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direct transitions to the ground state of Fe" of
the 2.66-Mev and jor the 2.98-Mev levels. (The
uncertainty of +0.2 Mev does not permit a
decision as to whether solely the 2.66-Mev level
or the 2.98-Mev level or some combination of the
two is involved. ) These direct transitions are
indicated by the dotted line in Fig. 2. By taking
the ratio of the data in column 6 for Na+Dgo
and Mn+D20 one gets (neglecting a small

energy correction) an estimate of the frequency
of occurrence of the direct transitions to the
ground state. The number of such transitions is
0.011 per disintegration. Compared to the prob-
abilities for the transition to the 0.845 level, the
low probability of 0.011 would indicate that the

transition to the ground state is of a higher elec-
tnc or magnetic multipolarity than the transi-
tions to the 0.84-Mev level.

It is the experience of the authors that the
photo-neutron techniques can be extended to
measurements of y-rays that are emitted with
a probability as low as 0.0001 per disintegration.
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It is pointed out that Peierls condition for the validity
of time-dependent perturbation theory in the determina-
tion of the mobility y of electrons in crystals can be trans-
formed to the form

p, &30 cm'/volt-sec. (at room temperature)

in the case in which the electrons are distributed classi-
cally. Since the recent investigations of the mobility of
electrons in diamond, siHcon, and germanium indicate
that the mobility in these materials is at least several times
greater than the foregoing limit, it would appear that
perturbation methods may be used to discuss the mobility
in these materials and possibly in other non-polar insulat-
ing materials, such as sulfur.

An expression is derived for the collision frequency for
conduction electrons having velocity v as a result of collis-
sions with the acoustical modes of oscillation. It is painted
out that these modes will be the only ones of interest in
diamond at room temperature because the characteristic
temperature is in the vicinity of 1800'K. The collision
time r is found to satisfy the equation

1/ = (4/9 )(C koT/h'c'no)(ns* /1')k, {A)

where C is a constant, having the dimensions of energy.
that measures the interaction between the lattice and the
electron, kfl is Boltzmann's constant, T is the absolute
temperature, c is the acoustical velocity, no is the density
of atoms, m* is the efI'ective electron mass, M is the mass
of the atoms in the crystal, and k is the wave number
vector of the electron. Since the mean free path is pro-

portional to k, it follows that the mean free path is inde-
pendent of velocity in the approximation in which (A) is
valid. The conditions for validity of the equation, all of
which are normally well satisfied in diamond at room
temperature, are: (1) The temperature be sufFiciently low
that the principal inelastic collisions involve only one
lattice ~ibrational quantum; (2) only the acoustical modes
of vibration be excited; (3) the temperature of the elec-
trons be sufFiciently high that their mean energy be large
compared with m*c~, in which c is the acoustical velocity;
{4) the electrostatic field be sufFiciently low that only
linear terms are important. The second of these conditions
is usually not satisfied in materials such as silicon, ger-
manium, or sulfur near room temperature, although it will

be satisfied at lower temperatures. The temperature
m*c'/ko is near 10'K for diamond, but is much less than
this for most other materials, so that (A) should be ap-
plicable for determining the mobility of conduction elec-
trons in a large number of pure non-polar insulators at
low temperatures not too close to 1'K.

In the case of diamond, the mobility at room tempera-
ture is found to have the value

p, = (1.46/C )10' cm~/volt-sec.

if m~ is taken as the free electron mass. This leads to a
mobility of about 1$6 cm~/volt-sec. if C is assumed ta
have a value of 30.6 ev obtained from the relation C(ev)
=1.7 ~ 10~8 that seems to be obeyed for the electrons in
the simpler metals. In a range of temperature in which
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only acoustical modes of vibration are excited the relative
mobilities of two different substances p and ~ should
satisfy the relation

p /~ ={0jO )'(n, /n )&(C /C )'(M /M ),

in which the subscripts refer to the two different substances,
8 is the characteristic temperature, n is the atomic density,
C is the interaction constant appearing in (A), and M is
the atomic mass. Since C and 8 are probably roughly
proportional to one another, this relationship suggests
that the mobilities of various insulators should have
similar values in a range of temperature where only the
acoustical modes cause excitation.

The inRuence of non-acoustical modes in non-polar
materials are discussed. It is pointed out that two in-

teresting cases can occur and the case of diamond is dis-
cussed and clarified with use of group theory. It is found
that the scattering from non-acoustical modes contributes
to the collision frequency to about the same degree as the
non-acoustical modes when the crystal temperature is not
too far below the characteristic temperature.

The implications of the foregoing work for the problem
of crystal counters is discussed. It is pointed out that the
mobility is probably sufficiently large at room temperature
in any of the non-polar crystalline insulators that they
would make satisfactory counters if mobility were the only
determining factor. It is shown that the concentration of
trapping centers in a give specimen is probably the greatest
limitation on the use of the material for purposes of a
counter.

L INTRODUCTION*

~ ~HE development of crystalline microwave
rectifiers' and crystal counters' during re-

cent years has given stimulus to the study of the
mobilities of conduction electrons in non-
metallic materials, particularly non-polar in-
sulators and semi-conductors such as diamond,

* A large fraction of this manuscript was prepared while
the writer was guest lecturer at the Berkeley campus of
the University of California during the summer of 1947.
He is indebted to the Department of Physics for a very
pleasant and stimulating period of work.' The study of crystalline microwave rectifiers was
sponsored in this country during the war by Division 14
of NDRC. Particular emphasis was placed on silicon and
germanium to which controlled amounts of additional
agents were added to obtain desired electrical properties.
No comprehensive survey of the fundamental aspects of
this research has apparently appeared as yet in print in
the standard journals, although such surveys have been
presented at meetings of the American Physical Society
(see paper by V. Johnson and K. Lark-Horovitz, Phys.
Rev. 72, 153 (1947)). The institutions and laboratories
which contributed to this work are as follows: Radiation
I.aboratory of the Massachusetts Institute of Technology,
Randal Morgan Laboratory of the University of Pennsyl-
vania, Department of Physics of Purdue University, The
Bell Laboratories, Westinghouse Research Laboratories,
Sylvania Electric Corporation, RCA Laboratories. The
following references have bearing on the study of these
rectifiers: U. Johnson and K. Lark-Horovitz, Phys. Rev.
71, 374 (1947); 71, 709 (1947); E. Conwell and V. F.
XVeisskopf, Phys. Rev. 69, 258 (1946); G. L. Pearson and
W. Shockley, Phys. Rev. 71, 142 {1947);B. Goodman,
A. W. Lawson, and L. I. Schiff, Phys. Rev. 71, 191 {1947);
I. Estermann, A. Foner, and J.A. Randall, Phys. Rev. 71,
484 (1947).' P. J. Van Heerden, The Crystal Detector (Thesis.
Utrecht, 1945); D. E.Wooldridge, A. J.Abeam, and J. A,
Burton, Phys, Rev. 71, 913 (1947};R. Hofstadter, J.C. D.
Milton, and S. L. Ridgway, Phys. Rev. 72, 977 (1947};
The writer desires to express appreciation to the group at
the Bell Laboratories, Professor Hofstadter, Dr. Wouters
of the Radiation Laboratory of the University of Cali-
fornia, and Commander P. S. Johnson of the Bureau of
Ships for very informative discussions of the properties
of crystal counters.

silicon, and germanium. Ionic materials had
been subject to a great deal of experimental and
theoretical investigation prior to the war by a
large number of investigators, both in this
country and in Europe, because of the wide in-
terest in the colored alkali halides, photo-
conducting luminescent crystals, such as zinc sul-
fide, and rectifier materials such as cuprous oxide.

