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Note on the Millie Problem for a Sphere
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A formal solution to the Milne problem for the sphere is presented which exhibits the shadow
of the sphere and the corresponding discontinuity in the neutron distribution function. Two
limiting cases leading to the Milne problem for the plane are briefly discussed.

STATEMENT OF THE PROBLEM

A N in6nite non-capturing medium which
scatters neutrons isotropically without

changing their velocity surrounds a sphere which
completely absorbs all incident aeutrons. A cur-
rent density 1/r' in the direction —r is supposed
to exist in the infinite medium. The problem is
to determine the neutron distribution function
in the medium.

The transport equation for the distribution
function is:

W(r, ~) (1-~') W(r ~)+ +4(», ~)
r Bp,

~+1
0(r, I')dl" f(r) ——(1).

1-

The center of the sphere is taken as the coordi-
nate origin and p is the cosine of the angle
between the direction of motion of the neutron
and the radius vector r. P(r, p)dp is the number
of neutrons per unit volume at r with direction
cosine between p, and p, +dp. 2f(r) is the neutron
density at r. The neutron mean free path is the
unit of length.

The current density

j(r) = —
I y(r, p)up,

The statement of the problem given here
follows that of Marshak. ' An exact solution
appears to be dif6cult and for practical reasons
approximate solutions have been obtained. ' One
would expect to see the shadow of the sphere
and, as a result, a discontinuity in the neutron
distribution function. The solutions previously
given do not show this e8ect, and it is our pur-
pose to present a formal solution which demon-
strates the shadow and discontinuity.

THE FORMAL SOLUTION

Our method shall consist of the reduction of
the tra, nsport Eq. (1) to a homogeneous integral
equation for the neutron density. This is the
usual treatment, for example, of the Milne
problem for the plane.

If it is supposed that f(r) is a known function,
Eq. (1) is a first-order partial differential equa-
tion for P. A formal solution for f in terms of
f(r) can be obtained which exactly fulfills the
boundary condition. This procedure demon-
strates the discontinuity in P. Substitution of
this P in the definition of f(r) leads to a homo-
geneous integral equation for f(r). The solution
of the integral equation, normalized by the
condition j(r) = 1/r~, yields the complete solution
of the problem.

Supposing that f(r) is known, we have for the
subsidiary equations:

«II =«~/(1 ~') =4/( 0+f(r)) —(3)and on integrating Eq. (1) over p it is seen that
4~r'j(r) is a constant. This constant is taken as
4s so that j(r) =1/r'.

A solution of Eq. (1) is to be found such that
f(r, p) is finite everywhere in the medium and
satisfies the boundary condition for a black
sphere,

Integrating the relation between r and p gives
r(1 —p')&=c. The parameter c has the range
0&c(~. For c fixed, we require c~&r& ~ in
order that (p( ~&i.

We also have the relation

A/«= (/~1)4+(1—/~)f(r)(2)iP(a, p) =Q for 0 &p ~& 1,

where e is the radius of the sphere.
' R. E. Marshak, Phys. Rev. 71, 443 (1947). References

to previous work are given in this paper,
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Expressing p, in terms of r and c, and holding c
6xed, we 6nd on integrating that

r

4(», ~) expl ~(»' —c')'j~ dyyf(y)(y' "—)-'

Xexp[~(y' —c')'j = II'~(c)

The signs ~ refer to the sign of p, as we shall

always take the positive square root.
The characteristics c=constant are sketched in

Fig. 1. We can now discuss the determination
of

-~~&~&0

In this region p= —(r' —c) /1r. Let us denote
the distribution function in this region by
P-(r, p). Then, from (4),

0 (» ~) exp[ —(»' —c')'3+~ ~yyf(y)(y" c') '—
Xexp[ —(y"- —c')1j =h (c). (5)

Let the point (r, p) move to inhnity along
c=consta, nt. As r +~, p~-—1. Since f (~, —1)
must be 6nite,

In this region y = + (r' —c')&/r. We shall denote
the distribution function in this region by
P+(r, p). Then, from (4),

0+(r, ~) expL+(»' —c')'3 — dyyf(y) (y' c')—'

Xexp[+(y' —c')&] =0+(c). (9)

We see from Fig. 1 that in this region the
sub-regions defined by c~a must be considered
separately. When c&a, the characteristics do
not cut the line r=u; whereas, when c&e the
curves cut the line r=c and, therefore, allow
the introduction of the boundary condition (2).

