiply what
remains by M,, as defined by Eq. (13). Then,
when we have solved for p,, the current is given
by Eq. (11), with 4, replaced by the instantaneous
value of Zo+vmk2pm’ (0, 2).

We shall solve for the pulse transient and the
falling operating transient, for which 2,=0 when
t>0. For these transients Eq. (5) now reads:

Ov £.<_ EO;
dpm  pm
—— =< YmAm exp[4i(§— &) ] (16)
oT g
X (8pm/38) gm0, £ &0,
in terms of the dimensionless variables
T'=(/X)t, t=x/X,

with Eo=x‘o/X, A,'=Ot,'X, and An=M,MoX.
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This is subject to the conditions:

pm(0, T) — N(8pm/dE) e=0
=pm(1, T) +N(apm/af)f=l =0.

For the pulse transient
Pm(E; 0)=n0(Am/X) eXP[Ai(f“go)], EZEO;

pm(£,0)=0, £<%. For the falling operating
transient pn,(%¢,0) has the steady-state value
which we shall derive later. We are taking N to
be the same at cathode and anode.

General Solution

We can solve Eq. (16) by separating the
variables. We find that

Xn(g) eXp[ — N\ T]

satisfies (16) and the conditions at £=0, 1, pro-
vided that x, is a solution of

(17)

(@*x/dg) +Nx
-rO, ES Eo)

={ —Fndn exp[AE— ) dx/dD 0, (172)
IL EZ EOv

and that x satisfies the conditions at §=0, 1. As
we shall see, (17a) has an infinite ordered set of

eigenvalues A,, so that we can write a solution of
Eq. (16) in the form:

pm(§, T) =2 anxn(£) exp[ —Na2T7].

The coefficients a, are then chosen so that this
reduces to the given form of p,.(£, 0) when T'=0.
Equation (17a) can be satisfied by:

(18)

c1(sin\E+ N cosAE), £ &,
x(§) =1 c2 sin\(£ — &o) +c3 cosh(§ — £o)
+coexpAdi(E—£), £>&. (19)

This satisfies the condition on x at §=0. There
are four other conditions which must be satisfied :
x and its first derivative must be continuous at
£=¢§y, x must satisfy the boundary condition at
¢=1, and x must satisfy (17a). These conditions
lead to the equations:

C1(Sil’l)\.§o+N)\ COS)\fo) —C3—C4 =0,

ciM(coshEg— N sink§g) —coh —c4d =0,
ca(singA+ N\ cosn\) +c3(cosph — N\ sing\)
+C48"A‘(1 +NA 1) = 0,

CrymAmhtci(A24+N) =0, (20)
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Fi1G. 2. Functions sinx and E(QA), for N=0, 4;=2, n=0.9.

with n=1—§,. If these are to have a non-trivial
solution for ¢y, ¢s, ¢3, ¢4, the determinant of the
coefficients must vanish. Multiplied out, this
gives for the equation determining the eigen-
values \:

(A24+2A)[(1— N22) sinh+2N\ cosh ]
= 'YmAm[x( 1 +NA i) (eﬂA : _COS‘U)\)
—(4i—NMN) sinp\]. (21)

Without loss of generality we can take R(A) >0.

This has the roots A\=0, 4(—1)*4;, but these
are usually trivial since the values of the ¢'s
found for these values of A give functions which
are identically zero. If these roots should happen
to be multiple, they become non-trivial.

If A»=0, this reduces to the eigenvalue
equation for flow without sources:

(1—N22) sin\+2NX cosh =0, (21a)

whose roots are all real. The corresponding
eigenfunctions are known to form a complete
set on the interval 0<¢<1.

To see the behavior of the eigenvalues when
An>0, we can divide (21) through by (\2+4 2).
The behavior of the two members of the resulting
equation is shown in Fig. 2, for the numerical
values N=0, 4;=2, and 2=0.9. For N=0, we
can write (21) in the form:

sin\=vmAdnEQ), (21b)

introducing the function E(\) for brevity. If
N #0, (21) does not take so simple a form but the
spirit of the following remarks about (21b) still
holds.

E(X) is a function which rises to a maximum
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Fi1G. 3. The first three eigenfunctions, and the steady-state
distribution, for N=0, 4;=2, 7=0.9, ymdn=14%.
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and falls slowly to zero as A—». E(\) has small
oscillations, but on the average goes as A~! for
large A. Thus, no matter how large y»4» may be,
the right number of the above equation even-
tually becomes and remains less than unity and
the eigenvalues approach the zeros of sinA.

