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On the Radiation of Sound from an Unfianged Circular Pipe
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A rigorous and explicit solution is obtained for the problem of sound radiation from an
unBanged circular pipe, assuming axially symmetric excitation. The solution is valid throughout
the wave-length range of dominant mode (plane wave) propagation in the pipe. The reRection
coeScient for the velocity potential within the pipe and the power-gain function, embodying
the characteristics of the radiation pattern, are evaluated numerically. The absorption cross
section of the pipe for a plane wave incident from external space, and the gain function for
this direction, are found to satisfy a reciprocity relation. In particular, the absorption cross
section for normal incidence is just the area of the mouth. At low frequencies of vibration, the
velocity potential within the pipe is the same as if the pipe were lengthened by a certain fraction
of the radius and the open end behaved as a loop. The exact value of the end correction turns
out to be 0.6133.

I. INTRODUCTION

' 'T is known that nearly complete reHection of
~ ~ a dominant mode sound wave occurs at the
open end of a pipe of circular cross section, if the
diameter is small compared to the wave-length.
Within the pipe, the velocity potential is the
same as if the pipe were lengthened by a certain
fraction of its radius and the open end behaved
as a loop.

An approximate calculation of the end cor-
rection was performed by Lord Rayleigh, ' who
assumed the open end of the pipe 6tted with an
inhnite Hange. In the absence of theoretical
information, the inHuence of the Hange was in-

vestigated experimentally. From his own work,
and that of Bosanquet, ' Rayleigh obtained the
probable value of the unHanged end correction
as 0.6 the radius of the pipe. This value was sub-

stantially confirmed by the subsequent experi-
ments of Blaikley' (0.576), Boehm'. (0.656), and
Bate' (0.66). Bosanquet, Blaikley, and Anderson
and Ostensen' found small changes in the magni-
tude of the end correction, as the wave-length
was varied.

' Lord Rayleigh, Theory of Sound( lVacrnillan and Cons-

Pany, Iondon, &40), Vol. I I, Chapter 16 and Appendix A;
Phil. Mag. 3, 456 (1877). L. V. King, Phil. Mag. 21, 128
(1e36).

2 R. H. M. Bosanquet, Phil. Mag, 4, 216 (1877).' D. J. Blaikley, Phil. Mag. V, 339 (1879).' W. M. Boehm, Phys. Rev. 31, 341 {1910).
'A. E. Bate, Phil. Nag. 10, 617 (1930);24, 453 (1937).' S. H. Anderson and F. C. Ostensen, Phys. Rev. 31, 267

(1928).
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II. STATEMENT OF THE PROBLEM AND
RESULTS

We consider a steady-state situation, in which
air vibrations are communicated to free space
from the interior of an open-ended, rigid circular
pipe of negligible wa11 thickness. If the incident
wave-length lies in the proper range, only
dominant mode (plane) waves can propagate in
the pipe. When the dominant mode @eaves fall
on the open end, part of the incident energy is
returned in reHected waves of the same type and
the remainder is carried away by waves propa-
gating into the external space.

Our purpose is to determine rigorously the
amplitude and phase of the reHected propagating
wave in the pipe and the amplitude of the
diverging spherical wave at large distance from
the mouth. The principal results are as follows.

With the end of the pipe chosen as a reference
plane, the reHection coefficient for the dominant
mode component of the velocity potential is
given by
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Here and in the following u denotes the radius
of the pipe, k =2s/X the propagation constant of
sound waves in free space, and X the associated
wave-length. J~, ¹ and Ii, Xi designate the
6rst-order cylinder functions of real and imagi-
nary argument (Appendix A).

In the long wave-length (or low frequency)
limit, he&&1, the reHection coef6cient assumes the
form

g g2ikl
1

where

1 1
Jog dx =0.6133

a s ~ 0 x' 2Ig(x)Zg(x)

is the exact value of the end correction, to be
compared with experimental determinations
ranging from 0.58 to 0,66.

The angular distribution) of the emitted radi-
ation, which is symmetrical about the axis of the
pipe, is described by the power-gain function

J~(ka sin8')
8(&) =

s sin'O' L(J~(ka sin0)'+(¹(ka sin8))']&

IR I
2ka cos8

exp — I'
I —IzI

x tan-'( —Ji(x)/¹(x))dx
X

"o Lx' —(ka sin8)')I x'+(ka)')&

de6ned relative to an isotropically radiating
point source. The angle 0 is measured from the
axis of the pipe, and P signifies that the integral
is to be understood as a principal value. The
gain does not vanish for any direction in space;
null directions and secondary maxima appear in
the radiation pattern when the pipe sustains more
than one propagating mode.

The maximum value of the gain occurs in the
forward direction, and is simply

g(O) = (ka)'-/(I —
I
Z I'),

a monotonically increasing function of frequency.
Another indication of the greater directivity in
the radiation pattern at high frequencies is found
in the ratio

g( )/s(o) = I~ I'.

The gain in the direction at right angles to the
axis of the pipe also assumes a relatively simple
form,

4 Jg(ka)
8( /2) =-

s
I (Jg(ka))'+(¹(ka))']& I —

I
Rl'

These analytical expressions have been ob-
tained from the solution of an integral equation
by a Fourier transform method, and are rigor-
ously correct provided that only dominant

FIG. 1. Magnitude of the ve-
locity potential, 1 reflection coef-
ficient as a function of

ku= 2'/) .
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FIG. 2. End correction, in
units of the pipe radius, as a
function of kc,
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mode propagation occurs in the pipe. This con-
dition is realized by restricting values of the
characteristic parameter, ka, in accordance with
the inequality 0 4 kt2 &3.832.' There is no
essential difhculty in extending the results to a
larger frequency range where re8ected waves of
several propagating modes are generated by the
incident dominant mode ~aves. On the other
hand, this method is not simply adapted to the
problem of a Banged pipe.

The results of numerical calculation are dis-

played in the curves oF Figs. 1—4.
The known radiation characteristics of the

pipe determine the absorption of energy from an
externally incident plane wave. This type of
reciprocity is familiar in electromagnetic theory,
for the intensity of radiation emitted by an
antenna in a given direction is proportional to
t.he absorption of radiation arriving from the
same direction.

The absorption cross section, obtained on
dividing the power transmitted into the pipe by
the power incident per unit area, is

~(&) = «'(8(~)/B(0)),
where, 8 denotes the angle between the direction

' The cut-o6 frequencies of the various modes are deter-
ii&ined by the zeros of the derivative of integral, order Bessel
t'unctions; for the symmetric modes these are identical with
the zeros of the first-order Bessel function.

of incidence of the plane wave and the axis of
the pipe. This result is also rigorous in the wave-
length range of the dominant mode. The range
is reduced, however, to 0 &ka &1.841, in the
case of oblique incidence (8/0), owing to the
excitation of all modes, including non-syoimetric,
at the mouth of the pipe.

The absorption cross section for normal
incidence (8=0) is just the area of the mouth,
independent of the wave-length, in the range
0 &ka &3.832.

('P+0')P(r) = 0 (I l I. l)

III. DESCRIPTION OF PHYSICAL QUANTITIES

A well-known existence theorem states that
the electromagnetic fields within a region are
uniquely determined by the values of the tan-
gential components of the electric or magnetic
fields on the bounding surface of the region.
Similarly, in the problem under consideration,
the entire acoustic field can be derived from its
boundary values on the surface of the pipe,
regarded as an obstacle imbedded in free space.
In this section we shall obtain the dependence of
the physical quantities on these (as yet unknown)
boundary values.