Frohlich and Mott' have shown that when the
temperature of a polar crystal is near or above
the characteristic temperature, the mobility of
conduction electrons that are at equilibrium with
the lattice is determined primarily by the optical
branch of the vibrational spectrum, the greatest
electron-lattice interaction being that involving
the polarization waves of long wave-length. As
the crystal is cooled to a temperature well below
the characteristic temperature, the conduction
electrons can no longer interact with the optical
modes of vibration having long wave-length, if
they remain in temperature equilibrium, and the
mobility increases. In the range of temperature
just below the characteristic temperature in

which the collisions involving the optical branch
still determine the collision time 7. of the con-
duction electrons, this quantity depends upon
temperature through the equation

1/r = (1/ro) exp( —hvo/kT) (1)
~This work is surveyed in several books and review

articles. See, for example, N. F. Mott and Gurney, Elec-
trical Processes in Eon& Crystals (Oxford University Press,
New York, 1940); F. Seitz, Modern Theory of Solids
(McGraw-Hill Book Company, New York, 1941), Rev.
Mod. Phys. 18, 384 (1946).' H. Frohlich, Proc. Roy. Soc. 160, 230 (1937); 188, 521
(1947); H. Frohlich and N. F. Mott, Proc. Roy. Soc. 171,
496 (1939).
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in which vo is practically independent of tempera-
ture and vo is the frequency associated with the
longest polarization wave in the optical branch.
At suf6ciently low temperatures, however, the
collisions involving the optical branch become
unimportant and the collisions involving acous-
tical modes determine the collision frequency.
In particular, the selection rules involving con-
servation of energy and momentum show that
only acoustical waves of fairly long wave-length
are involved in these collisions.

The pure non-polar insulating crystals differ
from the polar crystals in the sense that the
optical modes of vibration of highest frequency
are not of the polar type because the atoms are
electrically neutral. In the case of diamond, for
example, which possesses two atoms per unit cell
and has a lattice structure similar to that of
Sphalerite (ZnS), the mode of highest frequency
is that in which the two atoms in a given cell
move in opposite directions at the same time
and in which corresponding atoms in diAerent
cells derived by pure translation from the first
cell move in phase with atoms in the first cell.
The crystal does not become polarized during
this motion because the carbon atoms in diamond
are uncharged. The crystal v ould become polar-
ized for the corresponding mode of vibration in
Sphalerite, however, because the zinc and sulfur
atoms have a divalent change. Since polariza-
tion is absent, the interaction between the elec-
tron and lattice vibrations may be expected to
be smaller in the non-polar than in the polar
insulators when the temperature is near the
characteristic temperature. Moreover, it may be
expected that the inHuence of the optical modes
in non-polar materials will not necessarily ob-
literate the inHuence of the acoustical modes
when the former are excited.

The purpose of the present paper is to discuss
the electron mobility in the non-polar insulators,
using diamond, silicon, and germanium as proto-
types since the values of the mobilities of these
materials seem to be known, at least in order of
magnitude, at room temperature. A group of
investigators at the Bell Telephone Labora-
tories' has demonstrated that electrons liberated

~ D. E. Wooldridge, A. J. Abeam, and J. A. Burton,
Phys. Rev. Vl, 913 (1947). This work has not actually
yielded quantitative values of the mobility to date.

in diamond can possess a long mean free path.
The experiments carried out to date indicate, in
fact, that the mobility at room temperature
probably is 100 cm'jvolt-sec. or larger. Simi-
larly, the work' of the Bell Laboratories, of
Estermann and of Lark-Horowitz on combined
measurements of conductivity and the Hall
effect shows that the mobility of free electrons
in pure silicon and germanium at room tempera-
ture is about 300 and 1300 cm2 per volt-sec. ,

respectively. In this work, use is made of the
relation

Ro =3sp/8c,

in which E. is the Hall constant, a the electrical
conductivity, c the ratio of electromagnetic to
electrostatic unit of charge, and p, is the mobility
(see Eqs. (39) and (42) below). Since the char-
acteristic temperature of diamond is in the
vicinity of 1800'K, it follows that the optical
modes are scarcely excited at temperatures near
room temperature and below, so that the colli-
sion time is determined primarily by interaction
with the acoustical modes of vibration. This
simplification cannot be expected to hold in
other non-polar insulators, such as silicon, ger-
manium, or sulfur, for which the characteristic
tergperatures are much nearer to room tem-
perature.

The following discussion will have only minor
bearing on the mobility of electrons in the non-
polar semi-conductors such as silicon and ger-
manium in the form in which they are ordinarily
employed as rectifiers, for in such cases the ma-
terials usually are intentionally contaminated
with impurity agents which have a substantial
inHuence on the mobility. The results do have
bearing, however, on the mobility in pure
specimens.

II. DISCUSSION OF PERTURBATION THEORY

In accordance with conventional procedure,
we shall consider an electron having a wave
number vector k that is moving through a crystal
lattice whose normal modes of vibration are

' This work is unpublished for the most part {see refer-
ence 1}.The writer is grateful to the various investigators
for the opportunity of discussing their results. Dr. G. L.
Pearson and his associates at the Bell Laboratories have
found that the mobility in silicon can be expressed in the
form AT& at sufficiently high temperatures. A is 5.0 10~
{cm~-deg&fvolt-cm), respectively, for silicon conducting
by means of holes and electrons {p-type and n-type).
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traveling waves having wave number vectors e
extending through as many Brillouin zones as
there are atoms in the unit cell of the lattice.
Three polarization waves are associated with
each value of o. We shall designate the circular
frequencies associated with p by ar, (p)(p=1, 2, 3).
In the most highly symmetric crystals the three
modes of vibration may be separated into two
transverse and one longitudinal mode, as for an
isotropic medium. The modes of vibration having
frequency near zero satisfy the relation

co;(p) =c;p., (2)

in which ~; is the constant acoustical velocity for
long waves having the appropriate polarization
and 0 is the absolute value of the wave number
vector.

The electron under consideration will possess
an energy of the order of magnitude of koT,
where kg is Boltzmann's constant and T is the
absolute temperature. As a result it will lie near
the bottom of the conduction band. For this
reason, the relation between the energy e and
xvave number k can be expressed in the manner

p(k) =hPkP/2m*, (3)

in which k is Planck's constant divided by 2x,
k is the absolute value of k, and m* is the
effective electron mass which may dier from
the true electron mass by a factor substantially
different from unity.

