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The space distribution and magnitude of electronic currents in a rotating molecule with a 'Z

ground state are re-examined. An evaluation of the magnetic field set up by the rotation is
attempted, and the results are used to interpret the width of radiofrequency resonance lines
of some alkali halides.

I. INTRODUCTION

HF. study of radiofrequency spectra of
molecules in a strong magnetic field has

shown that the resonance lines associated with
ns&clear magnetic moments are often quite wide,
in(licating the presence of relatively strong
interactions within the molecule. Jn many cases
the magnitude of the effect has been satisfactorily
explained on the assumption that the nucleus
possesses a quadrupole moment. ' This explana-
tion, however, iIoes not apply to the resonance
associated with the F"nucleus in alkali Huorides

(4000 cycles gauss sec.), as thc nucleus has

spin —, anil cannot have a quadrupole moment.
The widths at half-value of the resonance line

are given in the second column of Table I2. The
remaining columns in the table will be explained
later. In two out of the three molecules studied
so far the width was felt to be surprisingly large,
considering that it could only be due to mag-
netic interactions. An admittedly somewhat
naive evaluation of the magnitude of the inter-
actions leads one to expect much smaller widths
than found, see below. The problem, therefore,
seemed to deserve further consideration.

The measurements are performed in a strong
magnetic held, so that both nuclear spins in the
molecule, as well as the molecular rotation, are
quantized in the direction of the field; in the
transitions studieil herc the alkali nucleus does
not HiIi over, sn that only the two following
interactions are of real importance: (a) inter-
action between the magnetic moments of the
two nuclei, and (b), interaction between the

H. T. Feld and KV. I":.Lamb, Phys. Rev. 67, 15 |', 1944);
4V. A. Nierenberg, N, F. Ramsey, and S. B. Brody, Phys.
Rev. 70, 773 {1946).' I am indebted to Drs. Rabi, Ramsey, and i4ierenberg
for communicating to me these as yet unpublished data.

moment of the F" nucleus anal the molecular
rotation. interaction (a), however, is much too
small to account for the eA'ects observed and
will be neglected. We are left with (b). The
broadening of the line is then due to the fact
that the rotation of the molecule causes a
magnetic field at the nucleus, which is propor-
tional to the component mJ of the rotational
momentum along the axis of quantization. Hence
molecules with different mg's will have diferent
frequencies, the shift being

5v =4000II„my,

where II„ is the rotational magnetic held per
unit rotational quantum number.

A.s the observed shape of the resonance line
seems to fit the statistical distribution of m~
values (that follows from Boltzmann's law), one
may confidently use the width at half-value of
the line to compute the "experimental" value of
II,. A simple statistical consideration shows that
one-half of the molecules must have an ~mr~
smaller than 0.674(kT/'28)i. This is listed as
mr(-,') in the table. B is the rotational constant
of the molecule h'/2I. Its value is not known
from direct spectroscopic data it is known,
however, for other alkali halides, and it is found
that the internuclear distance in the molecule is
from 0.1 to 0.3A. smaller than the sum of the
ionic radii. The internuclear distances Iisted in
the table are derived from this rule, the uncer-
tainty being of the order ~0.1A„which is quite
accurate for our purpose. Inserting the va1ue of
mr(l) in Eq. (1) and comparing the shift with
the half-width of the line, the values of H, listed
in the table have been obtained.

These values are remarkable both as regards

' For CsF see, however, H. K. Hughes, Phys. Rev. 70,
570 (1946); 72, 614 {1947).
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Mole-
cule

Width of Inter-
resonance nuclear 8

line distance
{Mc/sec. ) r (A) (10 ~oerg)(cm ~) »J{k)

Hr
{gauss)

LiF 0.5 1.8 2.0 1.0
XaF 0.08 2.1 0.73 0.37
CsF 0.5 2.6 0.3 0.15

13.1
21.8
34

+4.8
+0.46
+1.85

TxsI.E I. Magnitude of the magnetic field at the nucleus
caused by molecular rotation computed from the width of
the resonance line.