The fundamenta1 field variable is the scalar
velocity potential P(r), which satishes the wave
equation
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for harmonic time variation s 'k" (c=velocity of
sound propagation in free space), and has
vanishing normal derivative on the surface of the
pipe. If the pipe is excited internally, and sustains
only the dominant mode, the asymptotic forms
of the velocity potential are (Fig. 5)

f(r) Aeik*+Be '"* s—s —«(III. 2a)

within the pipe, and

(III. 2b)

outside the pipe. VA'th this type of excitation, the
entire field is axially symmetric.

Let us apply Green's theorem in the form

LP(r)n V@(r) —4i(r)n Vf(r)]d5 (III. 3)

to the velocity potential f(r) and the plane wave

y(r) e—ik r e—lkr cos8

(I I I. 4)
cosO =cos8 costi'+ sin8 sin8' cos(qs —{o'),

whose direction of propagation is specified by
the angles (8', lo'). The domain of integration,
indicated in Fig. 5, is bounded by surfaces inside
and outside the pipe; n is a unit vector which is
normal to the bounding surface at each point
and is directed outwards from the region. The
length I, is chosen suSciently large so that the
asymptotic forms (2) may be employed on the
surfaces Si, S2.

The volume integral in (3) vanishes since
P(r) and {|s(r) are solutions of the homogeneous
wave Eq. (1).Separating the various parts of the
surface integral, we find, with the use of (2) and
the boundary condition for the radial derivative
of the velocity potential at the surface of the
pipe,

gikr

f(g) e ikr cos8 e—ikr c-os8 f(y)
r Br Br

8—exp(okl. COSYY olop sl—na'cos(y —
q ))c(Ae'»+—Be i»), -

g I7

!

[4'(r)s o+o 4'(-r), —o] [exP(—its cos—6' ikP sin—6' cos({o—{P'))], od {l=0. (III. 5)

The di8erence of the velocity potential on inner and outer surfaces of the pipe, which appears in
the integral S3, is a consequence of the oppositely directed normals at these surfaces.

The integration on the surface Sl is eKected by choosing the direction (8', {o.') as the polar axis; thus

gskr gikr-

f(y) e ikr cos8 e ik-r oos8 f(g)—
Bf Bf r

2% troc

(1+ coOs)f(6) e.k{lo8)» 'sine—dOdCr+ f(8)e'k"{' co8l sinOd—Od4
~o &o

2+ 2'
(1+cosQ)f(y) elk {' co~i rded4+

i

' f(y)e'k'" cos8& sinOd8dc
do~ 0 0

tskr tcs
4~f(gr)+ eilr{{—cos8) f(y)dQ~dcr

"o ~o dO
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If the integration by parts is continued, the integral is develope~l in a series of inverse powers of r.
Consequently,

~sIrr y g ~skr-

Lim f(O) ——z "'""""—z '"""- f—(O) &&&5= 4z—f(O')
gm&N 4 g Br r~

(III. 6)

If we return to (5) and perform some of the remaining integrations it follows that (dropping the
primes on the angle O)

ka &&z& 0

f(O) =Lim —sinOJi(ka sinO)
L-+or&

H(z)z &kg e—osad

a Ji(ka sinO)
+i- {A(1+cosO)e '"~&' '"~' —B(1—cosO)z'~ '&+" ~8}&(III 7)

2

where H(s) is the discontinuity of the velocity potential on crossing the surface of the pipe

H(s) =y(r) p .+o —P(r),

If we dehne a function of the complex variable g by

6 0

Ii(I ) =Lim -(k' —I') Vi((k' —I') 1a)
~

H(z)e *r*dz-
~&N -L

.a Ji((k' —I') 'a)
+i - {A(k+f)z 'z&' r& B(k I)z'z&—~+r&}—, (III. 8)

2 (k2 —I2)~

it follows that when Im I )0 (or ) {Im k {) the
terms involving A and 8 vanish in the limit
I.~~, and

~(I.) =-(k' V)» -((k' I')")-
2

~0

X~ H(z)~'r*dz. (III. 9)

Equation (7) may now be regarded as the
analytic continuation of this function on the line
Im 1 =0 (or in the strip —{Imk~ &Im I &

~
Im k~), at the point f =k cosO:

kQ
F(k cosO) = f(O) =—sinOJ&(ka sinO)

2

asymptotic form as the velocity potential on the
inner surface of the pipe (since the field outside
decreases in magnitude with the nature of a
spherical wave), and we infer from (2a) and (11)
that the transform H(I) has simple poles at
g= ak.

Using (7) and (9), we find

f(0) =i ,' ak'A =-——,'ka' Limi i(I —k)H(1')

= —zika' Rest=&H(I ), (I II. 12)

f(z) = iqka'8 = qka—' Limr &,(1+k)H(f')
= —,'ka' Res& iH(I'), (I I I. 13)

where Res& ~kH(I ) denotes the residue of the
function H(I) at the poles I = &k, respectively.

Thus

X)T H(s)e *"' ' '~dz. (III. 10)
A =i Resp &JI(I),

B=i Res&= iH(I'),
(III. 14)

The integral
0

H( ) =)I II(z)e '&'dz

and the refiection coef6cient for the dominant
(I II. 11) mode component of the velocity potential takes

the form

defines the Fourier transform of a function H(z)
which vanishes for positive s. II(s) has the same

8 Rear &1I(I')
R=—=

A Res& &H(I)
(I I I. 15)
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Io uescnbe the radiation charactenstics of the
pipe, we calculate the pow'er-gain function, which
compares the intensity of radiation in a given
direction with that of an isotropically radiating
point source of equal power output.

We assume as the expression for the time
average energy How per unit area

1
S=~s 0*(r—).'V (r)

ik
(III. 16)

1=«—. (I~0(r) I'-k'II1(r) I') =o.
jk

Through (16), the average power incident on
the mouth of the pipe is found to be

Pj~ zs'a Iz4 I yr (III 17)

and therefore the power leaving the end of the
pipe for external space is

&-~ = ~a'(I ~ I' —
I
& I')
=sa'IA I'(1 —IRI'). (III. 18)

f I I I I I

13,0

90

50' 60' l20 &50 I80

Flu. 3. The de depeadence of the power-gain function on
angle for various vaLues of ka.

and verify that this corresponds to dissipation-
less transport of energy by the sound w
free space, for

(1
~ s=~«

I . &*'r)~—«r)
I

g ~

Since V„p(r) ikf(r), r +-~, the average power
radiated into unit solid angle about the direction
(i1, y) is given by

P(i1) = Lim„„r'I P(r) I

-'=
I f(D) I

'-'; (111.19)
thus the power-gain function becomes

&(&) 4 If(~) I

'
oJ(8) = —=— . (I I I. 20

&,.a/4~ a' I& I'(1 —I&l')
Using the connections between the incident

and reAected amplitudes A, 8 and the radiated
amplitudes f(0), f(s) provided in (12) and (13),
we find

(k )' If(~)l'
1-

I
&I' lf(o) I-'

It follows readily that

(I I I. 21)

(III. 22)

(III. 23)

g~ —GO

'inside the pipeI4(r) Ce-*'*

and (III. 25)

4"(r) -f(&)
f~QQ ~

;&, outside the pipe.
Il, k(r) ~S-ikr zoze+ (y )

r .

(ka)'
e(0) =

aIld
s( ) If( )I'

g(o) If(o) I'

Using (10), (12), and (15), the gain function
(21) takes the form

(k sinB Jk(ka sin8)) '
I H(k cos8)

I

'
g(kI) = . (III. 24)

I Resr kH(I') I' —
I
Resr kH(l ) I'

Equations (15) and (24) provide the de-
pendence of the important physical quantities on
the transform H(1). We note that these ex-
pressions are independent of any constant multi-
plying H(I ).

