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The traditional theory of the solid state rests on two
false assumptions. One is the principle of a constant
relaxed (or standard) state. The other is the principle of
relaxability-in-the-large, first formulated mathematically
by de Saint-Venant. His equations are essentially identical
with Riemann's equations expressing the condition that a
geometry be Euclidean-in-the-large. It is shown that a
principle of relaxability-in-the-small is sufficient for the
geometry of strain —which then becomes a three-dimen-
sional Riemannian geometry. The kinematics of strain is

next developed without introducing the principle of a
constant relaxed state.

The ground is thus cleared for the construction of a
classical theory of andlasticity. It is first shown that the
variability of the relaxed state makes the density of the
substance independent of the strains. Consequently, the
internal energy can depend on the specific volume as well

as on the strains and the entropy. The expression for the
rate of increase of entropy is then derived. As usual,
this suggests, but does not uniquely determine the form
of the dissipative laws. In addition to the usual equations
for the viscous stresses, one is led to another set of equa-

tions involving parameters that quantitatively describe
the anelastic properties of the substance.

These results are used to derive the equations for the
waves of distortion and dilation in an ideal isotropic
anelastic medium. When the two coefficients of yiscosity
and two coefficients of anelasticity all vanish, these reduce
to the usual equations for such waves. In addition to the
four dissipative coefficients, the isotropic anelastic sub-
stance is characterized by four elastic moduli, rather than
by the two that characterize an isotropic elastic substance.
Thus, there are eight parameters whose values can be
adjusted to describe the particular substance. When the
four dissipative parameters do not vanish, the propagation
of the waves can be described by five relaxation times.
The ideal isotropic anelastic substance thus has a relaxation
spectrum of about the same complexity as those of actual
substances.

The kinematic independence of the density and the
strains causes a hydrostatic pressure to have diR'erent

dynamic effects than a uniaxial pressure. This is in
accord with experiment —the latter being much more
effective in producing anelastic deformation than the
former.

S. INTRODUCTION

'HE phenomena of anelasticity have been
known for centuries. They are the basis of

the metallurgical and other plastic arts. Possibly
this has caused them to be too familiar to be
easily analyzed from a theoretical point of view.
In any case, there is a marked disparity between
the amount of thought that has been expended
on the theory of elasticity and that expended on
the theory of anelasticity. There is a tendency
among theoretical physicists to excuse this by
claiming that there have, as yet, been no critical
experiments in the 6eld of anelasticity. This is
scarcely a valid claim, for the experimental
literature of this subject is more extensive than
that of atomic spectra, and somd of the greatest
experimenters have contributed to it.

It is the purpose of this paper to indicate that
the classical theory of elasticity can be extended

~ This work represents one of the results of research
carried out under contract with the Bureau of Ships,
Navy Department.
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to include anelastic phenomena. To accomplish
this, it must first be noted that the traditional
theory rests on two false assumptions. It must
then be shown that they can be eliminated
without serious alteration of the concepts of the
theory, and 6nally, the untenable assumptions
must be replaced by de6nite laws of anelasticity
whose consequences can be compared with
experiment.

The 6rst of the false assumptions may be
called the principle of a constant relaxed state.
It asserts that, if the strains of a solid object
were to be completely relaxed at time t, the
resulting state would be the same as if the
strains had been relaxed at any other time to.
While some substances, such as spring steel,
conform to this principle within wide limits, it is
in direct con8ict with all that we know about
ductility, malleability, etc. There is little doubt
that it should be replaced by some law of a
quantitative nature, such substances as spring
steel being characterized by extreme values of

73



CARL ECKART

the parameters, and such substances as copper,
by moderate values.

The second false assumption may be called the
principle of relaxability-in-the-large, It asserts
that the strains in a solid object can be com-
pletely relaxed by removing all external forces.
It is trite to remark that the strains in an optical
blank cannot be relaxed in this way: it must be
carefully annealed and aged. Such counter-
examples could be multiplied indefinitely, but
one su%ces to show that this principle, also, is
an unsuitable basis for a theory of the solid state.