It wi11 also appear from the following discus-
sion that the distribution of the currents induced
by the rotation within the molecule is, in general,
quite diferent fram the distribution correspond-
ing ta a rigid rotation. In the next section the
general formulae for these currents will be
developed, and later various models will be
examined.

the magnitude and the trend with increasing
mass of the alkali. A naive estimate of the
magnitude of H„could be made on the assump-
tion that the magnetic field is simply caused by
the rotation of the alkali ion relative to the F
nucleus. One should have H, =28e/her, since
28/h is the angular velocity of the rotation per
unit rotational quantum number. For LiF one
finds H, =0.33 gauss, a value 14 times smaller
than observed. In CsF the discrepancy is by a
factor 50. As the mass of the alkali is varied,
one might expect II„ to vary roughly propor-
tionally to the angular velocity, i.e. , to B.
Instead, H„drops to a very low value for NaF
and rises again to a high value for CsF.

Another naive way of estimating H„consists
in the assumption that the electron cloud rotates
rigidly with the molecule. The field estimated in
this way' is indeed of the order of magnitude
required by experiment. Unfortunately, the as-
sumption of a rigid rotation of the electron
cloud is wholly unjustified. Because of the slip
phenomenon that was first observed and under-
stood in the case of the H2 molecule, ' a rotation
of the spherically symmetrical shells of the F
ion can be induced only insofar as these shells
are polarized by the neighboring ion; we shall
see in Section V that the rotation of the 15 and
2s shells is quite negligible, and even the 2p
shell can only yield a very small field.

' The main contribution comes from the electron shells
of the F ion itself. In the evaluation one may assume
(see Section II) that the rotation takes place around the F
nucleus. A spherically symmetrical shell containing s
electrons rotating with an angular velocity 28/k causes a
field at the center: H, = (4se8/3')(1/r). For the 2P shell
of F, a=6, and the average reciprocal distance 1/r is
about 2.10' cm '. The contribution of the 2p shell alone
is 4.88 with 8 in cm ', or about the field observed in LiF.
In CsF one ought to assume a partial rotation also of the
inner 1s and 2s shells.' R. Frisch and 0. Stern, Zeits. f. Physik 85, 4 (1933);
G. C. Wick, Zeits. f. Physik 85, 25 (1933} and Nuovo
Cimento 10, 118 (1933); A. F. Ramsey, Phys. Rev. 58,
226 (1940).

II. GENERAL FORMULAE

For simplicity, we shall treat the rotation of
the molecule classically. We consider a system
of axes rigidly connected to the molecule, the s
axis being the line that joins the nuclei. We
assume that the rotation takes place around the
x axis. One can then write, first of all, the time-
dependent Schrodinger equation for the elec-
trons, referred to non-rotating axes (one must
use the time-dependent equation because the
potential is time dependent). Assuming a solution
that is stationary with respect to the rotating
axes, and transforming the equation to these
axes, one Finds:

EQ =HO/ a)hL p, —

where Ho is the Hamiltonian, such as it would
be if the system were not rotating. The perturba-
tion term caused by the rotation contains au, the
angular velocity, and the x component of the
total orbital momentum of the electrons: kI., '
Ke may write: kau=2BJ, where J is the rota-
tional quantum number. We see, therefore, that
all first-order effects caused by the rotation wi11

be proportional to J.We shall henceforth refer a11

such eA'ects to unit rotational quantum number.
A. simple perturbation calculation shows that

the electronic current j induced by the rotation is

where I stands for 2, and jo„ is a matrix
element of the unperturbed current density, for
example, in the case of one electron only: jo„
= (kh/2m) (&0* grad/„—P„grad&0*l. Moreover,
Eo is the energy of the electronic ground state of