As the hnal task of this section we shall
derive the reciprocity relation between emission
and absorption of energy by the pipe. For this
purpose, we consider the independent situations
in which plane waves are incident on the mouth
from within and outside the pipe. The velocity
potentials for the two fields f.(r), pk(x) have the
asymptotic forms

Ii, (r) ~geikz+gS-ikz
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Applying Green s theorem (3) to the fuilctlolls
4' (r), Pi,(r) in the closed region indicated in Fig.
5, we find that the integral over the bounding
surface vanishes. There is no contribution to this
integral from the inner and outer surfaces of the
pipe, in consequence of the boundary condition
for the velocity potentia1s, and thus

I3.0

I to

C)

P, (r) Pi (r)——Pi (r)—P (r) d $
Br 8f

8
P.(r)~~(r) —y~(r) —P.(r) dS

as 88

Inserting the forms (25), and following the
procedure used in the derivation of (6), we find
that

C = 2f(8')/ik'a'A
3,0

Using (20) and (22), it follows that
1

38

ka

and thus the absorption cross section of the pipe
for a plane wave incident in the direction speci-
fied by the angles (8, s) is

~(a) =wc'( C('
= ~a'g(a)/8(0). (III. 26)

IV. INTEGRAL EQUATION FORMULATION

To proceed with the evaluation of the reRec-
tion coefFicient and power-gain function, it is
necessary to calculate the Fourier transform of
the discontinuity of the velocity potential at the
surface of the pipe. In this section we shall obtain
an integral equation for the determination of the
transform.

We begin by deriving a general expression for
the velocity potential at an arbitrary point in

space, in terms of its discontinuity at the surface
of the pipe. The mathematical medium for this
purpose is provided by the free space scalar
Green's function

&sk', r—r't

Cr(r, r') =
4s /r r'/—(IV. 1)

which satisfies the inhomogeneous wave equation

(V'+k')G(r, r') = —a(r —r'). (IV. 2)

FIG. 4. The gain in the forward direction as a function of ka.

Upon applying Green's theorem in the form

t [G(r', r) (V"+k') P(r')

f(r')(V"—+k')G(r', -r) jd7'

=~| [G(r', r)n VP(r')

—P(r')n V"G(r', r)]dS', (IV. 3)

where the integration is extended over al1 space
and the boundary includes the inner and outer
surfaces of the pipe, we fipd, using the boundary
condition for the velocity potential at the surface
of the pipe,

p(r)=
J

d 'JI I'( ', ') G( ', ),,

(IV. 4)
+(s, s) =4(r),-., 0

—4 (r),=.-~

As the notation indicates, the formulation is
not restricted to the case of an axially sym-
metric field.

It should be noted that there is no contribution
to (3) from that part of the surface which spans
the interior of the pipe, since the magnitude of
the Green's function decreases inversely as the
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l

s,
I

za
L l Sq

Equation (4) provides confirmation of the
assertion that the entire field is determined by
its boundary values at the surface of the pipe.

Upon requiring that the velocity potential (4)
satisfy the boundary condition at the surface of
the pipe, we are provided with the integral
equation

~2+ po
+(s' s')———

J ~ „,
'

8p8p'

XG(r, r'), , gs'=0, s&0 (IV. 5)

FK'. 5. Domain of integration for Fq. (III. 3).

distance between the points r, r', and the velocity
potential is bounded. The surface integral ex-
terior to the pipe also vanishes, for, in con-
sequence of the asymptotic forms

gi,kr

4 (r) -f(n)

for the determination of +(s, s).
To effect the angular integration in (5), it is

convenient to express the Green's function as a
Fourier series in the angular variable (s —s').
For this purpose, we rewrite (2) in the form'

$1 8 f 81 1 8~ 82I-—
I p—&+— +—+&'I

(p8p( 8p) p'8s' 8s'

XG(p, p', s' —s", s —s')

expLik(r —n r')]
G(r, r')-

n=r/r, r~~
~(p p')-

8(q —s')8(s —z'); (IV. 6)

it follows that
that the Green's function depends on the dif-
ference of the coordinates q, q' and s, s' is
evident from (1).

Multiplying (6) by e '&' and integrating over
all values of s, we fie

Here

(18 ( 8) 1 8' ) 8(p —p)
I

——
I p—I+— +&' I' IG(p,—p', s —s', I)= — 8(s —s').

(p8p& 8p) p'8'' ) p
(IV. 7)

G(p, p', s —s', L)='G(p, p', s —s', s)& "*«

I'" expfsk(p'+ p" 2p p' cos(4 ——4') +s') &$
e-'&*ds (IV. 8)

4s'(p +p —2pp cos($ —f)+s )~

is the Fourier transform of the Green's function
with respect to s.

Introducing coordinates in the g-plane,

I = $+iq
it follows that

IG(p, p', s —s' I) I ~&
~ IG(p» p' s —s' s) Is'*«.

Assuming the propagation constant k to have
an arbitrarily sma11 positive imaginary part'
(which is eventually set equal to zero), we find,

' The three-dimensional representation of the delta-
function satishes the conditions b{r—r') =0, r&r' and
J'B{r—r')dr =1, where d~ pdpdqds is the volume element
in cylindrical coordinates.

9 This corresponds to a small attenuation of sound waves
traveling in free space.
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I(g'-g )H(g) t;= i~I) -&

FIG. 7. Integration contours for I.+{&),L, {g).

vanishes, and we arrive at Bessel's differential
equation.

Since the Green's function (1) describes the
propagation of a spherical wave from the source
point r = r', we look for a solution of (10) which
involves cylindrical wave propagation outwards
along the radius p. In view of the regularity of
G (p, p', I ) when either p or p' vanishes, and its
symmetry in these coordinates, we write

I' E($)

Fio, 6. Regions of regularity of transforms.

in consequence of the asymptotic form
G-(p, p', I') =~~-'"((k' 0')'p—)

G(p, p 2
—e» s)-e' ~*~le

XJ„((k2—I2)~p'), p) p',
(IV. 11)

G-(p, p', 0) =~~-'"((k' I')'-p')
that the transform G(p, p', 22

—e~', I ) is regular in
the strip l21l (e(=I222k). The operation of inte-
gration by parts twice, with discard of the
integrated terms, in the derivation of the equa-
tion

XJ ((O' —I')~p) p(p.
J is the mth order Bessel function, and

II &'~= J +i% is the mth order Hankel func-
tion of the first kind.

To insure the proper sense of cylindrical wave
propagation, it is necessary to specify the phases
of the radical in (11):this we do on the real axis
of the I -plane, adopting the values 0, 2r/2 for the
phase in the sections

l l l
(k, )k, respectively.