The principle of relaxability-in-the-large has
an interesting history. It apparently entered the
theory as a tacit assumption and remained
unrecognized, Until in 1864, de Saint-Venant
criticized Maxwell for ignoring it in the develop-
ment of a general method for the solution of
elastic problems. ' The former gave a precise and
general mathematical formulation of the princi-
ple, and it has been accepted as basic ever since.
His work is very closely related to that of his
contemporary, Riemann. In 1861, the latter
published his work on difkrential geometries,
i.e., geometries that are Euclidean-in-the-smal).
He also formulated the necessary and sufficient
conditions which such a geometry must satisfy
in order to be Euclidean-in-the-large. It is a
remarkable fact that de Saint-Venant's condi-
tions for relaxability-in-the-large are essentially
identical with Riemann's geometrical conditions.
This relationship has become fairly well known,
and physicists have become accustomed to
dealing with geometries that are only Euclidean-
in-the-small. It does not appear to have occurred
to anyone that, by postulating only relaxability-
in-the-small. , the ground is cleared for the con-
struction of a theory of anelasticity.

In the following pages, a general theory of
strain will be developed. It will first be shown
that relaxability-in-the-small is sufhcient for the
discussion of its geometrical aspects. Next, the
kinematics of strain mill be developed without
using the principle of a constant relaxed state.
After these negative tasks have been completed,
an attempt will be made to 6nd positive laws of
anelasticity. The only source of guidance in this
phase of the work will be the second law of

' A. E.H. Love, 3fathemutical Theory of E/asticity (Dover
Publications, New York, 1944), 4th edition, pp. 1/, 49, 101.

thermodynamics; since this is an inequality
rather than an equality, the equations wiII not
be uniquely determined. This is, in a sense,
fortunate. For, if it should prove that the
equations do not correspond with the facts, there
is always the possibility of replacing them by
other, more complicated, equations. Finally,
equations for the propagation of waves of dis-
tortion and dilatation in an isotropic anelastic
medium are derived. These reduce to the usual
equations when four coef6cients of dissipation
vanish. When these do not vanish, the propaga-
tion of the waves can be described by means of
five relaxation times. Thus, even the simplest
ideal anelastic substance has a relaxation spec-
trum comparable in its complexity to those of
actual substances.

where

(dl)'= b;;dx;dx;,

(dX)' =g;,dx,dx;,

(&)

(2)

b;;=0 if iWj and bii= b22= bsa= &, (3)

is the Euclidean metric tensor, and g,; is a tensor
that specifies the state of strain at the point P.
Since a real value of dX (greater than zero),
must be associated to every distinct pair of

~ The indices i, j, ~ -, have the values 1, 2, 3, and the
summation convertion for pairs of identical indices will be
followed. Since the coordinates are cartesian throughout,
there will be no need to distinguish between covariant
and contravariant components; consequently inferior
indices will be used by preference although not exclusively.
The use of superior indices is convenient for the designation
of the reciprocal g-matrix: i.e., the matrix g'~ is de6ned by
the equation

g"g~.a = ~'a.

More generally, if a; ~ ~ is any quantity, then
as a ~ ~ ll&1a o ~ ~

This convention makes it possible to use all of the ordinary
formulae for the Riemann-ChristofFel symbols, etc. , while
preserving the convenience of writing a'b' instead of 8;;a&&'.

2. THE MEMANNIAN GEOM@TRY OP STRAIN

Let P and Q be two neighboring points of a
material object that is under strain. Two lengths
are associated to these points: one is d$, the
actual distance between them, and the other is
dX, the distance that would separate them if all
strains in the small region surrounding I Q were
relaxed. If dx; are the cartesian components of
the vector I' +Q, then'—
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points P, Q it follows that the symmetric tensor

g y is positive definite.
The question of a physical procedure for

relaxing the strains in a given neighborhood
immediately arises. For this purpose, it is not
sufFicient to relieve the object of all external
forces: the various parts of the object may also
be exerting forces on neighboring parts and thus
causing "internal" strains to exist. Geometri-
cally, there is no diR'erence between internal
strains and those produced by external forces.
However, if a small bit of the matter surrounding
I' is cut out of the larger object, then all strains
in this bit will be relaxed, since it will have no
forces acting on it. There is no other general
way of relaxing the strains at a point, although
in special cases there may be simpler ways.
Saint-Ven ant's problem was to characterize
those cases in which the removal of the external
forces is sufFicient to relax all strains at every
point of an extended object.