6We neglect the interaction of the rotation with the
electronic spins. This is permissible in light molecules in a
singlet state. Inclusion of that interaction would lead to
only slightly more complicated formulae, while leaving
the Inain conclusions unchanged.
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the molecule, and E is the energy of an excited
state. Only II-states contribute to the sum in (3)
if the ground state is of the Z type. From Eq.
(3) it is found that the magnetic moment caused

by the rotation, see also reference 5, is

,&I= —4& 2' (~ I 0„I'-'/(F-„—&(i)
n

Bohr magnetons. (4)

It may be noticed that this moment has the
sign that one would expect from a rigid rotation
of the electron cloud together with the nuclei;
the magnitude, however, may be entirely differ-

ent, as v e know from the case of the molecule H2.
From Eq. (3) it is also possible to derive an

expression for the average magnetic field H„at
any point within the molecule. If r is the radius
vector from the field point to an unspecified
integration point, and setting

V„,„=r, "t rXj~„drj-r',

we have

jI„=28 Q' IHO I 0+1 o H 0} (5)
74

Let us assume for a moment that the point at
which we want the field is on the rotation axis;
then the integral that yields Ho„ is seen to be
the same that yields Lo„but for the presence of
an additional factor r '. The value of (5) is then
of the order of (4) divided by the cube of a
distance, which is an average distance of the
electrons from the point under question. The
value of the field found by Rabi and collaborators
is in accord with this evaluation in the case of
the hydrogen molecule, but we shall see that the
evaluation of that average distance may be quite
critical.

Actually, the molecule rotates about a point
which does not coincide with the F nucleus, but
it can be shown that this is immaterial. In fact,
the difference between the perturbation operators
corresponding to two diR'erent rotation axes
parallel to one another, is seen to be the operator
corresponding to a uniform translation of the
molecule; the magnetic field produced by this
translation at a given point is related by a
Lorentz transformation to the average electric
field at the same point when the molecule is at

rest, Now precisely at the position of a nucleus
the average electric field caused by the remaining
particles is zero, and the magnetic field caused
by a uniform translation is also zero, as one
should indeed expect.

One further remark is necessary before we
proceed. If the field (5) is multiplied into the
magnetic moment of the nucleus, we obtain the
perturbation of the energy levels that is caused
by the interaction between rotation and the
magnetic moment. This formula could also be
arrived at from an analogous formula derived
by Hebb' for the interaction between the rotation
and the electronic spin when this is not zero.
This incidentally shows that the p-term in
Hebb's paper is exactly equivalent to the mag-
netic coupling between the spin of the molecule
and the magnetic field set up by the molecular
rotation considered by Kramers, ' and this ex-
plains why the two computations give formulae
of the same structure.

III. ORDERS OF MAGMTUDE

It is rather dif6cult to estimate the sums in

Eqs. (4) and (5). The di%culty is best illustrated
by the fact, to be discussed later, that also very
high excited states may give a strong contribu-
tion to the sums. On the other hand, it is also
clear that owing to the denominator 2„—Eo the
lowest excited states will be quite important.
One can, however, proceed a little farther on
the assumption that the various electron shells
in the two ions contribute independently to the
sums. The most appropriate approximation may
then be applied to each shell. For the outer
shells we may replace i» the sums the denomi-
nator I' —Eo by a suitable average value, which
will not be much larger than the excitation
energy of the lowest II-states. The spectroscopic
evidence indicates' that the energy curves of
these states are practically horizontal so that the
minimum value of E„—Eo is of the order of the
dissociation energy D of the molecule, or about
(1 —n ')e%, where n is of the order of 8 or 9.
Approximate values of D for the three molecules,
LiF, NaF, CsF are D = 7 ev, 6 ev, and 5 ev,

' M. H. Hebb, Phys. Rev. 49, 610 {1936),see especially
Eq. {12}.' Kramers, Zeits. f. Physik 53, 422 {1929}.