The same coeScient A occurs in the ex-
pressions (11), owing to the continuity of the
function G„(p, p', I ) at p = p'. The value of A
is obtained from the inhomogeneous term of the
differential Eq. (10) on multiplying both sides
by p and integrating in a small interval about p".

p 00

G(p, p', 22
—22', z)e '&*dz

ce BS

G(, ', — ', s)—e—*"*d
88

E'G( pp—
'

2
—2' I)

is justified if I lies in the strip.
Introducing the expansion

00

G(p, p', e —2', I')=—E e'"' "G-(p p' I)
Sl~

(IV. 9) P P'+rl P'+5 ( 2222)

lp
2)p~p p —h p' —Ll p r

XG (p, p', t')dp= —1.

p—G (p, p', f)
in (7), and multiplying through by e '"",we find, dp
after integrating over the range of the angle q,

(1 d ( dy 2222'

l

——
l p—l+k' —I'—IG. (p p' I)

&pdp& dp& p2)

&(p- p')
(IV. 10)

When p&p', the right-hand member of (10)

d
p G-(p, p' I)—
dp

p p+0

p-p' —o

Introducing the expressions (11), and em-

Reca11ing the continuity of the terms in the
integrand, and passing to the limit 6—+0, we And
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ploying the relation

H '"'(s)J' (s) —J '(s)H &'&(s) =2i/ss,

it follows that
A

smaller of the coordinates p, p' respectively,

G (p, p', I) = H—'"((&' I'—)'p))
2

XJ ((&' I'—)'p&) (IV 12)

Thus, using p&, p~ to denote the larger and and by the Fourier inversion formula,

00+ jq

G(p p', q q', —s —s') =—I g 'e'"( "')H-,(')((P' —I')'p)) J ((P' —I')'p()e'r( *')dt'
8 3„„„.—.

ce+srf

Ho&'&L(k' —I')&(p'+p" 2pp—'cos(s —y'))&]e'r&' "&dl-
00+41(8

(IV. 13)

(m+iq

Z„(s) =—
)—oo+ssf

with

The integration contour in (13) is a straight (13), it follows that
line in the region of regularity of the Green's
function transform.

Returning to the integral Eq. (5), and as-
suming

Z„(I)e'r'dl, (IV. 17)

0 (s, s) =e'"~H (s), (IV. 14)
E ( f) = gs.i(k' —I')H„'"'((O' —I') &e)

po
H (s')Z (s s')ds'=0, —s(0, (IV. 15)

XG(p p ip s' s) p. i'-gs' ~ (IV 16)

Thus, using the Green's function representation

arsgk -t

T'I

,)1
-k

~

t.=-iAe-&'
I

XJ '((k' —(')&a). (IV. 18)

The primes in (18) denote differentiations
with respect to the argument of the cylinder
functions.

The integral Eq. (15) resembles the Wiener-
f type io and may be solved by application

of a Fourier transform method. In the course of
solution, we use the fact that the asymptotic
form of H (s), for large negative values of s, is
the same as that of the velocity potential on the
inner surface of the pipe (see remarks following
(III. 11)).

The formulation thus far is completely general
and applies directly if the pipe is, excited in any
set of modes with a common angular dependence
of the type (14). This generality is not required
for present purposes since our interest relates
only to the case of symmetric excitation (m =0)
in accordance with the program outlined in the
preceding sections.

With wave-lengths permitting only dominant
mode propagation, our problem therefore is to

FIG. 8. In).egration contours for Eq. {V.17).

'0 R. E. A. C. Paley and N. Wiener, Fourier Transforms
in the Compiex Domain {Am. Math. Soc. Colloquium Pub-
lications, New York, 1934), Vpl. XIX; E. C. Titchmarsh,
Introduction to the Theory. of Fomrier Integrals {Oxford
University Press, London, 1937), Chapter IV, p. 339; E.
Reissner, J. Math. and Phys. M. I. T. (20) 5, 219 (1941).
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obtain a solution Hq(s) of the integral equation

p0
Hb(s') Ko(s —s') ds' =0, s (0, (IV. 19)

with the asymptotic form (omitting an unessen-
tial constant factor)

H, (s) -As'"+Be "* -s~ —~. (IV. 20)

For an extended frequency interval, we must
include in (20) additional reAected waves of the
higher symmetric modes, with appropriate prop-
agation constants.

In concluding this section we note an alter-
native integral equation formulation of the
problem, originating with the division of space
into the two regions p a. Using (3) in conjunc-
tion with appropriate Green's functions, the
velocity potential in each region is expressed in

terms of its radial derivative on the surface p =c,
z&0. The requirement of continuity for the
velocity potential on crossing this surface
provides an inhomogeneous integral equation of
the Wiener-Hopf type for the determination of
the common radial derivative.

The transform of the radial derivative allows
a simple calculation of the physical quantities;
the results are identical with those obtained from
the formulation in terms of the discontinuity of
the velocity potential at the surface of the pipe.

If an in6nite Range is htted to the open end
of the pipe, the new formulation requires modi-
6cation only in the construction of the Green's
function for the region p &a. Using the method of
images, the new Green's function is obtained by
adding to (1) a similar expression in which the
sign of z' is reversed. The kernel of the resulting
inhomogeneous integral equation thus includes a
term depending on z+z', which considerably
complicates the Fourier transform solution.

V. FOURIER TRANSFORM SOLUTION OF THE
INTEGRAL EQUATION

In preparation for the Fourier transform
solution of (IV. 19), we consider an extended
integral equation (in which subscripts are
omitted):

FIG. 9. Integration contour for Eq. (VI. 11).

where
0, z&0

H(s) (V. 1)

2 I

K(s) =
~

— G(~, ~'. s —s', s), , - d s'
pBp

By construction, the integral Eq. (1) is
equivalent to (IV. 19), for s (0; the function
Z(s) is defined by (1) for s &0.

Multiplying (1) by s 'r* and integrating over
all values of z,

H(s') K(s z') ds' (e*'r*—

)

Z(s) e—'i'ds.
0

thus, with a change of variable, we have

0 ~oo

J
H(s')e *r*'dz'

i K(t—)e''r'dt—

and
H(I )K(f') =~(I ),

Z(s) s-'r'ds,
Jo

(V. 2)

where H(f), K(I), and E(f) denote the Fourier
transforms of the respective functions.

The transform Eq. (2) has significance if both
members are regular in a common domain of the
g-plane. To verify the existence of such a
domain we examine the nature of the individual
transforms.

From the discussion following (III. 11), we
recall that the transform

II(s') K(s s') ds'=—Z(s), s &~ 0 |so p0

H(t) = H(s)s q'ds= I H(s)e -'i*+«ds (V.3)-
J
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has simple poles at f= +k. In consequence of the
asymptotic form (IV. 20), it follows that

[H(I') i &~
~ [H(s) is&'ds

is bounded in the region s )e (=Im k).
The transform X(t') is obtained from (IV. 18)

by setting m=o and using the relations (A. 4),
(A. 5) of the Appendix:

Z(I ) = s~i(k' I')—
XHi'"((k' —|')&a) Ji((k'- I') a). (V. 4)

Inserting the explicit form (IV. 1) of the
Green's function in (1), and performing the
indicated difkrentiations, we find

E(z) s'~~'~/s'
( s] -+~ '

thus the transform X(I') is regular in the strip
fgf &e.

Although E(I) vanishes at I = &k, these are
branch points of the function. If we write

&(I)= k(k'-f*)~(f),
l.(t) =~H, &»((k' —I')Ia) J,((k' —12)4), (V. 5)

the function L,(I') is regular in the strip ~q~ (e,
and has the value unity at the branch points.

g(s) ~ sike H(s') ds', z~ ~ .
(s —s')'

We next establish the important result that
I (g) does not vanish in this strip. To do so, we
note first that H&&'&(z) has no zeros, for which
—s/2 &&args~&3s/2. " Since this phase interval
contains all the values appropriate to the func-
tion (k' —t')& in the t'-plane, we conclude that
H, &'&((kl —I 2)&a) has no zeros. The zeros of
Ji((k' —I')&a) occur at I'= &k" and at
+(y„'—k')&, where Ji(y c) =0. However, the
latter set, comprising the attenuation constants
for the non-propagating symmetric modes of the
pipe, have imaginary parts with magnitudes in
excess of e, and lie outside the strip.

The results show that H(I) and X(I') are
regular in separate domains of the I'-plane. How-
ever, the product H(I)Z(I) may be separated
into a pair of factors which are regular in a
common domain. This is accomplished by writing
I&.(I') in the form (5), and associating the factor
(k' 1')/—2 with H(I') The func. tion (O' —1')H(I )
is regular for q &~ —e, and thus has a common
domain of regularity with I (f).