Let P, Q, Q', etc. , be points in a dissected bit
of matter; it will be necessary to compare their
configuration before and after the strains have
been relaxed. Unmodi6ed words, such as
"length, ""angle, "will always refer to the former
state, and the adjective "relaxed" will be prefixed
to corresponding words referring to the latter
state. The coordinate difkrentials will always,
however, be in the cartesian system associated
to the state before the strains have been relaxed,
unless explicitely stated otherwise.

Kith these understandings, let dx; be the
vector P~Q and d'x; the vector P~Q'; their
lengths and relaxed lengths mill be given by
Eqs. (&) and (2). Let a be the angle QPQ' and a
the relaxed angle QPQ'; then it is clear that,

cosa = (dx~/dl) (d'x~/d'L), (4)

and it can be proven4 that

cosa =g,,(dx;/dX) (d'x;/d'X)

For this purpose note that the relaxed length,
d"X, of Q—+Q' is given by

(d"X)' =g (d'x dx~) (d'x d"x;)— —
+terms of third order.

' L. P. Eisenhart, Riemeeniel Geometry (Princeton
University Press, Princeton, New Jersey, 1926), p. 23.

4 R.eference 3, p. 38.

To second order, therefore, the Euclidean de6ni-
tion

(d"X)'—(d'X) ' —(dX)'
cosn =

2dkd'P

will be identical with Eq. (6). The neglect of
the terms of third order is justi6ed, since the
formula is to be applied only "in the small. "

Let x;=x;f(h) be any curve, F (not closing on
itself), in the strained object Th. en it is reason-
able to suppose that, if a filament having I' as
axis could be cut out of the object, the strains
in this filament would be completely relaxed.
Let P and Q be points on F; then the length of
this curve in the strained state will be

pq fdx; dx;) &

l=
i idh,
Ed& dh)

(6)

and the relaxed length of the 6lament axis will be

s( dx;dx;q &

] g, , fdh.
dh dh)

' The proof follows readily from a slight modihcation of
that given in RG, pp. 48-49. It is only necessary to replace
Eq. (17.1) by eau'=d'x; for &=he, and au'=d"x; for h =kg.
On integrating Eq. (17.4) by parts and using Eq. (17.5),
the equation in the text is obtained in a slightly different
notation.

One problem of the geometry of strains will be
to determine the shape of the relaxed filament;
the determination of its length is only one part
of this problem.

Conversely, it may be required to determine
the curve F so that the axis of the relaxed
filament will have a given shape. If this is to be
a straight line, the solution is simple: I" must be
a geodesic of the strain metric It, ;;;such a 6lament
mill therefore be called a geodesic 61ament. The
proof follows: let P and Q be two points on the
axis of a geodesic filament, and P', Q' two points
in the neighborhood of P and Q such that
Q-+Q'=d" axnd P-+P'=d'x, , while the relaxed
angles u' and n" (see Fig. 1) are both x/2. The
relaxed length of the axis between P and Q will
be given by Eq. (8). Let I' be any curve joining
P' to Q', provided only that it is everywhere
close to the axis; its length will be' X+&,, where
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+terms of second order,

=d ) cosa —d X cosot +
=0+

Hence the relaxed distance between any pair of
points in the two cross sections perpendicular to
the relaxed axis at I' and Q is the same, to first
order. This, however, is the condition that the
planes of the two sections be parallel after
relaxation. Since P and Q are arbitrary points on

the axis, it follows that the latter must be a
straight line.