As long as the lattice is treated as if completely
rigid and perfect the electrons will not be de-
Aected; however, transitions actually will take
place even if the lattice contains no impurities,
vacancies, or interstitial atoms because of in-
elastic encounters between the electrons and the
lattice vibrations. According to conventional
time-dependent perturbation theory, the prob-
ability that a transition will take place in time t
between two states of the total system having
energy Bi and 82, respectively, is

&zp(t) = (1/h')
I

V»
I
PtP(sinPx/xP) (4)

Here V~2 is the matrix component of the po-
tential representing the interaction between the
electron and the lattice waves and

x = (Eg —Bp)t/2h.

If the average time v in which an electron changes

its state from energy ei to e& is suAiciently long
that the condition

Pgp(t) = (2prt/h) I
Vgp I'8(Eg —Ep) (7)

when (6) is satisfied.
Peierls' has shown that the results of per-

turbation theory can be used in the determina-
tion of the statistical distribution function at
temperature T in the presence of an electric
field even when the delta function approxima-
tion (7) is not completely valid provided the
following two conditions are satisfied:

(a) The matrix components of the interaction
potential connecting an initial state and those
states to which transitions are possible do not
vary too greatly over the range of states to
which transitions are allowed.

(b) The statistical distribution function does
not vary too widely over the range of energy in
which (4) takes its principal value when t is of
the order of magnitude of the collision time. The
distribution function usually involves energy 2
and temperature through a factor E/kpT and
changes its value appreciab1y. Therefore, when
8 changes by an amount koT, in electrons of
interest for conduction the second condition
takes the form,

rkpT/h & 1. (8)

The condition (8) can be placed in a very
convenient form if the mobility can be expressed
simply in terms of the collision time. This can
be done, for example, when the distribution
function has the Maxwell-Boltzmann form, as is
true for semi-conductors in which the electron
density is not too high. In this case

p—e/mr,

where e and m are the electronic charge and mass.
Hence, (8) may be written

p & eh/mkpT, (10)

which is about 30 cm'/volt-sec. when T is

~R. Peierls, Zeits. f. Physik 88, 786 (1934).

r(pg —pp)/h & 1

is satisfied, the function sin'x/x' can be replaced
by a delta function for values of the argument
of practical interest. Thus P~~ can be written
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300'K. Van Vleck has shown that this condition
is too stringent in metals. In this case the pa-
rameter T appearing in (9) is the average colli-
sion time for one of the electrons at the top of
the Fermi distribution, which is smaller than the
average collision time for all conduction elec-
trons by a factor of the order kpT/«p, where «p

is the kinetic energy of an electron at the top
of the Fermi distribution which is about 100
times larger than koT.

It' =It+e+K,
cosa = —[&+K[/2k~m~;(~)/kk [~+K[,

(12)

in which the plus sign corresponds to the case
in which the scattered electron gains one quan-
tum of energy and the negative sign corresponds
to the reverse case. We shall consider separately
the two cases in which K=0 and K&0.

J. H. Van Vleck, Revista de la Universidad Nacionai
de Temman, 1, 8i (1940).

III. SELECTION RULES GOVERNING TRANSITIONS

As long as the amplitude of oscillation of the
lattice vibrations is sufficiently small —a condi-
tion that is well satisfied at temperatures of
normal interest —the potential representing the
interaction between the conduction electrons
and the lattice vibrations depends linearly upon
the amplitude of the normal modes. In this case
the first order transitions described by per-
turbation theory are those in which only one
quantum of vibrational energy is emitted or ab-
sorbed in each step. Under the conditions in
which the delta-function approximation (7) can
be used, we may expect the following equation
to be valid:

«(it') = «(lr) aha);(o), (11)

in which k' is the wave number vector of the
electron after the transition, k that before, and
co;(p) is the frequency of the mode of vibration
having wave number 0 that has gained or lost
one quantum of energy. The positive sign is
valid in the case in which vibrational energy is
lost, whereas the negative sign is valid in the
opposite case.

In the case in which the electron interacts
with only one mode of vibration at a time, the
condition of conservation of wave number is
expressible in the form

(1) K =0,—In this case we are only interested
in values of e near the origin of wave number
space since k is very near the origin. Hence, the
approximation (3) is valid and Eq. (13) may be
written

cos8 = —p /2k &m*c;/kk. (14)

The ratio m*c;/kk may also be written (m*cp/
2«(k))&. The quantity m*cP corresponds to an
energy of the order of 0.001 ev or less for the
acoustical velocities met with in all solids. Thus
m*cP/kp corresponds to a temperature of 10'K
for the case of diamond and usually is much
smaller for other materials. It follows that the
absolute value of the second term on the right-
hand side of (14) is less than unity as long as
the temperature of' motion of the electron is not
too close to absolute zero. When «(k) becomes
less than m"cP/2 for all values of i, 8 becomes
imaginary for all values of p in Eq. (14) if the
negative sign prevails before the second term oii
the right-hand side. Thus, the electron cannot
lose energy in collisions for which K=O if its
energy becomes suf6ciently small. Such electrons
are equivalent to the "cold neutrons" which
have a very long mean free path for scattering
in crystalline substances. The "cold electron"
can still be scattered by collisions for K=O in
which it gains energy, provided the lattice vibra-
tions having energy 2m~c,' are appreciably ex-
cited. It is evident that at very low energies
(T&m*c,2/kp) the electrons will have difhculty
coming to temperature equilibrium' with the
lattice through inelastic collisions with the per-
fect lattice for which X=O.

When the electron temperature is near room
temperature, the electron will be able to ex-
change energy with modes of vibration for which
p. &2k&2m*c;/k=2k. Equation (14) cannot be
satisfied for larger values of cr with real values of
8. Now the energy hc,~—2',k of the lattice
quanta associated with the uppermost value of
p is equal to «(k)(8m*c /«)&, which is generally
much smaller than «(k). It follows that if the
electron and the lattice are at the same tempera-
ture, not too close to the absolute zero, the dis-
tribution of energy among the lattice vibrational
quanta with which the electron can interact
(when K = 0) is classical since kc,rr/kT will be
small compared with unity for these lattice
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vibrations. This fact was apparently first pointed
out by Frohlich. '

(2) KWO.—It follows from Eq. (13) that a

must be comparable to K, for if e is very small,
of the same order of magnitude as k or less, the
absolute value of the first term on the right of
(13) is very large compared with unity and the
corresponding value of the second term is unity
or less for reasonable values of k. These values
of e are just those which would lie near the
origin of wave number space if the "reduced"
zone scheme is employed in which all permissible
values of e are taken in the first zone. Since
co;(e) has zero gradient near e=O for branches
other than the three acoustical branches, it
follows that the corresponding values of co;(e) can
be taken to be constant in the range of e that is

of interest to us.
A straightforward analysis of Eq. (13) shows

that the electron can always be scattered by
collisions involving the umklapp process in

transitions in which it gains vibrational energy;
however, transitions in which the electron loses

energy are permitted only when the energy of the
electron is larger than the energy of the upper-
most vibrational quanta. In general, ~ must be
larger than ko' where 0™' is the characteristic
temperature of the lattice. It follows that transi-
tions involving the umklapp process will not
occur if the electron and lattice are at equi-
librium at a temperature well below the char-
acteristic temperature, for collisions in which

the electron gains energy will be prevented by
the fact that the lattice waves which can pro-
duce the transitions are not excited, whereas

collisions in which the electron loses energy are
prevented by the fact that Eq. (13) cannot be

satisfied with real values of e. This probably is

the situation in diamond at room temperature
for the available data on specific heat and in-

elastic constants indicate that 0~ is about 1800'K.
On the other hand, umklapp processes will play
a role at room temperature in materials such as
silicon, germanium, and sulfur, for which

0 300'K.