A discussion of the transform Z(f) is based
on (1); inserting the asymptotic form of the
kernel, we find

R,O

Fro. 10. Comparison of exact
and approximate gain functions.

&.0

I I I l l I

15 50 45 60 75 90 K)5 &20 & 35 l50 &65 l80

"This followers from an investigation of the zeros of EI{z)= —(m/2)Hq('&{iz}; G. N. %'atson, A Treatise Oe the
Theory of Bessel, Eeectioes (Cambridge University Press, Teddington, England, 1945},p. 511.

~ The zeros of J1({k~—p)&a} at f= &k are compensated by the singulartities of Hqo)((k~ —p)4}, resulting in a 6nite
value for L(g}.
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In estimating the s dependence of the integral,
it is not permissible to neglect s' in the de-
nominator; if this is done, the integral has the
value of the transform H(l") at the pole l =k
(corresponding to the incident wave Ae'"*).
However, if we replace H(z) by e'"*, it follows

that
E(z) s*'*/z', z—+ ~.

This result may be verified by noting that
E(z) is proportional to the p-derivative of the
velocity potential on the surface p =u and
utilizing the asymptotic form (III. 2b).

The transform

E(l) = E(z)e 'r*dz= E(z)e 'i*+&'dz (V. 6)f
J,

is thus regular in the region g ~& e.
Collecting results, we find that the strip

{ g { &e is a common region of regularity for the
functions (k' —12)H(l'), L(f), and E(l), appear-
ing in the modified form of the transform Eq. (2):

(&' 1')H(—l )L(l) =2E(f) (V 7)

It is convenient to designate the regions

g & —~, g & e as the upper and lower half-planes,
respectively (Fig. 6).

ln order to solve the transform Eq. (7), we
represent L(P) as a quotient of functions I+(f),
I (l), which are regular (and not zero) in the
upper and lower half-planes, respectively. If the
expression

L(l.) =L.(f)/L (l)

is inserted in (7), it follows that

(V. 8)

(&*-f')H(l)L,(l) =2E(i)L (1). (V. 9)

The left-hand side of (9) is regular in the
upper half-plane and the right-hand side in the
lower half-plane. Both are regular in the strip

{ g } & e and may be considered as analytic con-
tinuations of each other; together they define an
integral function throughout the finite f'-plane.

It turns out that the integral function has
algebraic behavior at infinity in the respective
half-planes and is in fact, a constant. Thus, the
transforms H(l), E(f') bear a simple relation to
L+(g), I (1), respectively.

We next consider the explicit determination of
L+(l ), I (f ). The function logL(l ) is regular in
the strip

} g} & e, on the branch for which

logi =0. Applying Cauchy's integral formula to
a rectangular domain (with sides parallel to the
coordinate axes) within the strip, we have

1 logL(i)
iogL(f) = dt2' t —r

1 log {siHi'"L(k' —i') &a]AL(k' —t') &u$ }
dt,

2%i
where l' is an internal point.

As {i}-+~,arg(k' P) &= s./2 w—ithin the strip, and we find with the help of (A. 11),

(V. 10)

Thus, there are vanishing contributions to the integral (10) from the vertical sections of the
rectangular contour as these are displaced to infinity.

Consequently,
logL(t) =logL, (f) logL (1)—

1 t. logI. (t) 1 t logL(i)
dI+.dt,

2s.i J c+ i l 2zi ~ c —t
where C+, C designate infinite straight line contours in the strip {Im i{ &e (Fig. 7).

The function
1 p log {a iHi&'&{ (0' —t') @jan',L(k' —t') &a] }

L+(1)=«p df2' Q+

(V. 11)

(V. 12)

is regular and different from zero in the upper half-plane provided P does not lie on the contour C+.



H. LEVINE AND J. SCHWINGER

Similarly,
1

I
log f xiH&&"L(k' —P) &a)J&L(k' —t') &aj}

L (t') exp- d~
2~ ~g t— (V. 13)

defines a non-vanishing regular function in the lower half-plane if f' does lie on the contour C .

First Evaluation of L+((), L (()
The conversion of (12) and (13) into forms suitable for analytical and numerical manipulation is

based on certain deformations of the contours C+, C .
First, we note that in the limit e-+0 the contours C+, C coincide with the real axis of the t-plane,

except for indentations at the points t = +k and I = f', if I is real. The contours are indented above
t= —k, below t=k, and oppositely with respect to t=l' (C+ below, C above), thus preserving the
correspondence of points in the I'-plane with the regions of regularity of the functions I.+(I'), I. (I').

Actually, the logarithmic functions in (12) and (13) vanish at I = &k, so that the integrations are
conducted entirely along the real axis with an indentation only if I is real.

Inserting the phase of the radical appropriate to the sections of the real axis }t } (k, }&}«k, and
using (A. 6), (A. 7), we find

L+(I')
1

1 r "log Is jH&&'&L(k' —I') &a]J&} (k' —P) &aj }"=exp dI,
L (I') 2' & i

t
" log I2X&k(t' —k') ia)I&f(t' —k') &a] }

d&, (V. 14)
&2 fi

We note, on referring to (A. 12), that the integrals along the sections I «k, I & —k are individually
non-convergent.

When I' is real, the singular integral of (14) is calculated as the principal value Kiri (residue of the
integrand at the pole I = I ) The ch.oice of sign corresponds to the sense of deformation of the contour,
being positive for L,+(g) and negative for L (I').

Accordingly, we 6nd

ka cos&5& &' x logL&riHi&" (x)Ji(x)j
I+(k cost) =LsiH&&'&(ka sin8) Ji(ka sin8) )& exp i P ~ dx

}
x' —(ka sin8)'jL(ka)' —x'j&

ka cos8 (" x log/1/2I&(x)I&. i(x)j
dx

} x'+(ka sin8)'jLx'+(ka)'j&
(V. 15)

where P designates the principal value.
The principal value is not required if f coincides with either of the branch points &k, and it

turns out that

1 - ka
& "log}xiHi&" (x)Ji(x)j ka &'" log[1/(2I&(x)I&:i{x))j

L,+(k) = =exp i dx+z dx . (V. 16)I.+(—k) ~ &g xf(ka)' —x')' "o x[x'+(ka)']'

Second Evaluation of L+((), L (&)

questions of conveigence with those parts of the integrals (12) and (13) for which
}gs I}«gs k, we begin with sections of the contours C+, C extending from &= —T t«= &. Later
we proceed to the limit T-+e.
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The abbreviated contour C+' may be replaced by the contours I'~, F~ shown in Fig, 8. I'~ is
extended along the sides of a horizontal branch cut which is drawn from the point t = —k, and F2
proceeds along the under side of the branch cut on to the point t = T of the original contour C+.

In this discussion, we employ the logarithmic derivative

1 i. log{iriIIi&'i[(k' —t') &a]Ji[(k' —t') ta] }
IogI+(f) = dt,

dl 2xt ~ c,' (t-~)'
(V. 17)

from which I.+(f) is determined, exclusive of a multiplicative constant, by a single integration. If
the point t=g is located in the upper half-plane, C+' or any equivalent contours may be freely
deformed in the lower half-plane provided we do not pass through singularities of the logarithm in
the integrand of (17).