The more general problem of determining the
relaxed shape of an arbitrary filament will not be
discussed, although the assumptions underlying
the preceding discussion are presumably ade-
quate for its treatment. Of greater interest is
the remark that, if I' is a closed (rather than an

open) curve, and a closed filament be cut from

the object with I' as axis, the strains in the
filament will not always be completely released.
To prove this, consider a curvilinear triangle
I'QR in the object, whose sides are geodesics.
Let this be the closed curve F, and cut a filament
from the object with this as axis (see Fig. 2). If
the strains in the filament were completely re-

laxed, its axis would become a plane triangle,
and hence the sum of the angles at P, Q and R
would be ir. However, Eq. (5) affords the means
of calculating these angles, and their sum will

usually not be ~, so that the triangle must be
curvilinear, and the strains only partially relaxed.
If one side of the filamentary triangle be cut,
further relaxation will occur, and it will assume
some such form as Fig. 3.

In general, the relaxation of the strains in thin
sheets cut from the object will therefore also be
incomplete. For, we may consider the above

triangular filament to have been prepared by
first cutting a thin sheet from the object, and
then cutting out the triangle. Since each new
cut will cause some further relaxation, the
conclusion follows.

Finally, we may return to de Saint-Venant's
problem, and consider the condition that the
strains in an object may be completely relaxed by
merely removing the external forces, without
making any cuts. Let x; be the cartesian coordi-
nates of a point, P, in the object before relaxation
and y; those of I' after relaxation. They will be
related by equations of the form p, =f,(xix&x,)
and since points that were distinct but neighbor-
ing before relaxation will be so afterwards, the
Jacobian of this transformation will not vanish.
Moreover, the functions will be single-valued
throughout the interior of the object. In terms
of the dy;, the relaxed distance between two
neighboring points will be given by the Euclidean
metric:

while Eq. (2) will still hold for dX in terms of
the dx;. The conditions that must be satisfied
by the g;;, in order that the functions f; shall
exist, were investigated by Riemann' as has been
remarked above. The necessary and sufFicient
condition is the vanishing of the Riemann tensor
formed from the g;; and their derivatives with
respect to the x;. If the interior of the object is
a simply-connected region, this condition is also
sufhcient for the complete relaxation of the
strains. If the interior is multiply connected, it
will, in addition, usually be necessary to cut the
object along a sufficient number of surfaces to
make it simply connected, before the strains
can relax completely. The theory of such cuts
has also been developed by Riemann. The
filamentary triangles discussed above are a
primitive example of the difference between
simply and multiply connected regions.

Riemann's condition is thus the vanishing of
complicated functions of the g;;. If the strains
are small, one may write

g )=8 -—2'"
and neglect the squares and products of 0.;; and
its derivatives. Riemann's fourth-order tensor

Fro,. i. ' Reference 3, pp. 23-25.
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Fic. 2.

then simplifies to the approximate form

$20 i $20

+ — — (11)
BX&8Ã& BXIcBXl 8XlBX& BX&BXI);

8 0'l

Since each of the four indices can take on any
of three values, there are 81 components Rl,;k.
However, many of them are equal, especially
because 0;;=0;;, and others vanish identically.
The distinct non-vanishing components are six
in number and can be obtained from

~ 0av f9 80 2y 80'Bi 80"23
+

8X2i9X3 BXy BX3, 8X2 BXy

|I' ~0'22 0'12 I

Bxi ( 8xi Bx2 i
8 t'8Pii 80'12)

+ i

—
I

(12 2)
{3X2 0 BX2 8Xy ~

3. THE KINEMATICS OF STRAIN

by the cyclic permutation of 1, 2, 3. Except for
a difference in notation, de Saint-Uenant's equa-
tions are Rl;;~=0.'

The rejection of the principle of relaxability-
in-the-large permits the above six components of
Al;;~ to have any values whatever. However,
this negative action is not sufhcient for the
construction of a complete theory of anelasticity.
The six equations must be replaced by others,
otherwise most problems will not have a unique
solutioa. This is the valid portion of de Saint-
Venant's criticism of Maxwell's vrork in this 6eld.

an object are very often accompanied by motions
that leave its integrity unimpaired; obviously,
exceptions to this rule do occur {rupture, frac-
ture) but they wi11 not be considered here.