Thus, we see that the eigenvalues of (21b) are
continuous functions of y,4, and equal the
integral multiples of # when ynA4,=0. As yndm
increases from zero, we see from Fig. 2 that the
root originally at = moves toward the origin. The
roots originally at 27 and 37 move toward each
other, as do those originally at 47 and 5w, etc.

For some value of ym4m, the root originally at
7 reaches the origin. This occurs when the two
curves in Fig. 2 become tangent at the origin.
A=0 is then a double root and is no longer trivial.
For still larger values of y.A4. this eigenvalue
becomes imaginary, so that —A? is positive in
Eq. (17) and the current increases without limit.
Therefore, the breakdown condition is the con-
dition that the slope of yn4dmE(X) at A=0 be not
less than unity. In the general case, with N #0,
similar remarks hold, and we find that the break-
down condition is that:

YmAm>A2(14+2N)[(1+NA;)
X(emi—1)—nd T (22)

We have seen that, for any value of yndn, the
eigenvalues of (21) have a one-to-one corre-
spondence to the known set defined by (21a).
Further, the eigenvalues and eigenfunctions
defined by (21) always approach those defined
by (21a) at least as fast as A\~1. Thus, we may
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plausibly assume that the set of functions x,(£)
are complete and, hence, that the expansion of
(18) is possible.

Ezxpansion Coefficients and Initial Conditions

Having solved (21) for the eigenvalues, we can
readily determine the ¢'s from (20) and any con-
venient normalizing condition, and are ready to
determine the a, in (18). This determination is
more difficult than for a Fourier expansion
because the functions x. are not orthogonal.
Evaluating the @, is not necessary if we are only
interested in the rise or fall time because this
time is essentially determined by the smallest
value of A. This value is always less than = while
the next value is equal to about 2, and thus the
first term in (18) rapidly becomes dominant.

We determine the coefficients @, by substi-
tuting 7=0 into Eq. (18), thus:

Pm(f, 0) = Z aan(E)-

We proceed in the usual fashion to multiply
through by xx(£) and to integrate over all &:

2 an(xx-Xn) = (X" pm(£, 0)). (23)

If the xix were orthogonal, this would give a;
immediately. As it is, (23) represents a set of
equations to be solved for the @,.

For the pulse transient, we take:

O’ £.<_ EO»
nodmexpldi(E—£0)], £>&,

expressed in terms of number of metastables per
cm? per unit £ The current is given by:

1= M, Me"iym(*/X?)(3pm/0E) g=0.  (25)

For the falling transient we have everything
the same as for the pulse transient, except for the
form of pn,(£, 0). Since the rising transient is the
same shape as the falling transient, we know
both when we have determined one. For the
falling transient we take p.(£, 0) to be the steady-
state distribution. As we shall show in a minute,
this distribution is:

pm=(0eX2/ k) M, M ;M (0tm/a2X)
(£+N)(1+2N)[(1+NA)
X(emi—1)—n4,],
XA (E+N)(142N)[(1+NA)
X(emi—1)—nd;]—exp[4i(t—£)]
+14+A4(8—%0), £2&,

PM(Ev 0) = (24)

‘Esglh

(26)
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where pn is in number of metastables per cm?
per unit £, and:

Mmgl =1- (’YmMrMiam/aizX)(l +2N)_1

XL[(A4+NA)(eri—1)—nA]. (26a)

If we have a problem in which the stimulating
current 7, is an arbitrary function of time, we can
proceed by dividing the given function into a set
of pulses of infinitesimal duration, finding the
pulse transient resulting from each pulse and
integrating the result over the set of pulses.

As an example, we have carried through the
numerical work for the values N=0, 4;=2,
71=0.9, and ymd»=1%. The eigenvalues are given
by the intersections of the sin\ curve in Fig. 2
with the curve $E()) (see (21b)). To four decimal
places, the first five eigenvalues are:

A1=2.3392, N\p=6.6487, N;=9.0955,
A=12.7856, Ns;=15.5246.