Combining the integrands of (17) on the upper and lower sections of I'i we find, using (A. 6)—(A. 9),

p
T

log—I+(f)
dg ry 2m& ~g Ki[(t' k') ta—] (t+f)'

Ki([t2 —k']&a)+ire *"Ii([t'—k']ta) dt
(V. 18)

It follows from (A. 13) that (18) diverges logarithmically in the limit T +~; if we —supply the
factor exp[i(w/2) —2a(t' —k')&] to the argument of the logarithm, the singular dependence may be
isolated, with the result

ia 2T 1 1 ia 2I' t'k —I') &—logI.~(I ) =—lim log—+- ——1+ tan-'J
dI- ~ ™k 4 k+f ~ (km —I.m) ~ 4k+I.&

~ Qo

~
log

2xi ~g

e*"Ki[(9—k') &a]+s Ii[(t' —k') ta]

K [(t'—k') &a]

dt
exp[ —2a(t' —k')1] — . (V. 19)

(t+I)'

Next, we close the contour F2 as shown in Fig. 8, proceeding along circular arcs in the lower half-
plane and on opposite sides of a branch cut along the negative imaginary axis (which is drawn
through the zeros t= i(y„'—k')t o—f the Bessel function Ji[(k' —t')4]). On this complete contour
(17) vanishes since the integrand is analytic at all interior points. Thus the integral along F2 may
be expressed in terms of integrals along the remainder of the closed contour; if these be traversed
in the same sense, we have

(V. 20)

Referring to (A. 11), it follows that the integral (17) along a circular arc in the third quadrant,
on which —s/2 &arg(k' t')&&0,—takes the constant value

ddt c—(2i) (ita) =-
2~i ~...9 2

(V. 21)

in the limit T +~. The integra—l along a circular arc in the fourth quadrant, on which 0 &arg(k' —t') t

&s/2, vanishes in this limit.
The value of the remaining integral in (20) depends upon the difference in phase of the integrand

on opposite sides of the branch cut along the negative imaginary axis.
Using the asymptotic expansion

(iy
q„a-(n+-', )s+0( —I, e»1,

&~)
(V. 22)

we find that the number of zeros of J',[(k' —t') ta] contained on the section of the negative imaginary
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axis ( Ittt t ( &T, is
I&-(~„/t/~] = &Ta/~], Ta/~»1;

here [Ta/x] is the largest integer not exceeding Tc/s.
Thus, since the functions Hi&" ([k' —tm]&a) and

have the same phase on opposite sides of the branch cut, the integral becomes

[&~//~i dt tr~/~l df
log II I:t+i(v.' —k')'], = Z

2&& ~ branoh out ~ (t K) " ' "&=-~(v"—&')i (t 0)

[ra/~i 1
(V. 23)

E I +iT f'+i[y„' k']—&J

Further, since

lim g ——log m =log y=0.5772,

we have
fPa/v] 2a

lim =—lcm log
rwao ~ i f+iT I+(~ 2 k2)$ ~ rmpg

Top 2G ~ 1 2Q

+—. (V. 24)
w =i &+i(q.' —k')~ n~

Collecting the results (21) and (24) for use in (20), we find

d 2G TGy 26 6 M
logL+(f—) = ——lim log +———+Q +—.

dl' r2 x™a m 2 ~-i I.f'+j(y„' k') & —es
(V. ,25)

When (19) and (25) are combined, the arbitrary parameter T conveniently disappears and we have

1 ia 2mi 2ifa (k —fy & 1 ia
logl-—+(L)= '-+—log tan 'I

I +~ . +-
df 4(k+I) ~ qka &(O' —I')1 &k+ I.) -=i I+i(~„2—k2) &

rs aO

~

e' /'Zi(r t' —k']&a)+ 1,([t2 —k']&it)
log

I Zi[(t' —k') &a]
d&

XexpL —2a(t' —k') &] . (V. 26)
(t+I)'

Integrating with respect to I and supplying an integration constant, it follows that

/
kg'& if

I+(I)=~((k+f')s)'~+(f)II

2ia
exp

(
log +1 (+ (k' —I')& tan ') ), (V. 27)

yka ) (k+1-J

~+(I ) =exp 2' ~ It

QO

1og
e' /2Eif(P k') 41l+sI&P(t—' k')&a]— I dt

expL —2a(tm —k2) &] ' . (V. 28)
Xi/(t' —k') &a] lt
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The infinite product in (27) converges uniformly in the upper half-plane. This result follows from
(22) since for any value of l

{[1—(k/y„)']i if—/y„}e'r'"~ 1+a„(l), g„(f') =O(1/n'), Im f &0, n&&max([ka], [I f a I])."
On deforming the contour C in the upper half-plane, and employing similar procedures, ~ find

{in view of the symmetry of I-(l) with regard to f)

1 t'kg' i
— — =I,(-l)=~((k-t) ): II 1-I —

} +—-'"'-
I (t.) F (i) ~=i Ey„)

i fa (2s'$ ) 2ia fk+lq ~

log{ +1 I+ (»—l')'tan 'I
I (V 29)

Eqka ) ik-t. )

(i.) =-
I'+( f')—

1 z" Ie'-»E, [(t2 —k2)ia]y~I, [(t2—k')ia]
=exp —

I~ log
2si &„ I Ki[{t'—k') ia]

Xexp[ —2a(t' —k') i] (V. 30)

To determine the constant C we multiply (27) and (29) and obtain, on referring to (8),

~iII (1)[(k2 f 2))a]I [(k2 f 2)ia]

= ~'((k' —&')a')'~+(&) ~+(—&) exp[ia(k' —t')'] II I
1-

I (V»)j
Introducing the product representation

in (31), it follows that

sa ~ ( s~ )I (sa) =—g I
1-

p„')

gz
'C~ (+ )f~+(-f) = ((k' f'—)")»-i '([k' t']ia) -exp-[~( k-i')i]

2
(V. 32)

We next examine the form of this equation as I
l'I~~ within the strip I itI &e. Employing the

asymptotic expressions (A. 10) and

] j ao

I'+(& f') exp * —
~l log

2m' fa ~0

"e'E (i)x+n.Ii(x) } xdx
2$ ~

ki(x) I (x'+ (ka) ') i

+2 —( i~)$e—i~/4 (V. 33)

'I The condition for uniform convergence is stated in E. T. Whittaker and G. N. Watson, A Course of Modern Analysis
(Cambridge University Press, Teddington,

'
i944), p. 49.
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Consequently,

~ke
t

& |2J'i(ka sine)
t

& is ika cosa ( 2si ) ka sinaiI.+(k cosa) =
I

(1+cosa) ~ exp —+
I

log +1 I+ii:
2 ka sine 8 s E yka )

k cosyw

i—+I sin '
n-i 4 (y„'—k' sin'8)&

!
ku cos8)

nx )
le' I'E,(x)+s Ii(x)

Iog 2Ã

I E,(x)

(x'+ (ka) ') &+ka cos8'
(U. 34)

(x'+ (ka) ') &

Equation (32) allows a simple determination of the behavior of I'+(I ) near the point I = —k «
approximating the Hankel function of small argument by means of (A. 1)-(A. 3) and using (33), it
follows that

(2ka) '((k-+l)a) '
~.(l)-I —

I

"'
~+(k)

Combining (35) with (27) and (28), we find

(V. 35)

is ika t' 2si ) ~ ( k ka)
I-+(k) = 'exp —+ I «g +1

I
—i & I

»nI.+(—k) 8 s E yka ) .-i E y its.)

2M +0

s' "Ei(x)+sIi(x)
log ~Sg I,

E,(x)

(x'+ (ka) ') &+ka
(V. 36)

(x'+ (ka) ') &

Further, on inserting the value of C in (32), and setting &=0, it follows that

x'+ (ka)'

e' "Ei(x)+xIi(x)
I

xdx
log

"0 Ei(x)
I

p~kay ~

ri log
I I expI i(43' —ka)]IIi&'&(ka) I (V. 32)li 2)

Anally, on extracting the real part of this integral, and proceeding to the limit ke—4, we 6nd

(~Ii(x)y '& tdx
log 1+

I

I.E,(x) ) . I x

(s.kal ~

=bmus «i log'
I I expLi(43s —ka)1IIi'"(ka) = —s'l4 (V 38)

a~o ( 2)
Having completed the decomposition of I,(l'), we return to the transform Eq. (9). In order to

determine the nature of the integral function deFined by this equation, we examine the form of both
members as I I'I-+co in their respective half-planes of regularity.