Let u, (xix~xat) be the velocity of the matter
that at time t occupies the point I'=x;; the
velocity, at time t and at Q=x, +dx; will be

and its length will change according to the
formula

where

D(dt)' (Bu, 8u;)
idx;dx;

Dt &ax; ax, &

= 2Q(sggdX;AXE,

t'Bu Bugi'
&'i) k'I „+ I.

iax; ax, )
(15)

Such changes in the distance separating neigh-
boring points are called deformations: hence u~;;~

may be called the deformation tensor. The corre-
sponding anti-symmetric tensor is the vorticity:

BQ;
Ns+ dX).

BXp

The relative velocity of the pomts I' and Q will
thus cause the vector I' +Q to change; -the rate
of its change will be (to first order)

Ddx; BN, ;
~ dXp

Dt Bx;

Thus far, only the momentary state of an
object has been considered, and the relaxation
of its strains has been supposed to be accom-
plishted by an idealized destructive process.
Actually, the changes in the state of strain of

the identities

=&'a+I t'a
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=@(ii)

The determinant of the matrix g;; is denoted
by g; the rule for the differentiation of a determi-
nant results in

will be needed below.
The rate at which the relaxed length of dxi is

changing may also be calculated, and is

D(dX)' Bg;; Bg;; Buk Buk]++k +g~v +ga~
Dt Rt Bxp Bxy

'
Bxi

D Dgi;—(Iogg) =g"
Dt Dt

D
= g "~'—2

—(iogg),
Dt

and hence Eq. (25) becomes

BQi
(27)

where

1 + U(ii)
Dt

Buk &uk)
~(ii) =k~ gik +gki

ax; ax;)

It should be noted that because of Eq. (17),
U(i~ depends on the vorticity as well as on the
deformation of the motion:

where a,; is an obvious abbreviation, and may be
called the anelasticity tensor. The principle of
a constant relaxed state would require that the
relaxed length of dx; be independent of t, and
hence that a;;=0 at all times and places. The
rejection of this principle again has the negative
effect of leaving c;;physically indeterminate.

Before attempting to find positive laws govern-
ing the anelasticity tensor, certain purely kine-
matic equations connecting it to other quantities
will be derived. The Eq. (19) may be written

an equation that will prove important below.

4. THE THERMODYNAMICS OF STRAIN

The general equations of thermodynamics will
be brieHy summarized in the present notation,
and their implications for anelastic phenomena
discussed. The conservation of matter is ex-
pressed by

8p t9—+ (pu, ) =0,
Bt Bxi

where p is the density of the substance. This
may also be written

(28)

Introducing the specific volume, e=i/p, this
becomes, on referring to the previous equations,

D BQ;—(loge) =
Dt Bxi

D—(Iog g') =g "n'
Dt

(30)The matrix reciprocal to g;; is denoted by g'&

where (see reference 2)
is obtained. One consequence of the principle of
a constant relaxed state would thus be that the
product vg& is constant for each bit of the sub-
stance. It is the most commonly used conse-
quence of this principle. In the present theory,
the quantities v and g become independent, and
must both be speci6ed before the state of the
substance is known.

The conservation of momentum is expressed by

(23)g "gpa= &a g

hence Eq. (21) results in

8Qi
g"U('~) =N(i &

=
Bxi

(24)

which is analogous to Eq. (18). Consequently
Eq. (20) leads to

Combining this with Eq. (27), the important
~['i& =k(g~u[ki&+g»&[k'& equation+ 2(giku[kj[+gkiu[kii) (22)

(25)
DN; 8S;;

P
Dt Bx';

(31)
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where 5;,=5;; is the stress tensor; and the depends only on the symmetric tensor
conservation of energy is expressed by

D Bg; B
p—(-,'u;u, +e)+ = (u~S;;)
Dt BXs BXg

(32)

where e is the internal energy in ergs per gram
of the substance and g; is the heat How, in ergs
per cm' sec. ' Equation (31) combines with Eq.
(32) to give the first law of thermodynamics:

D6 BQ'g

p—+ =5;,~(;,).
Dt Bx;

(38)

which may. be called the elastic stress. (1t will

appear below that the total stress is the resultant
of three components: the hydrostatic pressure,
the elastic stress, and the viscous stress. )
Equation (38) results in

B~ Dg'~, DC'~
P 1Q

Bg;~ Dt Dt

It is worth noting that only the deformation
tensor enters into the expression, S;;u(;,), for the
rate of thermodynamic work.