IV. THE INTERACTION POTENTIAL

To begin with, we shall consider the case in

which umklapp processes can be neglected. In

H. Frohli+, Theorieder Metalle Julius Springer, Berlin,
1939).

V~= —R gradV„(r). (17)

The use of (16) and (17) in the form given
implies that we are dealing with a crystal in
which the directions of polarization of the elastic
waves are the same for all atoms and that the
phase relations for the various atoms can be
expressed in terms of a continuous function.
The first of these conditions is always satisfied
for crystals in which all of the atoms are at posi-
tions where a point center of symmetry (or
inversion center) exists. The second condition
also can usually be satisfied in these cases. The
atoms in diamond, silicon, and germanium are
not at positions of inversion symmetry so that
the directions of polarization are usually not the
same for all atoms. We shall see later that the
conditions corresponding to the use of (16) and
(17) can be met for the interesting modes of
vibration even in these cases.

Peterson and Nordheim" have shown that the

' F. Bloch, Zeits. f. Physik 52, 555 (1928); A. Sommer-
feld and H. Bethe, Hoedbuch der Physik, Vol. XXIV 1;
A. H. Wilson, The Theory of Metals (Cambridge Uni-
versity Press, Teddington, Fngland, 1936}."E.L. Peterson and L. W. Nordheim, Phys. Rev. 51,
355 {1937).

lieu of more exact information we shall deter-
mine the interaction potential between elec-
trons and lattice vibrations on the assumption
that the deformable atom hypothesis first intro-
duced by Bloch" for the case of metals is valid.
According to this assumption, the electronic
potential U~ in the displaced lattice is related
to the potential V„ in the normal lattice by the
equation

V&(r+R) = V„(r).

Here r is the coordinate of the electron in the
undeformed lattice and

1 u(e)
R(r) = P P&(e) exp(ie r), (16)

(X)~ ~. & M

in which X is the number of unit cells in the
specimen of crystal under consideration, c,(e) is
the complex amplitude of the mode of vibration
having wave number e and polarization index t,
g&(e) is the polarization ~ector for this mode of
vibration, and M is the mass of the atoms of the
lattice. Corresponding to this assumption, the
perturbing potential satisfies the equation
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hypothesis of deformable atoms is only of semi-
quantitative value in the case of the simple
metals. On the other hand, Bardeen" has found
that the more accurate interaction potential is
very similar to (17) for alkali metals. It is pos-
sible that Nordheim's approximation" of "rigid
atoms" which replaces (15) by the condition

V~(r) = g v(r —[r(P)+R(P)]), (18)

in which v(r) is the potential of one of the atoms
of the lattice, r(p) is the positional coordinate of
the pth atom of the lattice when the crystal is
undeformed and R(p) is the displacement of the
pth atoms, determined from (16) by setting
r=r(p), would be more accurate for the non-
polar insulating atomic substances since the
electron cloud is not as highly polarizable in these
materials as in metals. However, since the two
hypotheses are qualitatively similar, we shall

adopt the first, which is simpler.

V. CALCULATION OF THE COLLISION FREQUENCY

The matrix component of (17) connecting the
electronic states associated with wave numbers
k and k', namely,

Pi, *Pi,R grad V„dr,
J

the coefficient. of u&(0)/(NM)& in (20) may be
reduced to approximately 2iC0/3 where

Since we do not have reliable values of XI„we
shall treat C as an unknown parameter in the
following discussion. The analysis leading to
(23) also shows that only longitudinally polarized
waves are eA'ective in scattering the electron
when K =0. It is to be noted that the coef6cient
of a, (o) in the matrix component associated with
K=O varies linearly with e, so that it becomes
vanishingly small in the limiting case of very long
waves, that is, in the limiting case in which k
coincides with k. This behavior of the matrix
component can be predicted at once from the
fact that grad V„ is an odd function of the
electron coordinates.

When K is not zero, e, as we have seen previ-
ously is very nearly equal to —K, or is close to
the origin in the reduced zone scheme as long
as k corresponds to the wave number for a ther-
mal electron. Thus we are interested in values
of the matrix component for which k and k'
dier by small amounts. In the limiting case in
which Ir and Ir' are equal, the integral in (20)
becomes

in which fi, and Pi,. are the electronic wave
functions, may readily be placed in the form,

~
xi

~
'$i(~) grad V.e *x'dr. (24)

o (e), r x ~x $ (a) gradV. e x'dr, -(20)
(XM) &

in which k, k', e, and K are related by the
equation

This integral will generally not vanish, although
it may do so under conditions of proper sym-
metry. If it does not vanish, the absolute value
of the integral may be written in the form

k' =k+e+K, (21)
(25)

and x~ and yq. are functions having the peri-
odicity of the lattice which are related to i/ii, and

if', by the equations

x sikr

In the case in which K=O, the conventional
treatment of the matrix components shows that

'2 J. Bardeen, Phys. Rev. 52, 688 (1937)."L.VV. Nordheim, Ann. d. Physik 9, 607 {1931).

in which X is the absolute value of K and Dt
is a parameter having the dimensions of energy,
analogous to the parameter C introduced for
the case K=0. We may use (25) for the case in
which k and k' are not equal since the higher
order terms depending on the di6'erence between
ir and k' will be small in comparison with (25),
provided the latter is not zero.

When the integral vanishes for the case K~O
because of the symmetry of the functions ap-
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pearing in the integrand, we may expect the
integral in (24) to depend linearly on e for small
values of this vector when expressed in the re-
duced zone scheme, just as for the case in which
K=O. Ke may treat this case by assuming that
the integral has the absolute value

2 CI
3 (26)

in which C' is a parameter analogous to C and o-

is the absolute value of o. in the reduced zone
scheme.

We shall now calculate the electronic transi-
tions produced by the lattice vibrations. It is
convenient to consider separately the eGects
arising from the acoustical branch, for which

E=O, and from the other branches since only
the acoustical modes mill be efFective in scatter-
ing electrons under the proper circumstances

(1) K=O (acoustical modes) In t.
—his case"

the quantity
~

Vip ~' appearing in the expression
for the transition probability is

8 to 8+d8 relative to k is

2x 2kC'
dP(t, 8) = t — ~~a4(2n(a)+1)

k 9AM~

5(Zi —Zp)
&&
————-p2w sin8d8da (28)

(o(a)

provided the second term on the right-hand side
of (13) is neglected, which is a permissible ap-
proximation for values of p(k) that are suffi-

ciently large. Here p is the density of values
of e in wave number space, namely V/Sm', and
the integration is to be extended over e. Using
the relation

Zi —Zp ——p(k) e(k')—~hpp(a)

h2

(a'+2ka cos8) ahpp(a)
2m*

(a'+2ka cos8), (29)
2m*

4 h n(a)
i
Vi. i'= —C'a'

9 2NMco(cr) u(e) +1
(27)

we find

d(Ei —Ep).
m* 1

dg ———
k' o+k cos8

(3o)

Here the coefficient 4C'a'/9 is the square of the
matrix component of Va/ai(a) connecting the
electronic states associated with k and k' satis-
fying (21), whereas the remainder of (27) is the
square of the matrix component of a&(e) con-
necting the state for which the initial vibra-
tional quantum number is u(e) with those for
which the quantum numbers are n —1 and n+1,
for which the upper and lower values of the
quantity in brackets is to be used, respectively.
Since only the longitudinal waves contribute
non-vanishing matrix components, the subscript
t has been dropped. If the theory of deformable
atoms were accurately valid, C would have the
value (23).