According to (3), the order of magnitude of II(l) in the upper half-plane is determined by the
behavior of II(s) for small negative values of s. The velocity potentials on inner and outer surfaces
of the pipe are continuous functions of s which assume equal values on the surface p=a, z&0.
Therefore, JI(s) is a continuous function of s which vanishes for positive s, and we may write

II(s)~s „n&0, s-+0 . (V. 39)
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We thus deduce from (3)

(V. 40)

Similarly, the order of magnitude of E(I) in the lower half-plane is determined by the behavior
of Z(s) for small positive values of z. Z(s) has an integrable singularity at z=0 (being related to
the component of the particle velocity along the cylindrical radius, at the periphery of the pipe),
and we write

We thus deduce from (6),
Z(s) s-e, p & 1, s—+0+. (V. 41)

(V. 42)

The asymptotic forms of I.+(I'), I (f) are given in Appendix 8; combining these with (40) and
(42), we find:

upper half-plane
lower half-plane.

In view of the bounds on a, P it follows that the integral function cannot become infinite, in the
upper and lower half-planes, as rapidly as the square root of I'. Such an integral function is a poly-
nomial of degree less than -'„ i.e., a constant. Consequently, the values of a, P are each $, and H(t'),
E(f') are specified by the known functions L+(f), L (I) in accordance with the equations

(V. 43).

in which C is a constant.

VL EVALUATION OF PHYSICAL QUANTITIES

It is a simple matter now to evaluate the physical quantities by means of the formulation developed
in Section III,

To obtain the velocity potential reflection coefficient, we insert the values (comps, re (V. 43))

in (III. 15), and find
Rest ~&I(I) = ~C/2kI. ~(ak)

&= —L+(k)/~+( —k).
Employing (V. 16), it follows that

R = —
l
R l

e""= —(L+(k))',
where

2k' t
"tan-'( —Ji(x)/¹(x))

} R [
=

} J-+(k) l

' = exp dx,
~ o xL(ku)' —x']&

I 1 r"'log{sJ,(x){(J,(x))'+(¹(x))']} 1 t "log{1/{2Ii(x)K, (x)]}dx+- ax.
C %40 xL(ka) '—x']& s ~ o x(x'+(ku)')&

Alternatively, using (V. 36), (V. 38), we find

pKi(x) q t' ke qdx-
lR} =(irka)& exp —ka+ — tan-'l ll 1—

&~S,(x)i & (x&y(ko)~)&i x
'

(VI. 1)

(VI. 2)

(VI. 3)

(VI. 4)

(VI. 5)

' " (. k ko& 1 ~"
[

(~~i(x)l''-=-l log +1 I
——2 l

»n-' ——I+— log I+} (VI. 6)
8 1I 4 'rkg ) kg a 1 g y„m1p) 2x sJ 0 l, gKi(x) ) }x(x2+(ko)2)f
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To obtain the power-gain function, we insert the expression

H(k cos» = C/[(k sin»'L, +(k cos» j
in (III. 25), and find, with reference to (1), (3),

f 2J,(ka sine) ) ' IR I

s(»=~
sin8 & 1 —fRJ' /L, +(k cos»('

(VI. 7)

Employing (V. 15), it follows that

s(» = Ji(ka sin»

pr sin'd [(Ji(ka sin»)'+ (¹(kasin») '3~ 1

Xexp
2ka cos8

I

"' x tan —'( —Ji(x)/¹(x))dxP
pr "p [x' —(ka sining) '$[x'+ (ka) 'j&

(VI. 8)

From (3) and (8) we may readily verify the simple forms of the gain function appropriate to the
directions 8=0, pr/2, s., as given in Section I.

Alternatively, using (V. 34) in conjunction with (7), we find

(2kap & Ji(ka sin»
~
R~

S(»=2I
sind(1+cos»& 1 —

~

R~'

1 I" tan '(Ki(x)/prIi(x)) xdx
Xexp ku eos8 ——

n ~p (x'+(ka)')&+kacos8 (x'+(ka)')&.
(VI. 9)

The identical simplification of (9), for the special directions considered above, may be confirmed
with the use of (V. 37) a,nd (5).

$t remains to be shown that the gain function is correctly normalized. According to the definj. tion
(III. 20), this implies that the result of integrating (8) or (9) over the complete solid angle subtended
at the mouth of the pipe is 4x. Since the gain function is symmetric about the axis of the pipe, this
condition may be stated as

g(» sindd6=2. (UI. 10)

We now verify (10) for the first form of the gain function. Let us consider the integral

J,[(1—P) ~ka]
i

dt ds

¹[(1—t') &ka$ I t —',(s+ (1/s)).—s' —1
(VI. 11)

extended over the contour shown in Fig. 9. If z lies on the arc of the unit circle, the I, integration
contour is indented above the pole t=-,'(s+1/s) =cos+. This pole disappears if s is located on the
section of the real axis, (s( (1, since (

—',(s+(1/s))
~
)1 and thus lies outside the range of the t

integral. Furthermore, the integrand of (11) is analytic on the indentations at s= a1 (of radius b)
and everywhere within the contour since Im t=0, and Im $(s+1/s) = —$(1/~ s

~

—~s ()sin8(0.
Thus the integral I vanishes, and we deduce that the result of integrating along the arc of the

unit circle and the section of the real axis is pri/2 (sum of residues of the integrand at the poles
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s= &1). Using (3), we find

l
J [(1 ~')ik ]1

exp. ——, tan-l, P

l ¹[(1—P)&ka] t —cos8 2 sin8

J,[(1 &'—)&ka] d&
- dx

exp —— ' tan —'—¹[(1r')—&ka] t ', (x—+-1/x) x' 1—
si 1 l 1 '

t
Ji[(1 t'—)&ka] dt

=—-~ exp —— tan '
2 2 ( ir &, I ¹[(1P)&ka—] t 1—

Since

~1
—exp ——

i tan '
j

J,[(1-~2)&ka]~ dt -q (»»)¹[(1—P)lka] t+1 J 4 L ~R~

it fo11ows that

l Ji(ka sin6) ) )
Ji(ka sin8)

Im exp i tan '~ ¹(kasin8)) ~ [(J'i(ka sin8))'+(¹(ka sin8))']&

1 t'
t

Ji[(1—9)&ka]
)

dh

I7Ã exp ——, tan ¹[(1—P) &ka] I l —cqs6

Ji[(1—t') &ka] dk
tan ' ¹[(1—t')~ka] t —costi

(VI. 13)
[(Ji(ka sin8)) '+ (¹(kasin8)) ']&

t
1 t'

Ji(ka sing') exp I——
I

Ji(ka sin8) J,[(1—~') &ka]
exp ——P ~l

"0 [(Ji(ka sin8))'+(¹(ka sin8))']& I gr &, ¹[(1t') ika—] l —c»y I

The contour of integration in (13) is indented above the point t=cos8, and p designates the

pr incipal value.
On extracting the imaginary part of (12), we 6nd by referring to (8) and (13) and passing to the

limit 8—+0,

or,

g(8) sin8d8=2.

x1—fR/' " x1—/g/2
g(8) sin8d8 =—

8 fz) [R/

VIL APPROXEMATION FORMULAS AND
METHODS

The exact formulas for the magnitude of the
reRection coefficient admit simple approxima-
tions when suitable restrictions are imposed on
the values of ka.