From the previous discussion, it follows that
the internal energy must be a function of, at
least, the entropy, q, the specific volume, v; and
of the strain metric, g;;. In the traditional
discussions, v is assumed to be expressible as a
function of g, and thus does not appear explicitly
in ~. The rejection of the principle of a constant
relaxed state thus finds a first positive expression
in the equation

by Eq. (20). Using Eq. (22), it becomes

Be Dg;;
p 2 [gi&k j+gjk+ki j)i(ig)
Bg;; Dt

+i)'I ()ii 2gikii[k)') kg)kik[k~) 3 (3~)

Using these results, the first law may be
transformed into

D)) () (g ) f'11 2 ()8
p +-

D& Bx; 0 e ) (HJ ())x;
D6 B6 DV B6 Dgsg B6 D1f———+- +——
Dt Bv Dt Bg;; Dt Bg Dt

(34) (1)+ )
—

I &(*)1L~')+Pf*) 2g k&k 2g)~k'—j—
B6

p
BV

(35)

and referring to Eq. (29),

B6 Dv
P——= —P&(")~

Bv Dt
(36)

The usual definition of the absolute temperature,
8, is equivalent to

B6 Dg Dg

Bq Dt Dt

The various terms on the right can be trans-
formed into more interesting expressions. Using
the usual thermodynamic-definition of the hydro-
static pressure:

t lq
+ )

—I&')L&') —2g*k&(. )
—kg)»ik*)1 (40)

Es

B8
q;= —k

BXs
(41)

+i) p'5(j+ 2gsAki+ 2gikEki

+&«*))(ki)) &(ki) (42)

kg'kii(ki) +kR)'kg (ki) ++I((V)(k )))+k» (43)

The second law of thermodynamics asserts that,
for all motions compatible with the laws of
physics, the right side of this equation is greater
than zero. If the physical laws are unknown,
this imposes restrictions on their possible forms. '

One particular set of laws that satisfies these
restrictions is

The remaining term results in a more complicated
7 Carl Eckart, Thermodynamics of irreversible processes,

exPression; since g;; is a symmetric tensor, it Phys. Rev. 58, 267, 2gg, g~g {ig40).
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provided that k &0 and the two quadratic forms

+(((j)(&())u((i)u(&)) and ~((()')(&())+(P+(

are positive de6nite.
The Eq. (41) will be recognized as Fourier's

law of heat conduction, k being the thermal
conductivity. Equation (42) is a genera, lization
of the usual formulae for the total stress, the
6rst term being the hydrostatic pressure, the
second two the elastic stress, and the last, the
viscous stress. This last depends only on the
deformation tensor N~;;), and, since the fourth-
order tensor N~~;;)~~i~~ has 21 independent com-
ponents, it is clearly that generalization of the
Stokes-Navier formulae which is appropriate to
an a,eolotropic substance.

Since Eq. (43) involves the anelasticity tensor,
it has no counterpart in the traditional theory,
unless one wishes to consider the principle of a
constant relaxed state (a;;=0) as such. It can
be given a more useful form by using Eq. (20)
and (22):

2(g+u() ))+gi):u(»))+~(('j)(&&))+~( (44)
Dt

In this form, it asserts that changes in the strain
metric at a given bit of' matter are caused, not
only by the deformation of the matter, but also
by the elastic stresses. It is very interesting to
note that the hydrostatic pressure, p, does not
contribute to these irreversible changes in the
strain metric.