9 See R. S. Mulliken, Phys. Rev. 50, 1017 {1936}and
51, 310 {1936).
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respectively. From the structure of Hp„we may
expect it to be of the order of the magnetic held
at the nucleus caused by a 2p electron, when I.p„
is of order unity, and proportionately smaller if
I.p„ is sma11. The field caused by a 2p electron
in fIuorine is of the order of 6. j.o' gauss. " Col-
lecting all these factors together, and noticing
that there are two terms in Eq. (5) that are
equivalent, we get for the contribution of the
outer shells the evaluation:

Ii„-4(B!D)P i L„„i'-'X 6 10'.
= 2.4x 106(BiD) (I.,'-') oo. (6)

It will now be noticed at once that the values
of (L,2)oo that will make the field (6) equal to
the experimentally observed field in Table I are
fairly low (0.11, 0.03, and 0.2, respectively) and
should not be very hard to explain on almost
any model. But it must be pointed out that a
really crucial assumption about the space distri-
bution of the current Jp has been made in

estimating Hp„ from Ip„." Before we examine
these points in more detail, let us settle a minor
question.

IV. EFFECT OF THE INNER SHELLS

Some simple remarks will clarify the discussion
of the inner shells. In the isolated ion these
shells have spherical symmetry; because of the
strong binding, the inner shel1s probably preserve
a high degree of symmetry even in the molecule.
Let us first consider a spherically symmetrical
shell of the F ion; the operator I., of Eq. (3)
applied to the wave function of this shell yields
zero, hence there is no perturbation, the slip is
100 percent. This result is trivial, as it is clear
that a rotation of the shell will take place only
as a consequence of the asymmetrical perturba-
tion of the shell caused by the neighboring ion.
Let us now consider a shell in the alkali ion;
taking into account the fact that the rotation is
assumed to take place with the F ion as a center

"This being an average over the I'~ and the P3ig states
estimated from the fine structure of the ground state of
the F atoIn.

"Namely, in the current distribution for a p electron,
the angular velocity varies as the inverse square of the
distance from the rotation axis. This type of current
distribution yields a much stronger field at the center
than a rigid rotation, the resultant magnetic moment
being the same.

(and that consequently I., is referred to this
point) it is again easy to see that the shell does
not rotate about its own center, but is, of course,
afFected by a translational motion with a speed
equal to that of the alkali nucleus. This type of
velocity distribution in the shell will set up a
magnetic field which outside the shell will be
equivalent to the field one would obtain if the
charge of the shell were concentrated at its
center. We thus see that the main effect of the
inner shells of the alkali ion will be to screen a
large fraction of the magnetic held produced by
the motion of the alkali nucleus. The value of
this field is

II,-~ = 2ZeB/'her

for unit I (Z is nuclear charge of alka, li). 1o
be consistent we have, of course, assumed that
the rotation takes place about the F nucleus.
The field (7) should of course be added to (5)
to get the complete field. It is, however, rather
smail compared to the observed H, in LiF; in
CsF, with Z = 55, H„„=1.9 gauss, which is nearly
equal to the field observed. As soon as a large
fraction of it is screened by the inner shells
it will be negligible. This shows that we may
simply omit the field (7) if at the same time we
omit in the sum (5) the terms corresponding to
the excitation of the inner shells of the alkali.
At the same time this remark substantiates a
previous statement, namely, that in the sum (5)
the contribution from very high electronic levels
is far from small.