Using Eqs. (7) and (27) we find that the total
difFerential probability for a transition involving
lattice vibrations for which e lies in a range from

"The writer is indebted to J. Bardeen for pointing out
to him that the case of scattering of free electrons in a
semi-conductor by the acoustical modes was treated by
A. H. VA'Ison (The Theory of Metals, p. 222), for a simple
cubic lattice. The results obtained here reduce to Wilson's
when appropriate simplifications are made. It is to be
noted that the parameter C employed by Wilson is -', as
large as that employed here.

Thus the integration over o- may be carried out
very simply because of the presence of the delta-
function. It follows from (29) that the integrand
is finite only when

0.= —2k cos8.

If we replace u(a) by

(31)

in which 8 varies from 90 to 180 and mo is the
density of unit ce11s in the lattice.

It is convenient to replace 8 by the angle x
through which the electron is deflected. The
two angles are related by the equation

whence
cos8 = sin(x/2),

cos8 sin8d8= sinxdx/4.

(34)

(35)

n(a) = kpT/h(o(a) (32)

to take account of the fact that the modes of
vibration with which the electrons react obey
classical statistics, we obtain

8 C~k, Tm*
dP(t, 8) = t —k co—s8 sin8d8, (33)

9x h'c'no M
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It follows that the electron has equal probability
of being scattered into any element of solid
angle, that is, the cross section for scattering is
Independent of lP.

lf we now integrate over all values of 8 or P,
v e obtain for the average collision time r,

is the average velocity. The 6nal expression
for p, is

e ck 3f np
p, =6—~' C2kpT m*2 6

(41s)

which, by the use of (38), may be placed in the
form

36
4 |'&o1'm*

~ ~

9'7r h'c'np ~ 6 e h2kp"0~2 3f 1
P, = Sp-

(6w')& m* C'koT m*'I
(41b)

Since IIlk=m*v, where v is the velocity of the
electron having wave number k, and 1/r=@/g, It is interesting to note at this point that the
where ~ is the mean free path for scattering, it product of the Hall constant R and the electrical
follows that ) is independent of v and satisfies conductivity 0 satisfies the relation
the equation,

e (er')

m*c (cr)
(42a)4 C'kpT m*'

9m k4c'np M
(37)

in the general case in which X depends upon
energy, and reduces toIn other words the conduction electrons satisfy

the following three conditions of the elementary
theory of transport: (1) The energy of the elec-
trons is essentially conserved during collisions,
(2) the scattering is isotropic, and (3) the mean
free path is independent of velocity.

The velocity c may be expressed in terms of
the characteristic temperature 0 of the crystal
with the use of the approximate relation,

e X 3m
Ra = —=—p,

m*c 6 Sc
(42b)

when X is constant. This relation, which is com-
monly used to determine mobilities of semi-
conductors from experimental measurements of
the Hall effect, is only approximately valid when
X is not constant.

According to (41b) the relative mobility of an
electron at a given temperature in two different
substances, distinguished by subscripts a and b,
respectively, for which the only elastic waves
causing collisions are those in the acoustical
branches, is given by the relation

C = (k00/k) (1/(6n'no)&) (38)

In the general case in which it is possible to
define a collision frequency, the mobility p is
given by the equation

2 e (er)
p=

3 m* &oT
(39a)

pO. ."n.' & )C'q '(M. '
(Oa) En') (C.J LMgJ

(41c)
where (er) is the mean value of er(e) averaged
over the distribution. This reduces to" if we assume the effective electron masses are

the same.
It is interesting to compute the value of p,

for diamond with the use of Eq. (41a). We shall
take the density of diamond to be 3.5, take m~

to be the true electronic mass, set T=300'K,
and take the velocity of longitudinal waves to
be 1.75 10' cm/sec. The last quantity is deter-
mined from the equation

8 e X

(39b)

when ) is independent of energy and the dis-
tribution function has the Maxwell-Boltzmann
form. Here

f'koT )~
C=4/ &2™1 (40)

Cl (Cll/po) (43)
'~See for example, F. Sietz, Modern Theory of Solids

{McGraw-Hill Book Company, New York, 1941), p. 517'. &n which c~~ is the elastic constant in conven-
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TABLE I. Evaluation of Inobility at room temperature
rvith use of Eqs. (4lc) and (44), (The mobilities are given
in units of cm~ jvolt-sec. )

tional notation and po is the density of the crystal.
cn is taken to have the value" 1.07 10"dynes/
cm'. Using these values, we obtain

1.46 10' cm/sec.

C' volt/cm
(44)

in which C is expressed in units of ev 8, com-
puted with the use of (40) has the value 1.08 10'
cm/sec. The right-hand side of Eq. (44) should
be multiplied by (m/m")"' if m/m* is not unity.

Given the value of the mobility for diamond,
we can determine the mobility for silicon and
germanium with the use of Eq. (42). The greatest
uncertainty in the numerical evaluation of the
mobilities evidently lies in the determination of
the values of C and of the effective electron
mass. For simplicity we shall assume that m

and m* are equal and that C is given by the
equation

C(ev) =1.7 10-'0 (45)

in which 0" is the characteristic temperature,
expressed in degrees Kelvin. This relationship is
approximately satisfied in the case of the simpler
monovalent metals treated by A. H. Wilson"
and can be employed here at least to determine
orders of magnitude. Table I contains values of
the mobility of electrons at room temperature
derived with the use of Eqs. (42) and (44). The
numerical values of the constants employed in
the calculation are also given.

The observed values of the mobilities given in
Table I are obtained from several sources. ' That
for diamond is a very rough lower limit estimated
by the group at the Bell Laboratories from a study
of the pulses observed in crystal counters employ-
ing diamond. The value for silicon is obtained
by extrapolating to room temperature the mo-
bility observed by the group at the Bell Labora-
tories in fairly pure samples of e-type silicon at

"See for example, R. F. S. Hearmon, Rev. Mod. Phys.
18, 409 (1946).

m 102~ C~ts
Crystal 8(oK) M {cm 3) C(ev) C~ .10 ~ p, (calc.) p(obs. )

Diamond 1800 12 17.6 30.6 936 1.46 156 (» 100)
Silicon 600 28 5.21 10.2 104 0.253 243 300
Germanium 290 72 4.57 4.9 24.0 0.145 605 130

temperatures somewhat above room tempera-
ture. The mobility is found to depend upon
temperature through a factor T & predicted from
(40) in this range. The value for germanium is
obtained in a similar way from measurements
obtained both at the Bell Laboratories and by
Estermann at this laboratory. It is rather sur-
prising that the T & relation predicted from (40)
for low temperatures should be observed at
temperatures as close to the characteristic tem-
perature as is the case in silicon and germanium.
This seems to imply that the electron scattering
arising from terms for which KWO is not very
strong. This point will be discussed again later
in this section.