The first three eigenfunctions, normalized by
setting ¢;=1 in Egs. (20), are shown in Fig. 3.
They bear a general resemblance to the trigo-
nometric functions sin§, sin2r¢, sin37§, but are
somewhat distorted. In particular, x; has its
maximum at a larger value of ¢ than the mid-
point. The steady-state density function, indi-
cated by pa(£,0), is also given in Fig. 3 on an
arbitrary scale. From it we see that x; is more
suitably shaped to be an approximate repre-
sentation than a symmetrical function would be.

The results of keeping one, two or three terms
in Eq. (23) is shown in Fig. 4. We get the fol-

1.50

125 ]

e B
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F1G. 4. Successive approximations to pn(£, 0).
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lowing values of the coefficients:

One term: a;=1.5311.
Two terms: a,=1.5013, a;= —0.0668.
Three terms: a;=1.5060, a,= —0.0761,
a3=0.0406.

In this case at least we converge rapidly upon
the accurate values of the coefficients. Thus, if
we used only a one-term approximation in this
case, our accuracy at large T (when only a, is
important) would be about 2 percent.

We now find the current by substituting the
expansion for p, into Eq. (25). From (18) and
(19), with the normalizing condition that ¢;=1,
we have:

(9pm/08) gm0 =20 @nhn exp[ —N’T],

and the current is proportional to this quantity.
Since A is about eight times A%, and the other
N\? are even larger, only the first term is im-
portant for T greater than about 0.1.

Steady-State Metastable and Ion Distribution,
Steady-State Current

The steady-state densities are found readily
by setting (3/dt)=0 in Eqs. (4) and (5), and
integrating, subject to the same boundary con-
ditions that we used in finding the time-depend-
ent solutions. The metastable distribution has
been given in Eq. (26). The ion distribution and
the current are:

’l:()X enA;_l’ ESEOy
pi=—M MM, (27)
o eMdi—gdili—t  £> ).

1 =10 M, M;Mne4i1=t), (28)

where p; is in number of ions per cm? per unit £,
and M, is defined in (26a).

The product M,.M;M, is a fraction whose
numerator is unity and whose denominator is
unity minus a sum of terms, each of which is
characteristic of one of the three processes of
secondary emission: photo-emission, emission
under ion bombardment, and emission under
metastable bombardment. Thus, if ® =2r:

(MM M) '=1—(ary:/2a;)
X[exp(4:(1—&))—1]

—‘Yi[eXP(A (1- 50)) - 1:]

— (Ymom/adX)(14-2N)"I[(14+NA4))

XTexp(4:(1—£0))—1]—A4:(1—%)]  (29)
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In the expression for the steady-state current
this quantity replaces the denominator in Eq.
(1). Thus we see that Eq. (1) is correct, to the
accuracy used in this work, only if v, is neg-
ligible.

Breakdown occurs when (M, M;M,,)~! becomes
zero or negative. This condition is identical with
the condition already given in Eq. (22), as one
can see by substituting the values of M, and M;
into Eq. (22).

Solution by an Integral Equation

Equation (16), like Eq. (6), can be transformed
to an integral equation. To effect this trans-
formation, consider first the following method for
solving the diffusion equation with sources,

(9y/0T) —(8%/98) =S(&, T),

with y subject to homogeneous boundary con-
ditions, and with y(&, 0) a given function of &.

First, we find a function y,(¢, T') which satisfies
the homogeneous diffusion equation

(3y1/0T) — (8%1/98%) =0,

and which satisfies the same boundary conditions
and initial condition as y, so that:

yi(£ 0) =y(£ 0).

Then we find a function y.(¢, T, T7), where 7"
is an as yet undefined parameter, which also
satisfies the homogeneous diffusion equation,
which satisfies the same boundary conditions as
¥, but which satisfies the initial condition :

3’2(5, 0, T’)=S(E, T,))

which defines the parameter 7. Then one can
verify by substitution that the desired solution
y(& T) is:

Vil
(& T) =yt T)+ f ya(§, T—T", T')dT",
0

provided that y.(¢§, T—T’, T') can be different-
tiated under the integral sign.1?

In other words, we first find the density func-
tion which results from the decay of the original
distribution without sources. Then we consider
that a density distribution equal to S(¢, T')dT’

10 G. Doetsch, Laplace Transformation (Dover Publica-
tions, New York, 1943), p. 358.
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is set up at T=T" and find the density which
results as this decays without further sources. To
find the actual density at time 7" we add up all
the contributions from the initial distribution
and from the sources which “occur’’ earlier than
time 7.