V. ROTATIONAL PROPERTIES OF A FE~
SIMPLE MODELS

In Section I II we found that the experimental
data could be explained by making some not too
unreasonable assumptions about the order of
magnitude of certain matrix elements. Our
knowledge of the wave functions and states of
the molecule is not, of course, sufficient to
permit a real test of these assumptions. But a
closer examination of a few strongly schematized
models may perhaps contribute to a better
understanding of the phenomenon. Although all
the calculations may be based on the general
formulae (3), (4), (5), the following remark may
be useful. Since the unperturbed non-relativistic
Hamiltonian Hp is real and I., is imaginary,



the unperturbed wave function u for the
ground state may be assumed to be real, and
the perturbed wave function, neglecting second-
or«Ier terms in. u=28//k, will be of the form:
u+mv, w/here v is also a real function. From
this it follows that the electronic density distri-
bution relative to the nuclei is unaAected by the
rotation, again neglecting second-order terms.
Therefor«;, the time derivative of the electronic
&lensity, imp, /rtt, at a space fixed -point will be the
same as for a rigidly rotating electron cloud:
8p/ Bt = —&or) p /88, 8 being the azimuth about the
rotation axis. The electronic current induced by
the rotation must hence satisfy the continuity
eq Uatlon

divj = &vip/86 =div(p~ X r),

fronl which it «Ioes not follow, however, that j
coinci«les with the current paaXr corresponding
to a rigid rotation. This may be seen most
simply for a one-electron system. One has then,
witli iver= u+'Li&iv,

j = (i he/2m) Ig* grad& —P grad/*}
= (28/m) p grad(v/u), (9)

since p= —eu-". For the ground state of a one-
particle system u has no nodes, so that v/u is
regular everywhere. Equation (9) then shoxvs

that the current is obtained by impressing on
the density p a velocity (28/m) grad(v/u), i.e. ,

an irrotational velocity field This co.ndition to-
gether with (8) determines j completely and may
be used instead of Eq. (3). The velocity field for
rigid rotation ~&r is not, of course, irrotational:
«url(~ )(r) = 2~. The actual field may be regarded
as the superposition of 3 rigid rotation plus a
velocity ficld w such that: div. per =0, and curlw
= —2co. As tke circulation of this field is contrary
to the rotation, it is clear that it mi// /ead in general
to a lovvering of tlie magnetic moment.

An especially simple example is afforded by a
one-dimensional model. An electron is con-
strained to move on a circle under the action of
a potential V(0 —i)0), 8 being the azimuth of the
particle and 6o the azimuth of a massive particle
symbolizing the nuclei in the actual case of a
molecule. If the heavy particle rotates with an
angular velocity cv, the average rotation of the
light par ticle may be computed as follows.
Equations (8) now takes the form: Bj/86

=s&Bp/Bij, or j=cop —jo. The additive constant
may be determined from condition (9) or

j= (28/m) p(B/88) (v/u), remembering that v/u

must be a periodic function of 8. This gives

j 0fd6!'p = 47rB/li = 2irw, or

j= Mp j{)= Mp (d,/p

This shows that on the current there is super-
imposed a constant slip term representing a
current contrary to the rotation. If the potential
V(8 —i10) is weak, so that p is nearly constant on
the circle, jo=cop, the rigid rotation, therefore,
is completely cancelled by the additive term;
the slip is almost 100 percent. On the other
hand, if the potential is very strong so that p is

very unevenly distributed, jo is much smaller
than the average of cop, and the slip is almost
negligible. This example simply illustrates the
need for an asymmetry in the electron clou«i in

order to have an induced rotational moment.
In the actual physical case, a certain amount

of asy~mmetry may be produced in the shells of
the F ion by the fieM of the neighboring alkali
ion. It is essential to ascertain not only the
average amount of rotation, or the average
magnetic moment induced in each shell, but
also the actual distribution of the rotational
currents; because of the r ' factor, the field II,
depends quite strongly on the distribution (com-
pare reference 11).