It may be seen that the agreement between
observed and calculated mobilities given in
Table I is not very good, only the general order
of magnitude being obtained. This is not very
surprising in view of the fact that the relation
(45) is employed to determine C, that the rela-
tive effective electron mass is taken to be unity,
and that the fact that the contribution to the
scattering from modes of vibration for which
KWO has not been separated from the observed
values of the mobility of silicon and germanium.

In passing, it may be noted that the value of
the characteristic temperature of diamond de-
termined from Eq. (38) with the use of the value
of the acoustical velocity obtained from (43),
namely 1.75 10' cm/sec. , is somewhat greater
than the observed value (2890'K instead of
1800') as is usually the case. In deriving u(calc. )
for silicon and germanium it is assumed that the
sonic velocities in silicon and germanium bear
the same relation to the sonic velocity in diamond
that the observed characteristic temperatures of
the first two materials do to the characteristic
temperature of the latter.

(2) KWO (non acousticat mod-es) We shall. —
now consider the contribution to the collision
process from the branches of the vibrational
spectrum other than the acoustical branch in
the case of the non-polar insulators. In the case
of polar insulators, the optical branches are of
principal importance, provided the temperature
is not so low that interaction with the optical
modes is forbidden on purely energetic grounds.

We shall proceed in the following manner:
First, we shall adopt the reduced zone scheme,
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so that ~;(e) is represented by a multivalued.
function of the range of o lying in the 6rst
Brillouin zone for the lattice. In this case the
values of o. of interest for the scattering process
are those lying near the origin of e=0. Second,
we shall assume that or, (o) is a constant for each
of the non-acoustical branches in the vicinity
of e=0. Ke shall assume that only one mode of
vibration is responsible for scattering and drop
the subscript on ru;(o) describing the direction of
polarization, as in the previous case. Since there
will generally be more than one non-acoustical
branch of waves having given polarization if
there are more than two atoms per unit cell,
we should introduce an index to indicate to which
branch a given value of ~ belongs. For conveni-
ence we shall assume that there is only one
non-acoustical branch since the contribution to
scattering from additional branches can be ob-
tained by simple addition of the results derived
for one branch.

We must now consider the transition proba-
bility in two cases, namely, that in which the
absolute value of the integral of (24) has the form

XD (Case I),

and that in which it has the form

-,'C»a (Case I I).

(45a)

(46)

f
X o'8(E~ —Ea) 2~ sin8d8do (I) (47a)

2x 2kC" 1 n
dP(t, 8) =—t P

h 9AM(e n+I

In these two situations, the difkrential transi-
tion probability, analogous to (28) is

2x D' kE' n
dP(t, 8) = t—P

h 2%3f a) n+ 1

Since N is a function of h~/koT, it can be treated
as a constant. The relation between Ej —82 and
the variables describing the electron and the
vibrational waves divers in the case in which the
electron receives energy from the lattice and that
in which it transmits energy (see Eq. (29)). The
relation to be used in the present case is

k2

Eg Eg —— ——(o'+2ko cos8) aha&, (48)
2m

in which the upper sign before the last term is
associated with transitions in which the electron
gains energy, and the lower sign with transitions
in which it loses energy. Similarly, the upper
value in the expression („+») before the inte-
grand is to be used with the upper sign and
conversely. Since there is a delta function in the
integrands appearing in (47a) and (47b), the
integrals contribute to dP only for values of 0.

corresponding to the roots of (48), namely,

k [ cos8—& (cos'8& hra/e)»5 (49)

o = k[—cos8+ (cos'8+ hcu/e)»i. (50)

(2) Etectron loses energy (negotive sigl under

radical) In this case t.here are two positive real
roots provided 8 lies between 90' and 180' and
the value for which cos8= —(h~/e)». Under these
conditions the two roots are

The two roots correspond to the two possible
signs before the radical (not to the two signs
before h&o/e). As previously, e=h'k'/2 *m. Only
the positive, real roots are of interest. A simple
analysis of the situation shows that the roots
are governed by the following rules:

(1) Electron gains energy (positive sign under

radkcal) In this case. there is one positive root
for each value of 8 between zero and 180'. This
root is given by the equation

X o'h(Eq —Eq)2v sin8d8do (I I) (47b) k[—cos8+ (cos'8 —h&o/e)»]. (51)

in which the integration is to be carried out over
the allowed range of o. In both cases ~ is the
constant frequency of the modes of vibration
with which the electron interacts and n, as pre-
viously, is the number of quanta having wave
number o in the branch under consideration.

[—cos8& (cos'8+bee/e)»g'

(cos 8+hN/6)»
(52)

The corresponding values of the integrals ap-
pearing in (47a) and (47b) are 2sm* sin8d8/h'
times the following quantities.

Case I. (a) Electron gains energy,
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(b) Electron loses energy,

—4k cosa.

Case I:
(53) 1 1 D'k'X'/2 m~ m*' k

Case II. (a) Electron gains energy,

[ cos—8+ (cos'8+ k&v/a) &j'
k'

(cos'8 jh&o/e) &

(54)
Case II:

3f h'na

n ( kco) i
X

~

I~—(. (59)
in+1 ( e )

(b) Electron loses energy,

—8k' cos8(2 cos'8 —hso/e).

2 C'2m*i k3

(55) r 27vr L) M knp

It is evident from these expressions that the
angular distribution of scattering is more com-
plex than in the case in which the acoustical
waves are responsible for transitions.

As Frohlich' has pointed out, we may obtain
the collision frequency of interest for the elec-
trical mobility by taking the integral over-all
angles of dP(8, 3)/E times the quantity

(56)

Case II:

m'm ( 4u) '
k41 1&

jp ( ~) (57)

wm 4 ( fgry) 1 ( k(0)
ke-I 1~—

f (
S~5—/.

k' 3( e) ( &)

The upper sign before ka&/e corresponds to the
case in which the electron gains energy and the
lower sign to that in which it loses energy. The
result corresponding to Case I is the same as
that which would have been obtained if (56) had
been replaced by unity, showing that the scat-
tering behaves as if isotropic as far as the average
eBect is concerned.

The final values for the collision frequency are
as follows.

Actually, it is simpler to carry out the integra-
tion over 0 and 8 completely anew, the integra-
tion over 8 being carried out first. We readily
find that the integrals appearing in (46) and (47)
have the following values when (56) is included
and the operations are carried out over both 8

and 0-.