In the present problem, the source function
S(§, T) is, according to Eq. (16), the product of
(8pmd&) =0, which is a function only of time, by
a function of £ only. It is then convenient to take
the function v,(¢, T, T”) to be:

Vo= (apm/af)Te:g"Qs(E, T)) (303)

where ¢(¢, T') satisfies the homogeneous diffusion
equation, and

01 ESSO)

(30b)
YA mediE—E  £> £,

8(£, 0) ={

Our method of solution then gives the result:

pm(E, T) =31(¢, T)

T
+ f (&, T—T")(9pm/E)sco dT".  (31)

T=T"'

Operating on both sides with /9§ and evaluating
at £=0, we get an integral equation for the time-
dependent variable (dpm/d§)¢=0:

(3m/38) 10 = (991/0E) o+ f (3/08) e

X (&, T—‘T’)(apm/aé)ﬁo ar’. (32)

T

Since the current is proportional to (3pm/d%) o,
this equation is analogous to Eq. (9). It is
essentially the integral equation which Engstrom
and Huxford* give for the current.

Equation (32) is identical in form with (9).
In both cases, the first term on the right repre-
sents the contribution from the initial distribu-
tion (there is also an 7, in (9) which we have taken
to be zero in (32)). In both cases, the first factor
in the integrand gives the number of electrons
leaving the cathode at time T as a result of an
electron which left the cathode at time 77.

Equation (32) can be solved by an infinite
series, which we know from our study of Eq.
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(16) to have the form:

(3pm/08) gm0 =2 an exp(—N2T).  (33)

We also know v, and ¢, and can write:

(091/98) g=0= 2_bn exp[ —p2T7],
(0¢/08) gm0 = 2_cn exp[ —p2T],

in which the p, are the roots of (21a), and b, and
¢, are determined by Egs. (30a) and (30b).
Substituting these into (32), we have:

;Ck/ (P2 =N =1, (34a)

bk——ckZa,./(pk"’—)\,ﬁ) =0. (34b)

We can determine the A, from (34a), and the a,
from (34b) and the values of A,.

The roots of (34a) must be identical with the
roots of (21). Which of the two equations one
uses will probably be determined by the type of
information desired.

With either this method or the method pre-
sented earlier in this section one can achieve any
desired accuracy by retaining a sufficient number
of terms, either in series (18) or series (33). It
should be noted that the use of, say, two terms
of (18) does not give the same approximation as
the use of two terms of (33). In the latter case,
we approximate to both the eigenvalues (the \’s)
and the expansion coefficients. In the former
case, we always obtain the accurate eigenvalues
from (21), and approximate only to the expansion
coefficients.

VI. SOME EXPERIMENTAL APPLICATIONS

In this section, we shall point out some of the
consequences of the preceding formal analysis
which suggest themselves as bases for experi-
mental measurement of the various parameters
which characterize a discharge. We shall not
attempt a discussion of the feasibility or accuracy
of any experiments.

The parameters which characterize the dis-
charge may be divided into two types: (1) those
which determine the ‘‘steady-state’’ currents %,,
i, and ¢ (see Fig. 1) and (2) those which deter-
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Fi1G. 5. Initial part of ion transient for A;=2, £=0.1.
The curves are only schematic beyond 7=1.

mine the rise times ¢, and #;, and the time con-
stants of the metastable transient.
The steady-state currents are given by :

1, =10 M, exp[ai(X —x0) ],
ti=10M,M; exp[ai(X —x,)],
1=2M, MM, exp[ai(X —x0)],

where M,, M;, and M, are, respectively, defined
below Eq. (3), by Eq. (13), and Eq. (26a). The
products M,M; and M.M M, are written out,
respectively, in Egs. (13a) and (29). By referring
to these equations, we see that the steady-state
currents depend upon the parameters a,y,/a;, v,
anym/a;and a;. (In addition to these parameters
there occur N and £. We can usually estimate
these with sufficient accuracy from other consid-
erations.) Therefore, it is impossible to determine
these four parameters from the three steady-
state currents at one value of X.

We could overcome this difficulty by per-
forming the classical Townsend experiment, in
which the current is measured as a function of X,
while keeping the electric field, and hence the
a’s, constant. The alternative procedure, which
Engstrom and Huxford* have suggested, is to
study the transients. This procedure brings in
also the time parameters, namely, the speed v of
the ions and the diffusion coefficient « of the
metastables. If we had studied the radiation
transient, we should also have a parameter (or
parameters) for it.