Sub-Region c&c

Let us denote the distribution function in this
sub-region by f+(r, p; )).The distribution func-
tion must be continuous across the line p, =0
when r&a, i.e., P+(», 0+; &) =P (r, 0 ). This
condition enables f+(», p; )) to be determined.

Holding c 6xed and letting r~r, then @~0~.
From (9),

C

" dyyf(y)(y' —c') 'exp[ —(y' —c')')=I (c) (6)

Consequently,

k (». u) =exp[+(r' —c')'j ~ dyyf(y)(y' —c') '

Xexp[+(y' —c')&j=k (c; )). (10)

Now, using the continuity condition and (8),
we have

Xexp [ (y2 c2)k$ (7) P+(r, g; & ) =exp[ —(r' —c')'j
If we hold c 6xed and let r—+c, then p~0—.Thus,

P (c, 0 ) =~" dyyf(y) (y' c') '—
Xexp[ —(y' —c')&j. (8)

x dyyf(y) (y' c') exp—L —(-y' —c ) ]

+exp[ —("—c2)"j~ dyyf(y)(y' c') '—
c:

Xexp[+ (y"- —c') &]. (l l )

Sub-Region c & a

The distribution function is denoted by
P+(r, p, ; (). Since the curves for c(a cut the
line r=a, set r=a in (9). This yields

p+(a, p, () exp[+(a' —c')1]

~yyf(y) (y' c') ' exp[+ (y—' —c')'j

Fio. f. The ch@rgct.@rjsgcs r(i-p, ')&=a for 0&c(.~. =I+(c () (12)
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p, and c are connected by

p = (a' —c')&/a, 0 &c&a

Using the boundary condition (2), P+(a, p; &)
=0, we find k+(c; &) and, consequently,

p+(», i; &) = expL —(r' —c')» J

X " dwarf(r)(y' c)'—'expL+(v' —c')'J. (14)
4

The boundary condition (2) is now exactly
fulfilled and f(», p) is defined in the region
u&r& ~, ~y~ &~1 in terms of the function f(»)
by Eqs. (7), (11), and (14). f is continuous
across @=0 when r)a. But we note that P is
not continuous across p, =0 when 0 &r &a, and
f+(», a; &) is negative when r&a. Although the
region r &0, has no physical sense in that it is the
inside of the black sphere, yet P is mathemati-
cally well defined in terms of f(r)

We also see that the point p=0, r =a (c=a) is
a singular point of P. The function P is essentially
indeterminate at this point and this lack of
determination is carried along the curve c=e,
when 0&p&1. Equations (11) and (14) immedi-
ately show that

FIG. 2. The geometrical significance of
p, =cos8, = {r'—a')&/r.

Integral Equation for f(r)

The definition of f(r) is given in (1). On
substituting the P given by (7), (11), and (14)
into this de6nition we are led, after some manipu-
lation, to the following equation for f(r) when
a&r& 00.

where'

The function f(») is normalized by the require-
ment that

~+1

~4(», i )d~ =1/r".

s—=LimLy+(», „;)) y+(r, p—., &)]
C~C

=~(~) expL —(»' —a')'j.
X)ISCUSSION

This completes the formal solution of the prob-
lem for the range of the variables 0,&r&~,

(15)

+( ) = " dyyf(r)(r' ') ' pL——(r' —')'3.

When c=c, the relation between y and r is

~—=~.= (»' —a')'/r. (16)

The geometrical significance of relation (16) is
shown in Fig. 2.