Case I:

n ( ka&$&( keg)
(

1~—) (
8~5—[. (60)

n+1 E e J ( e)
The total collision frequency is obtained by

first adding the frequencies for collisions in
which the electron gains and loses energy and
then combining the result with the expression
(36) for the collisions with acoustical waves. It
is interesting to note that (59) involves k linearly
in the event that k&a/e is so small that the factor
(I +h&o/e) & can be replaced by unity. In this case,
which is not typical of one of the most stable
insulators, the mean free path is independent of
velocity, provided Case I prevails, even when
the non-acoustical vibrations are important. The
mean free path will have a complicated de-
pendence upon velocity in Case II if the term
(60) is not negligible compared with that arising
from the acoustical vibrations.

We shall now compare the ratio of the collision
frequencies (59) and (60) to the frequency (36).

Case I,—In this case the ratio is

9 D' O'X'/2m*
R=——

4 C' kpT

m*c' e t(' k(o) '

~

ia—
~

. (61)
ka) n+1 ( c J

Since D should be of the same order of magni-
tude as C (if it does not vanish) and since
hXc h~ the ratio has the magnitude

kM ( khan) i n

koTL e ) n+1
(62)

This wi11 be small compared with unity only if
7'/kaT is so large that n is very small. Only the
positive sign in (62) will then be of interest
since e is of the same magnitude as kpT if the
electron is in equilibrium with the lattice. In
the case of a material such as diamond for which
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the characteristic temperature is in the vicinity
of 2000'K, kc«/k«T is about 6 at room tempera-
ture. Hence n is approximately 2.5 j.0 ' and R
is a few percent. On the other hand, n should be
near unity for a material such as silicon, ger-
manium, or sulfur. In such a case R mill not be
negligible near room temperature.

Case II. In this case R has the value

1 C" e m~c'
R=——

~cv ~o~

n ( k4«) ~ ( k4«)
8~S—I. (63)

n+i E «)
As in Case I, this will be very small if e is very
small because tu«/k«T is large compared with
unity. On the other hand, it may also be quite
small if n is near unity, for the factor C"m*c'/
C'h~ will be small compared with unity if C is
riot substantially larger than C.

I n any case, the scattering produced by non-

acoustical waves mill be negligible if the tempera-
ture is sufFiciently small that kc«/k«T is large
compared with unity.

In connection with the discussion of Table I,
it was pointed out that the mobilities of rela-
tively pure silicon and germanium seem to obey
the T & power law, corresponding to Eq. (4ia),
at temperatures near their characteristic tem-
peratures. We shall see in the next section that
these materials probably belong to Case I de-
scribed above, so that the expression for the
collision frequency of the conduction electrons
should contain a term of the type (59) in addi-
tion to that arising from the acoustical modes of
vibration. If the previous discussion of the in-
fluence of the non-acoustical modes is correct,
the mobility near the characteristic temperature,
for which k~/'koT should be of the order of unity,
should be approximately half that which would
be observed if only the acoustical modes of vibra-
tion were effective, and the temperature de-
pendence should not be exactly T & because the
factor

1( kc«)& n
—

I
ia—

)

T& ~ ) n+1
in (62) will introduce a more complex depend-
ence. We must conclude either that the foregoing
estimate of R (Eq. (62)) is too large or that the

experiments which seem to support the 1 & be-
havior near the characteristic temperature are
not sufhciently accurate to separate the devia-
tion which actually exists.

VI. IMPLICATIONS OF CRYSTAL SYMMETRY

It is interesting to consider the question of
whether the integral (20) would vanish for dia-
mond. Kimball" has investigated the wave func-
tions for diamond and other crystals, such as
silicon and germanium, having the same struc-
ture, with the use of the cellular approximation.
The lattice contains two atoms per unit cell
which can be sent into one another with use of a
center of symmetry lying at the midpoint of the
line joining the two atoms. The two atoms in
the cell have the point symmetry of a tetra-
hedron and the unit cell may be divided into
two symmetrically equivalent polyhedra, having
tetrahedral symmetry, at whose centers the
atoms are situated. Kimball determined the
electronic wave functions on the assumption
that the portion contained in each polyhedron
could be expressed in terms of a single s-function
and three p-functions. He found that in this
approximation the lowest conduction state pos-
sesses a wave function which has tetrahedral
symmetry about each atom and has opposite
signs in the two polyhedra of a single unit ce11.
Kimball's wave function is a pure s-function
satisfying the equation s =0 at the midpoint of
four faces of the cellular polyhedron equidistant
from the center and possesses an energy that is
unreasonably high. The exact wave function
having this symmetry' would contain spherical
harmonics of higher order than the s-function
and mould undoubtedly have a much lower
energy. In fact, it is easy to show with the use
of group theory that the next pair of spherical
harmonics which would occur are f and g func-
tions having the same angular symmetry as the
functions

xys and x'y'+y's'+s'x' ——',(x4+y4+s4). (64)

The addition of these functions would lower the
the energy of Kimball's solution by replacing the
strong curvature in the radial direction with
curvature in the angular direction.

'~ G. E. Kimball, J. Chem. Phys. 3, 560 (1935)."The reasoning employed here is described in the paper
by D. H. Ewing and the writer, Phys. Rev. 50, 760 (1936).
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In any case, we shall assume that for small
values of R, xj. has tetrahedral symmetry about
each atomic position and that it reverses its
sign in passing from one polyhedron of a given
cell to the next. According to this assumption,
~x&~' possesses the complete symmetry of the
lattice.

Let us now consider the value of the integral
(24) for a unit cell of the lattice. We shall assume
that one atom is at the origin of coordinates and
that the other is at the position r whose com-
ponents are (a/2, a/2, a/2), where 2a is the
length of the edge of the unit cubic cell of the
crystal. In terms of this notation the allowed
values of E are given by the eight vectors,

(w1)

'&~1)
(65)

In the modes of vibration associated with 0 =E,
the two atoms in the unit cell move in opposite
directions. For those values of K for which
K r, is equal to —m/2 or to 3~/2, the displace-
ment of the atoms is expressible in terms of the
function

R= +[(1 i)e' —'+(1+i)e '*'j (66)

evaluated at the positions of the atom. Here A
measures the amplitude of the wave and the
vector g is the direction of polarization of the
atom at the origin. In the four cases in which
K r, is s/2 or —3x/2, the corresponding func-
tion is

)t ~
xg~'grad V e '*'dr+e '*'ag-

1

X)t Ix&I'gradU„ef*'dr, (68)
2

R =+[(1+i)e'*'+ (1—i)e-'*'$. (67)

Equations (66) and (67) can be used to describe
modes of vibration for which e is close to, but
not necessarily equal to, K by replacing K by e.

The integral (24) over the unit cell can be
broken into two integrals over the polyhedral
cells surrounding the two atoms in the unit cell.
If the atom in each cell is chosen to be the center
of coordinates for the corresponding integral, the
sum of the two integrals is

in which the two integrals extend over the two
polyhedra. Now the two polyhedra can be
brought to congruence after the second has been
inverted by reReetion in the point at the origin.
The same inversion will reverse the sign of the
gradient term in the integrand and change the
exponential into its complex conjugate. It fol-
lows that the second term in brackets in (68)
may be transformed to

ai t
~
xg ~' grad V„e '*'dr.