In an admittedly rough way, the electric field
of the neighboring ion may be replaced by the
Coulomb field of a point charge +e at the center
of the alkali. Considering that the distance r
between the nuclei is fairly large, we may develop
the potential

e!8= e/r+ez r-"+e(2z"- x-' q&' )/2r" + . (1—1)—-
and consider the polarization of the F ion by
the various terms. For a simple evaluation we
have used a crude model in which the electrons
are treated as isotropically bound oscillators,
with a suitable frequency for each shell. For the
2p shell of the F ion, a value of the frequency
cv =4.10" or &A = 26 ev may be estimated from
the polarizability n=Ze-/mcus', Z being now the
number of electrons in the shell. The polariza-
bility is about 10 "cm'. A lower limit for her is
certainly S ev.

NoN' consider first the second term in (11),
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representing a constant field S=e/r'. The eEect
of this is merely to shift the center of a shell
with respect to the F nucleus by a small amount
uh/Ze. The shell remains spherically symmetri-
cal around the new center. When the system
rotates about the F nucleus, the ensuing motion
of the shell will be of the same type as that
described in Section IV for the inner shells of
the alkali. It is quite easy to compute the mag-
netic moment and field. The magnetic moment
is, rather obviously, the same as one would find
in a purely classical treatment of the elastically
bound electrons:

M = —&o(a8)'/2Zcc = ~(Ze/2c) (e8/m(u')' (12.)

Tllis gives for the outer shell (2s+ 2p) in the
case of LiF, a value between 0.001 and 0.6
nuclear magneton as co is varied between the
limits indicated above. " The magnetic field
generated at the F nucleus depends on the charge
distribution in the shell. For a shell consisting
of s electrons, the held is obtained on multiplying
the moment (12) by (8/3+s)(mrs/h)u'. The net
result is a 6eld proportional to co +', so that the
contribution of the inner shells is negligible corn

pared to that of the outer shells, as we stated
before. On the other hand, it is found that for a
2p shell the field at the center is much weaker
than for 2s electrons, because of the lower
density at the center. Assuming for an optimistic
evaluation the formula for s electrons and
applying it also to the 2p electrons, the ensuing
field is still uncomfortably small. It may be
pushed up to 2.5 gauss in LiF„or one-half the
experimental value, by assuming for ~ the lower
limit indicated above, but this is already an
extreme assumption; since we are dealing with
the perturbation caused by a homogeneous Field,

the higher value of cu indicated by the polariza-
bility should be much nearer to the truth.

Considering now the third term in Eq. (11),
we may have the advantage that for this type

'~ It may be pointed out that this result is not really
dependent on the special assumption of elastically bound
electrons. One may arrive at a formula perfectly similar
to Eq. (12), ~ith the sole difFerence that kco is replaced by
an average excitation energy of the electrons, if one
replaces in Eq. (4) the energy di6'erence in the denominator
by an average value, thus expressing the magnetic moment
in a form similar to Eq. {6).The average value of I. ' for
the shell, when it is polarized by the homogeneous field,
may be evaluated by perturbation theory, again intro-
during a suitable average value for the excitation energy.

of perturbation the average excitation energy
may be closer to the lower limit of 5 ev. On the
other hand, the result wi11 be smaller by a factor
(ro/r)', ro being an average radius of the F ion.
This is confirmed by the detailed computation
in the case of the elastically bound electrons.
The e8'ect of the perturbation is to make the
frequency co& in the direction of the line joining
the nuclei lower than the frequency corn in a
perpendicular direction. VA do not give the
details of the calculation, which is quite ele-
mentary, as all the matrix elements needed for
Eqs. (3) and (4) are known. For s electrons the
result is quite simple; the stream lines instead of
being circles, are equilateral hyperbolae y' —s'
=const. The magnetic moment is [(coi—cubi)/

(idi+aui)g' times the moment for rigid rotation.
This factor turns out to be 0.3. The Field at the
center is only 0.12 of the held for rigid rotation,
assuming an optimistic value ~=10".All these
data refer to LiF; in CsF the disagreement with
experiment is stronger, because of the larger
internuclear distance. Ke have also examined
the case of p electrons; the current distribution
is then so unfavorable that the Field in the center
becomes quite negligible.