From the point at a distance r from the center
of the sphere, the tangent to the sphere is drawn.
Then, of course, p„=cose, = (r' —a') &/r. The
arrow in Fig. 2 indicates the neutron direction
of motion. The critical value of 8, 8„, de6nes the
shadow of the sphere. The shadow at the point
r is within the cone of apex angle 8,. With
respect to Fig. 1, the shadow region, for the
various r, is the region covered by the curves for
which c&a (0&p&1), and it is these curves
which cut the line r =0,.

An exact solution of the integral equation (17)
is difficult to obtain. There are two limiting
cases of physical interest, however, which lead
to the same soluble specialization of (18). In one
case r))a. Then the kernel E(», y) is essentially
determined by the first integral in (18) as this
integral is large for y~r and the second integral
is small for all y. In the second case a—+~ and
r~ ~ so that r u is finite. T—he kernel X(r, y) is
again given by the first integral in (18).This limit-
ing kernel is found in the Milne problem for the
plane, and the exact solution of the integral
equation is we11 known. ' The 6rst case has been
discussed by Marshak' and Davison. ' The

' Z1(X)=J1"Pe *'gt/t.
'G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947).

These authors have discussed the solution for the plane in
a form adapted to problems in neutron diffusion.' R. E. Marshak, Phys. Rev. 71, 68S (1947).

~ B. Davison, Phys. Rev. 71, 694 (1947).
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shadow of the sphere plays no signi6cant role in
this case as the points of interest are far from
the sphere. In the second case the shadow of the
sphere is important as the points of interest are
close to the boundary. In the limit, the region
c&e for p. &0 disappears. The distribution func-
tion at points near the sphere may be discussed
from the point of view of this approximation.

Because of the existence of the shadow and
the discontinuity in f, measurements of the
critical angle 8, and 6 can, in principle, determine
the radius e of the sphere and the mean free path
1 of the neutrons. If it is supposed that p,„ is
determined at two positions along a radius so

that br=re r—~ is known, then, from (16),

&'=rP(1 —~.~') =r~'(1 —~ ')

There are three equations for the three unknowns
u, r~, and r~ In .(15), r is expressed in terms of X

as the unit of length. We then write, from (15),

ink = —(1/X) rp, +InF.

The slope of the line obtained from a plot of ink
against rp, , determines ). The quantity 6 may
be measured in an arbitrary unit and the
quantity rp, , is provided by the measurements of
p, and br.
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If the two photons emitted in an annihilation process are scattered, their initial cross-
polarization leads to an angular correlation of the scattered radiation. This correlation effect is
calculated, and yields a substantial azimuthal asymmetry. It is shown that one may regard
the scattering of one photon as performing a partial analysis of the polarization of the other
photon.

j.. INTRODUCTION

CCORDING to pair theory' the dominant
type of annihilation is one in which the

positron-electron pair has zero relative angular
momentum. Associated with this is the cross-
polarization of the two quanta emitted in the
annihilation process. If one photon is linearly
polarized in one plane, the other photon, which
goes oK in the opposite direction, is linearly

s,

FIG. i. Schematic diagram of experimental arrangement.

~ Research carried out at the Brookhaven National
Laboratory under the auspices of the Atomic En~
Commission.

~ P. A. M. Dirac, Proc. Camh. PhiL Soc. 26, I& (1930)

polarized in the perpendicular plane. A similar
relation exists for any state of polarization of
one photon.

%heeler' has suggested an experiment to test
this prediction, involving coincidence measure-
ments of the scattering of both of the annihilation
photons, The arrangement is represented sche-
matically in Fig. i.

A source 5 of annihilation radiation (a radio-
active source of slow positrons covered with a
foil) is placed at the center of a lead sphere with
a narrow channel drilled through it. The photons,
each of energy mc', passing through the channel
are scattered by scatterers Sj and 5& and recorded
by gamma-ray counters C& and C&. Coincidences
between the two counters are recorded when the
azimuths of the two counters are identical
(y=O) and when the azimuths differ by a right

& J.A. %'heeler, Ann. N. Y. Acad. Sci. 48, 219 (1946).