1

(69)

The sign before the integral is determined by the
sign of K r, which is equal to Ws/2. Thus, if
the first integral in (68) is designated by a=a„
+ia;, the second is a* and the expression in paren-
thesis in (68) may be written

(1) the unit operator (1 element),
(2) the three-fold rotations about (111) axes

(8 elements),

(1ai) (a„ma~).

It follows that the integral generally will not
vanish so that diamond is a material belonging
to the first of the two classes described above.
We shall investigate the implications of crystal
symmetry on the value of the integral somewhat
further.

As we shall see below, even in the case in
which x& does not have tetrahedral symmetry
about each atomic position,

~
x~' will contain a

function belonging to the unit irreducible repre-
sentation of the tetrahedral group. Hence, the
conclusion that diamond belongs to the first of
the two classes, for which (68) does not vanish,
is valid under more general conditions than that
in which x& has pure tetrahedral symmetry. We
may conclude, for example, that the holes pro-
duced in the fil1ed band of diamond and in other
crystals having the same lattice symmetry will

also interact with the non-acoustical modes of
vibration in accordance with the first of the two
rules of the previous section.

The point symmetry at the position of an
atom in the diamond lattice is expressible in
terms of a twenty-four element group T&, which
possesses five classes. The five types of element
in the classes are as follows:
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(3) the two-fold rotations about (100) axes
(3 elements),

(4) the rotary reflections through 90' about
(100) axes (6 elements), and

(5) the reRecting planes passing through (100)
axes (6 elements).

The five irreducible representations, which may
be designated by I'~, I'2, I'3, I'4 and I'~ have the
following character system

8C3
1

1
—1

0
0

3C2
1

1

—1

684

1
—1

0
—1

1

6p
1

—1

0

—1

in which the columns designate the classes in the
order given above. It is readily found that the
spherical harmonics decompose in the following
manner: s: F~, P: F4, d: r~+F4, f: Fj+F4+Fli,
g: r~+ra+r~+rq, and that the cross products
of the representations decompose as follows:

r, Xr;=I;,
I'2X I'3= I'a

I'2X I'4= I' s,
I'2X I's = I'4

FsX F4= F4+ra
FsXrs=«+Fs,
F4xr, =r,+r,+r,+r„
I'2X I'2= I"i
I'3X I'3 =2I'y+ I'2,

I 4Xr4 ——I 1+r,+I' +r5,
I's X I's = I'j.+I's+ I'4+ I'g.

Since
~
xk

~

' and V belong to r „whereas R grad
belongs to I'4, it follows that the coefficient of
e"*' in the integrand of (24) can be expanded
in terms of spherical harmonics having the sym-
metry of I'4, of which the first four are of the
type form:

x, ys, x' ——',x(y'+s'), and ys(y'+z' —6x'). (71)

The first real term in the expansion of
exp(zX r) with which any one of these har-
monics can possess a non-vanishing integral is
—(K r)'/2, which, for diamond, may take any
one of the four independent values given by
the expression

(K'/2) (~x~y~z)',

where E is the absolute value of K. Two of these
functions give non-vanishing integrals when
multiplied with xy, a d function belonging to I'4.

The first imaginary term in the expansion of
exp( i—K r) .is t—X r. This will usually give a
non-vanishing integral when multiplied by the
first of the four representatives of l'4 shown in

(71)
It is interesting to observe that D would

vanish if
~
x&

~

' and V„were spherically sym-
metric about the atom in the polyhedron. It
would also vanish if Nordheim's hypothesis of
rigid ions were employed, for the use of this
procedure would be equivalent to replacing the
term exp( —zX r) by unity in the integration
over a single polyhedron. The integrand would
always be a spherical harmonic belonging to the
representation of F4 (if

~ x~ ~' belongs to r~) and
the integral would vanish. These results suggest
that D will probably be small compared with C
in any substance in which the atoms are highly
symmetric or highly undeformable. In such a case
the ratio (59) might be small so that only the
acoustical modes of vibration would scatter elec-
trons at any temperature, as is possibly the case
in silicon and germanium.

VII. COMMENT ON CRYSTAL COUNTERS

The preceding discussion shows that the mo-
bility of electrons in the non-polar insulating
crystals may be of the order of several hundred
cm'/volt-sec. or more even at room temperature.
lt is interesting to consider the implications of
this conclusion in connection with the develop-
ment of crystal counters. In the conventional
arrangements of such counters which are under
consideration at the present time, the crystal
specimen is of the order of 0.1 cm thick in the
direction in which the electric field is applied
and across which the charges produced by the
ionizing radiation move. The applied electric
field ar'e usually somewhat less than 10,000 volts
per cm, although a field of this magnitude or
greater probably could be obtained without seri-
ous difficulty. The time T required for electrons
to traverse the specimen under these conditions
is given by the equation

T=d/pZ=10 '/p sec. , (72)

where d is the crystal thickness, B is the elec-



tric field intensity, and p, is the mobility ex-
pressed in units of cm'/volt-sec. If it is desired
that T be 10 ' sec. at maximum, it is necessary
under the conditions given that p, be at least 100
cm'/volt-sec. Since an energetic charged particle
which is either stopped by the crystal or passes
t.hrough it will produce a suAicient number of
electrons and positive holes to be detected if all
pass to the electrodes, it would appear that any
crystal having suSciently high mobility should
be able to act as a counter.

Actually another important factor will enter
into the problem. The careful studies on the
alkali halide crystals show that the migrating
electrons or holes may be trapped in the interior
of the crystal so that they do not necessarily
reach the electrodes. Actually, a very small
amount of impurity of the kind needed for trap-
ping may su%.ce to cut the ionization pulses to
a negligible value. The experiments on the
trapping eAect of F- and F'-centers in the alkali
halides, that is of halogen ion vacancies and
halogen ion vacancies neutralized by an electron,
show" that the cross section for capture in these
cases is of the order of magnitude of 10 "cm'.

"This result can be obtained from the study of the dis-
tances moved by photoelectrons in the colored alkali
halides before being trapped (see reference 3). It is as-
sumed that the mobility of the conduction electrons is of
the order of 5 mc/ slvt-oseocn the basis of the Hall effect
measurements of J. Evans, Phys. Rev. SV, O'I (1940).

If the concentration of trapping centers is n&

and if their cross section for capture is 0~, the
time T& an electron having velocity v will travel
before being trapped is

Tg 1/n——go gv (73)

In order that this be at least as large as the
10 ' sec. neressary for the electron to travel to
the electrodes under the conditions described in

the previous paragraph, it is necessary that

ng (10'/o gv. (74)

Ke shall take 0~ to have the value 10 "cm' and
v to be 107 cm sec. , in which case we must have

mg &10'5 atoms per cc.

This condition implies a very high degree of
freedom from any kind of contamination which
will provide trapping centers, including lattice
defects such as vacancies or interstitial atoms.
It is not necessary that all types of contamina-
tion provide trapping centers, so that it may
only be necessary in a given case to free the
crystal from certain elements.

The fact that strong pulses have been ob-
served in silver chlorides and diamond by various
investigators indicates that the number of trap-
ping centers was very small in the specimens
employed in this work.