The conclusion to be drawn from a11 this is
that the polarized-ion model does not give a very
satisfactory representation of the facts, although
by some stretching it can be made to yield
fields that are not much sma11er than those
observed.

It may be pointed out that the models we
have considered so far do not clearly exhibit one
feature that may be of importance. Let us First
consider the extreme case of a molecule with a
very low excited II-state, connected to the 2
ground state by a strong J„o matrix element.
This will obviously make the induced momen-
tum, Eq. (4), very strong. Physically, this
means that the molecule has a nearly free
angular momentum that tends to set itself
parallel to the rotation axis. Now, although the
alkali halides certainly do not approach this
extreme case, it is clear that the kind of gyro-
scope-like distortion of the electronic motion
we have just described will be present to a
certain extent. In particular it may be noticed"

"H. M. Foley, in the press. I wish to thank Dr. Foley
for allowing me to see his manuscript before publication.
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that the partially non-ionic character of the
ground state will endow the molecule with a
small component of orbital angular momentum
precessing about the internuclear axis (this
momentum being due to the hole in the 2p shell

of the F atom, when it is in the neutral state).
What is more important, it is not dificult to see
that the currents induced by the rotation under
these circumstances have just the type of space
distributi'on that is most favorable to a strong
field in the center, "so that the assumption made
at the end of Section III about the connection
between I.„o and H„o is in this case well justihed.

It seems, therefore, that this model may give a
satisfactory account of the data.

I wish to thank Dr. Rabi for attracting my
attention to the large width of the resonance
lines in LiF, CsF. Dr. Van Vleck kindly made
available to me an early evaluation he had made
independently by means of Hebb's formulae
(unpublished). I am deeply indebted especially
to Dr. Teller for his friendly interest and much
helpful advice.

This work was partly supported under Con-
tract N6-ori-83 with the 0%ce of Naval Re-
search.
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Note on the Dirac Character Operators
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Institute for Advanced Study, Princeton, ¹mJersey

(Received July 7, 1947)

The Dirac character operators are evaluated for the classes of the symmetric group con-
sisting of the triad, double interchange, tetrad, and pentad, and the corresponding group-
theoretical primitive characters are listed for comparison. It is also shown that the evaluation
of these and similar character operators is all that is required for the solution of the standard
molecular problems in the spirit of Dirac's original program which avoids appeal to formal
group theory.

I. INTRODUCTION

OME years ago Dirac' established the re-
markable exchange-spin identity

P = —-'(1+v "tt)

which expresses the simple interchanges of elec-
tron orbits in terms of the associated vector-spin
operators. In the discussion of the classihcation
of multiplets he introduced the character (class)
&per atoT'8

~c class

dehned as the average of a11 similar permuta-
tions, and showed that the almost exclusive states
are characterized by the diferent sets of eigen-
values of these operators. These operators com-
mute with all permutations so that in an irre-

'Cf. P. A. M. Dirac, Quantum Mechanics (Clarendon
Press, Oxforcl, 1935}.

ducible representation of the symmetric group
their matrices are scalar (Schur's lemma) s and it
follows that the eigenvalues of the g's are simply
the corresponding primitive group characters
divided by the dimension of the representation
VM. ,

x [2" n "]= [2 "- n""]l[I],
where (2 '. e I is the usual group exponent
notation (omitting unary cycles) for the parti-
tion' of n defining the class of permutations, and
the square brackets indicate the associated primi-
tive characters; [I]being that of the unit class.
From the result (1) and the expression

Q (n,"~;)=-', [48(8+1)—3n]=is (4)

' Cf. F. D. Murnaghan, Theoty of Group Representations
(The Johns Hopkins University Press, Baltimore, 193S}.' This may be easily seen by operating on a degenerate
set of eigenstates (symbolic ) )'s) with the g's and taking
the spur, the degree of degeneracy being, of course, the
dimension of the representation.

%1+20(~+ 'nCLrs —n,