Perhaps this is the strongest argument for
supposing that Eq. (44) will be found consistent
with the experimental facts. There are indications
that the permanent deformations produced by
a purely hydrostatic pressure are second-order
efkcts compared to those produced by uniaxial
pressures. Thus, a cube of lead may be subject
to great hydrostatic pressure without apparent
anelastic deformation; a much smaller pressure
exerted by the jaws of a vise will deform it
noticeably and permanently.

5. THE PROPAGATION OF WAVES IN AN ISOTROPIC
ANELASTIC MEMUM

One method of obtaining information con-
cerning a substance is to study the propagation
of waves through it. In such experiments„ the

p=X3s+) 20,

+kl (~2~+)(10)4(+2p&k)

The total stress is

(48)

(49)

Sg( = L(X2 —X3)s+ (X)—Xm) o]bg(
+2po), (+2'(g()+N'u(;, gby), (50)

where N and N' are the two coefFicients of
viscosity of an isotropic substance, and N&0,
3N'+2%&0. For an ideal gas, 3N'+2%=0.

The conservation of rnatter reduces to the
equation

Bs
N (is) ~

Bt

strains are usually small, so that Eq. (10) is
useful, and the equations can be simpliied by
neglecting second-order terms in the 0;;. The
speciic volume, v, also departs only slightly from
its normal value ()0=1/pp. The abbreviations

s = 1—pov, o' = cr;;,

will be used; if the waves are purely elastic,
s+(r =0 to the present approximation. It will be
supposed, for simplicity, that all thermal e8'ects
can be neglected, so that the internal energy can
be treated as a function only of s and 0;;. Since
it must be a minimum for s=o, 0;;=0, a quad-
ratic function will sufBce for the present purposes.
It will also be supposed that the medium is
intropic, so that all of its 28 coefficients except
four will vanish:

t= (1/2po)(X3s +2X2so+X(a +2)((a;;o;g). (46)

The condition that this be a positive deinite
form ls

Xg&0, p&0, X3(3X,+2p) &3X22. (4&)

It should be noted that, although the preceding
discussion has been couched in terms of a theory
of the solid state, it ought to be possible to
apply it with little modification to fluids. For a
completely fluid substance, the coeScient p, =o.
It is likely that substances for which p, is small
will have properties that differ only slightly
from those of a completely fluid substance. The
distinction between hydrodynamics and the
theory of elasticity is merely quantitative and
not qualitative.

Substituting Eq. (46) into the general equa-
tions, it is easily seen that
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of the terms in Eq. (56) are gradients. Taking
the curl of this equation eliminates the gradients
and results in

The conservation of momentum becomes

BQg 8$ 80 80'g g

po = (Xg —X3) + (X&—X2) +2y,
Bt Bxg Bxg Bx~

8 [IIIQ [p~~

8 +4Mp pg XV Q [/&[ = /lV SC [g&& ~ (57)
+XV u[,+(E+N') u[;,&. (52)

tPXp

If M and N vanish, this reduces to the well-
The isotropic nature of the substance reduces known equation for the waves of distortion.
Eq. (44) to On taking the divergence of Eq. (56), one

obtains the generalization of the dilatational
&[&;»—+2MK[+M'K~4[ (53) wave equation:

where M and 3M'+2M are both positive. The
M's may be called the coefficients of anelasticity.
As yet, there is no kinetic theory of' these
constants, but it is possible that they do not
vanish for an ideal gas. In that case, a kinetic
theory would be possible. Because of Eq. (50),
Eq. (53) reduces to

Setting k=l in Eq. (54) and summing, one
obtains the simple equation

—(s+a) = —(3M'+2M)
Bt

X L3Xgs+ (3h&+2p) o], (55)

which shows that when the coefficients of
anelasticity vanish, s+a is constant.

The terms in OI, ~ can be eliminated between
Eqs. (52) and (54), resulting in

8 8Qp 8$—+4M' po + (&[a—&2)
Bt Bt Bxg

0' 8~$

+ (Xg —X&) +(X+N')
8xI[; BEBXI,

82$

Bt8xp

Bs—2p (3M'+2M)X2
ax.