An analysis of the transients is sufficient, as
we shall show explicitly for the ion transient, to
yield all the desired parameters. An analysis by
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this means has two great advantages over the
classical method. One is that the parameters are
all determined at one geometrical configuration,
the second is that measurements can be made
beyond the breakdown point, provided that the
stimulating current is removed soon enough.

An experimental study of the metastable
transient has been given by Engstrom and
Huxford.* Their method involves measuring the
time constants of the exponential decay terms
which were discussed in Section V of this paper.
Use of these time constants, in general, requires
a knowledge of the diffusion coefficient «2. They
show that, if one uses a one-term approximation
in the integral equation method of solution (see
Eq. (32) et. seq.), M\ is determined, to that
accuracy, by the ratio 7/7;, without knowing x2

For studying the positive ion transient, we
make use of Eq. (12b) for the current following
a pulse of stimulating electrons. Figure 5 shows
the dimensionless current (¢/a@wM,m,) computed
from (12b) as a function of the dimensionless
time r=9t/X, for the particular values 4;=2,
£=0.1, (M,v;)=% and 1. The latter value is
beyond the breakdown value.

The feature of greatest interest in Fig. § is
that there are two discontinuities in the current,
whose origin is not difficult to see. When the
initial pulse of electrons passes through the tube,
ions are created between £=§, and ¢=1. This
mass of ions moves bodily toward the cathode.
At 7=£§,, the front wall of the ion distribution
strikes the cathode and causes the emission of
electrons. The current through the discharge
therefore shows a sudden jump. The second dis-
continuity arises when the ions originally formed
near the anode (¢=1) reach the cathode. The
initial density of ions at the anode is much
greater than any density formed subsequently,
so that after the ions originally at the anode
strike the cathode there is a sudden decrease in
the number of ions striking the cathode per sec.,
and therefore a sudden decrease in the current
of electrons leaving the cathode.

Mathematically, the discontinuities arise in
the first term of the last summation in Eq. (12b),
that is, from the term:

Myyi(A) L exp[Ai(r—£0)]
X fexp[Ai(1—¢0)]+4:&0—1}Io(7, &0, 0) .
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Iy(7, &, 0) is a function which is unity inside the
interval £ <7<1, and zero outside that interval.
Therefore, this term gives discontinuities in the
current at 7=§, and 7=1, which have the re-
spective magnitudes:

Mayi(A) 7 {exp[A:(1—&)]+AiE— 1}
and

Moyi(A) " exp[A:(1—&)]
X {exp[4:(1—¢&) ]+ A:t0—1}.

Observation of these discontinuities thus allows
us to compute 4;(=a;X), and M,y;. The com-
bination of these observations with the steady-
state currents in Fig. 4 gives one more than the
number of relations needed to compute the
parameters in the steady-state current.

On a time scale the discontinuities occur at
t=xo/v and ¢t=X/v. Therefore, from the times at
which they occur, we can compute the ion
velocity and hence the mobility.

It should be pointed out that, if metastable
activity is significant in the discharge, the coef-
ficient v in Eq. (1), which is closely related to the
second Townsend coefficient, is not independent
of the electrode spacing X. Upon comparing (1)
with (28) and (29), we see that « is given by :

v = (arye/ 20:) +vi+[Ymom/ai(1+2N) ]
X {(14+NaX)(a:X)™
— XX —xo)[exp(ai(X —x0)) — 1]}
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The radiation and ion contributions to this are
constants, but the metastable contribution is a
function of X, which varies as N+ (a:X)™! for
large X. In other words, if we try to determine
a number v to fit Eq. (1) by varying X, we
should find that ¢y must decrease as X increases.

The reason that the ion and radiation con-
tributions to vy are constant while the metastable
contribution is not, is readily seen. Regardless
of the value of X, essentially all ions formed in
the discharge (if the diameter of the discharge
is large compared with its length) reach the
cathode. Likewise, one-half of the radiation
emitted in the gas reaches the cathode, regard-
less of X. However, the fraction of the meta-
stables formed which reaches the cathode is not
independent of X, even if sidewise diffusion is
negligible. As X increases, the distribution of
metastables tends to become more concentrated
near the anode. Since the metastables move by
diffusion, more of the metastables reach the
anode and fewer reach the cathode, under these
conditions. Therefore, the metastable contri-
bution to v decreases with increasing X.
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