Equation (VI. 3) provides a convenient basis
for approximation in the range ka & j. ; this range
corresponds to low frequency sound vibrations or
wave-lengths large compared to the diameter of

log +—i, ka (1.
yka 12 J

(VII. 1)

the pipe. On expanding the arc tangent in
ascending powers of the argument, and em-

ploying the corresponding series representations
of the Bessel and Neumann functions, (A. 1),
(A. 2), we find
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At kn=i, the ~alue of IRI computed from (1)
is in excess of the correct value by less than 3
percent; the deviations decrease with smaller
values of kG.

An approximation for I/u in this range is more
dificult to obtain; Fig. 2 indicates, however,
that here the deviations from the static value
(I/. =0.6133, k.=o) «e smail.

For values of ka greater than unity, we use
(VI. 5) as the basis for approximation. The result
of expanding the integrand in inverse powers of
kC ls

t'Ei(x) y t ka qdx
tan-'f

'isIi(x)) & (x'+(ku)')i) x

1 ~" Ei(x) p t 1
x tan-'i Idx+0

i2(ka)'~, & I,( )x1 &(ks)')

thus, on retaining only the 6rst term of the
expansion, and noting from (V. 37) that

(Zi(x) )
x tan-'i idx = ir(ka)'

hs.I,(x})

~ha -i]
X lim I (Ji(ka))'+(¹(ka))'I

kazoo j.6

however, it is possible to account in a simple
manner for the directional properties of the
radiation fieM. In the latter connection, we
proceed via an assumed expression for the dis-
continuity of the velocity potential at the surface
of the pipe. Representing this quantity as a
combination of incident and rejected dominant
mode waves,

where R is the reflection coef6cient, it follows
that

1 R i
If(I ) ='I + (VII. 4)

Substituting from (4) in (III. 24), we find,
after inserting a normalization factor,

We note that (5) has the correct functional
dependence on

~
R ~, when evaluated in the

directions 8=0, x. On imposing the normaliza-
tion condition (VI. 10), we find

1 (Ji(kasin8)) ' 1
g(8) =—

f ) P(1+cos8)'
sink ) 1 —(R/'

—2 sin%Re R+(I —cos'8) ~R['). (VII. 5)

1+~a~ 1 [1+@~
[~[.=(~k.)~.-"I 1+— (, k.&1. (»1.2) V=

32 (ko)'&

At ku= 1, Eq. (2) yields a value smaller than
the correct one by about 3 percent; the devia-
tions are less than 1 percent for ku&2.

In consequence of the logarithmic singularity
of the first integrand in (VI. 4) at the zeros of
the Bessel function, the values of //u abruptly
decrease near ka =3.832.

It is of interest to compare the results of a
rigorous formulation of the problem with those
obtained by approximation methods; the com-
parison serves to determine the applicability of
these methods in problems of a related nature,
whose exact solution is difticult to obtain (e.g. ,

for cylindrical pipes with diferent cross sec-
tions).

Approximation methods for the calculation of
the re8ection coe%cient are" not easily devised;

2 ReR
+— Ji(2ka). (VII. 6)

kn1 —(Z('

1 (1+cos8
g(8) =—

~
Ji(ku sin8) ~, (VII. 7)

sin8 )

where the normalization factor is given. by

ts, 2%a

N = 1 —
~

Jg(/)di,2' 40

'=. $(ka)', ka«1,

'=-. 1 —1/2ka, ka» 1.

(VII. 8)

If the reflected wave is omitted in (3), we
obtain, instead of (5),
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Equation (7) corresponds to the result of the
Kirchoff approximation, in which the radiation
field is calculated from the incident 6eld and its
normal derivatives at the mouth of the pipe. The
Kircho6 approximation is least accurate at low
frequencies, predicting a non-isotropic gain func-
tion in the limit ka-+0 (compare Fig. 3) which de-
creases from a value 3 in the forward direction
to 0 in the backward direction.

A considerable improvement on the Kircho6
result is achieved by inserting the correct values
of the reflection coefFicient in (5) and (6). The
accuracy of this modihed KirchofF formula is
sho~n by the comparison curves of Fig. 10, cal-
culated for the value he=1. This feature is in
accord with the fact that the radiation field is
derived principally from the surface discon-
tinuity of the velocity potential on a section of
the pipe, terminating at the mouth, whose linear
dimension is comparable to the wave-length. At
low frequencies, the length of this section is large
compared to the transverse dimension of the
pipe, and the radiation field can be accurately
derived from the asymptotic form of the velocity
potential within the pipe.

Rigorous solutions have also been obtained for
the problem of electromagnetic radiation from
a semi-infinite circular wave guide. tA'e expect
to publish the details shortly.

APPENDXK A

S~~~mary of Formulas Involving First-Order
Cylinder Functions

- (—1)"(z/2)'""
Ji(s) = Z

m!(m+1)!
(A. 1)
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1 1 1
P (m+ 1)=-+-+ ~ ~ ~ +——logy,

1 2 m

log y=0.5772, (A. 2)

Hi&'&(s) = Ji(s)+i%&(s),

Ji(s) = —d Jn(s)/ds,

H &'&(s) = dH &—'&(s)/ds

Hi&'& (is) = 2K&(s—)/~,

Ji(is) =iIi(s),

Hi&" (e ""z)=2K&(z)/ir+2e '~"I (i)s

Ji(e ' &'z) = —e' I'I, (s).

(A. 3)

(A. 4)

(A. 5)

(A. 6)

(A. 7)

(A. 8)

(A. 9)

—
&r (arg s & 2ir, (A. 10)

1 p 3
H &»(z)J (s) —[1+e2'&* »~&4&)~ 1 — + ~ . ~

&. Sis

rf' 3
em&is —s~/4&gi

&8~ )

~~args~ (m. (A. 11)

1~ 15
Ii(s)K&(z) —

i
1 — +

2z ( 64s' )
g
—2z+3~i/2 ( 3

+
I

1+——
2z

—ir/2 &arg s &3&r/2, (A. 12)

The remaining formulas are asymptotic ex-
pansions valid when ~s~ is large compared to
unity.

( 3
H, &&(z)-(2/ z)~e'&--

~

1—
8iz

2 2
Xi(z) =—log(s/2) .Ji(s) ——

( 1)wa(s/2) 9m+1

m!(m+1)!

X (P(m+1) +P(m+2)),

eel~

Ki(s) z ( 4s j
1

+ g
—2z+8 sri/2

—&r/2 &arg s &3ir/2. (A. 13)
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APPENDIX 8
For the determination of the integral function defined by the transform Eq. (V. 9), we require the

behavior of L+(l ), I. (g) when
~ f [ +~-, in the upper and lower half-planes, respectively. Referring

to (V. 14), we note first that

p~ logLsiH, &"((k' —t') &a)Ji((k' —t')&a) 1 2 p" x logLxsHi&'i(x) Ji(x)j
dt dx = O(1/l. ),-k 1 a 0 ((ka) ' —x') i

Furthermore, using (A. 12),

p" logL2Ei((t' —k') ia) Ii((t' —k') ia) 1 p" log(1/ta) p" log(2Ei((t2 —k') &a)Ii((t' —k') ia) ta]--dt= dt+ ~ dt
~a t2 f2 tm f a tR i 2

1 p" log(1/ if'a—v) 1 p" log[2Ei(x)Ii(x) (x'+ (ka) ') ij
x'dx

ii "ai e s'+1 f2a J (x'+ (ka) ') &

and by (V. 14),

(B. 1)