+L(3M'+2M)X +2M'pj ~. (56)
Bxg

As in the traditional theory, the equation for
the vorticity is comparatively simple, since most

—+4Mp, o'g[= g[y[& —
j (3M +2M)l[2s

Bt

+ C
(3M'+2M) X,+ 2M'p&~I a, &. (54)

8 82$
+4M' ——po—+ (Xg —lI g) 'Ps

Bt Bt2
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Bt
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Bt

+L(3M'+ 2M) X&+2M'p]V'20 I . (58)

%hen the coeKcients of viscosity and anelas-
ticity vanish, and s+[r =0, this reduces to

8 82$——po—+(X[—2Ã2+X3+2p)'Ps =0.
Bt Bt2

For sfmple harmonic waves, this is equivalent to
the usual equation for the dilatational waves
except that the coefficient of elasticity usually
denoted by X is replaced by Xi —2) 2+F3.

These equations have plane wave solutions of
the form expi(kx nt) where —k is in every case,
expressible as a function of n. These functions
are such that k and n cannot both be real
numbers. The ratio

c(n) = (n/k) &

is also a complex number in general, but may
still be called the velocity of the waves: for real
values of n, its real part is the phase velocity
and its imaginary part is related to the absorp-
tion coefficient of the waves. For certain real
values of iI=1/7, c(n) =0. These values of r are
called the relaxation times of' the medium. It is
an empirical fact that anelastic media have many
widely difI'erent relaxation times: collectively
they form the relaxation spectrum. "The num-
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ber of lines in this spectrum depend on the
crystalline structu'II'e and on the degree of chem-
ical purity of the substance. It is therefore
important to discuss the relaxation spectrum of
the idealized medium considered above, in order
to see whether it conforms to these general
empirical facts about anelasticity.

The case of the distortional waves is quite
simple; Eq. (57) yields the formula

inL1 inr, —j
pic' = y, (i+4%M)

in —4M@,
where

r, =N/ii(1+4%M).

Therefore these waves contribute two lines to the
relaxation spectrum: T=r„and r= ~. The line
at infj{nity would presumably move to a finite
position if the thermal conductivity were not
set equal to zero, and it might split up into
several.

The case of the dilational waves results in a
more complicated formula, since Eq. (55) and
(58) must be treated simultaneously. The general
result is that t, is determined by the condition
that the determinant of two linear equations
vanish. These equations have the form

(in a)s+(i—n b)a =0,—
s{( in+4Mii) (—ppc'+A+8—in) 2iiin—+C I

+0 {(—in+4Mii)(X2 —Xi)+BI =0,

where ubA D are functions of the coefficients
of elasticity, anelasticity, and viscosity. It is
readily seen that poc' will be a rational function
of in, the numerator being a cubic and the

denominator a quadratic. It is not easily proven
that the roots of the numerator occur for real
values of i/in, but this is probably a consequence
of Eq. (47) and the restrictions on the coefFicients
of viscosity and anelasticity. Assuming this, the
dilational waves contribute three lines to the
relaxation spectrum. Again, a finite value of
the thermal conductivity will undoubtedly intro-
duce at least one additional line.

The present theory, therefore, predicts that a
pure isotropic substance will have a minimum of
6ve lines in its relaxation spectrum. If the
substance is not chemically pure, but contains
impurities that are capable of diffusing, their
concentrations will enter into the expression for
~ and their concentration gradients and chemical
potentials will enter into the expression for the
rate of increase of entropy. The equations for
small departures from equilibrium will therefore
contain additional variables, and increase in
number. This will increase the number of relaxa-
tion times. In the same way, departures from
isotropy will increase the number of types of
.waves and the number of kinds of dissipation,
with a corresponding complication of the relaxa-
tion spectrum.

It would thus seem that the present theory is
capable of explaining any given relaxation spec-
trum without resorting to the device of integro-
differential equations. The crucial empirical test
of the theory must therefore depend on its
ability to explain changes in the relaxation
spectrum caused by adding impurities, and
similar phenomena.


