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In search of a definition of breakdown" of a gas under microwave fields, the density of
electrons is investigated as a function of the field strength under the following simplifying
assumptions. Ionization occurs as result of single impacts between gas atoms and sufficiently
fast electrons. The gas has an infinite volume, and negative ions are not formed, so that the
only mechanism for electron removal is recombination with positive iona. The calculations
show that, at a certain field strength, the density of electrons rises sharply. The simple model,
therefore, leads to a breakdown phenomenon, at field strengths not far from observed values.
Gases treated are helium and neon under frequencies of 3000 megacycles.
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~ ~ ~S was observed in article I' of this series,
a simple theory of breakdown, concerned

with the motion of a free electron in an alter-
nating field such that the electron may reach
ionizing velocities after acceleration through a
half-period of the 6eld, fails since it predicts
values of the 6eld strength which are many times
too high. The alternative to this procedure is to
construct a theoretical discharge characteristic,
that is, a plot of current against 6eld strength
for given values of the gas pressure and 6eld
frequency. If such a curve exhibits breakdown
it will appear as a sharp rise in the current for
6eld strengths above a more or less de6nite value.

The current density may be written

j=ne(s, )A„

where e is the electron density and the 6eld is

taken to have the direction of the x axis. Since
no sudden change in the value of (s,)A, is to be
expected as breakdown is rehched, it will be
assumed that the phenomenon of breakdown

may be mvestigated adequately by studying the
dependence of' e upon the 6eld strength. In
particular s',/N, where N is the gas particle
density, will be plotted against the field strength

We shall make several assumptions which
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serve to restrict the physical situation being
discussed. First, it will be considered that the
field is uniform and that the discharge vessel is
effectively infinite in extent. Hence the effects
of electron diffusion to the boundaries of the
discharge vessel and secondary processes occur-
ring at these boundaries mill be neglected,
Second, it will be assumed that the gas molecules
do not form negative ions. Speci6cally, pure
helium and neon will be considered. Hence elec-
trons can be produced by ionizing electron colli-
sions with gas atoms as well as by cosmic
radiation and radioactive background and can
be removed by volume recombination of elec-
trons and positive ions. Third, we shall assume
that the electron distribution function may be
written in the form

Sg
f=fo'+ D'i' co+—et+ gi' sinrut j.

This implies that the gas is in a steady state
(constant electron density) and, in view of the
conclusions of article II4, that the field frequency
lies in the microwave region.

Actually, the discharge vessel is 6nite and
diffusion plays an important role. Information
on the capture cross sections of positive ions
seems scant, but these cross sections are often
believed to be small. Indeed most investigators
in the 6eld of gas discharges would be disposed
to ignore recombination in the presence of
diffusion. We have deliberately considered here
the case of an infinite gas, thus ignoring diffusion,

' H. Margenau and L. M. Hartman, Phys. Rev. 2'3, 309
(1948).
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HIGH FREQUENCY GAS DISCHARGES

mainly because this mOdel ls easiest to deal with.
Initial expectatioms are that, if anything like
breakdown were to emerge at all, it would occur
at field strengths quite difFerent from those
observed experimentally. Instead of that, how-

ever, it was found that the model chosen agreed
much better with what is known than could be
anticipated. It does produce a sharp rise in elec-
tron concentration at a certain field strength, and
this field strength, for a great variety of recombi-
nation cross sections, is only a few volts per cm
below that observed. It seems, therefore, that
the present approach does not miss the central
issue, although it cannot prove the absence of
difFusion. We hope to include this mechanism in

subsequent calculations.
Let 8 denote the rate at which electrons are

being produced per unit volume by external
agencies such as cosmic radiation. This is of the
order of io electrons per cubic centimeter per
second at atmospheric pressure. Furthermore,
let the electronic mean free paths for ionization
and recombination be denoted, respectively, by
X; and )'„. Then, normalizing the distribution
function to unity, we have the following equation
to describe the steady state:

where X is a constant and

V; being the ionization potential of the gas.
Multiple ionization mill be neglected. Hence,
since the electron density and the positive ion
density are equa1, X; is defined by:

(X-rr)g;X; = 1. (4)

The recombination cross section has been
investigated by %essel and others' and has been

~ m. w~i, A~~. d. PbY»~ 5, 6~~ t,~930); E. C. G.
Stueckelberg and P. M. Morse, Phys. Rev. SS, 16 (1930).

n—fs'. 4rrs'ds—=0 (2).
~p X„

The ionization cross section will be assumed to
be a linear function of the excess of the electronic
enemgy over that necessary for ionization:

E(N —u;)

shown to have the form:

Let

Equation (2) may now be written:

8+2~(lV n)EgrsI—g
—2rrn'RN, ;Is =0. P)

This equation may be solved for rs/X. We
obtain:

28 (XN Ii+RN;Isi 'II
I~ 1+ 1+

(Z~,sI,)s

R
21I~+,'Is

I

~ (8)

For 6elds that are su%ciently strong 8 may be
neglected and (8) reduces to:

I+I(
R qpIsq

(Egg) E.I,J

In this form the electron density does not depend
upon the normalization but only upon the shape
of the distribution function. For smal1 values of
the field strength the integral Ij may be neg-
lected and (8) reduces to:

g
~/~=

]&2x¹Ru;Ig)
(8b)

By means of these equations the entire discharge
characteristic may be plotted. The problem,
therefore, is one of determining the function fs'
and the integrals I~ and I~ for difFerent values of
the discharge parameters.

where R is a constant. The mean free path is
defined by:

eg„X,= 1.

Finally it is convenient to introduce a new
variable 8 defined by:
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It has been shown in the first two articles of
this series'4 that, if the distribution function is
written in the form of Eq. (1), fo' must satisfy a
diR'erential equation having the form

d (yX)s' df bf—+—=0,
6s'ds s'+(raX)'ds Q

where

gf m d~s'q kT df's'dfy 1 dS
f I+ ——

I

——I+,—(10)
bt Ms~dv &X, ) 3A'ds (),der 4wv~ds

ionization of the molecules and even in is
region the cross sections for ionization and
excitation are small as compared with the total
collision cross section. %e shall assume, there-
fore, as an approximation in the following that

Introducing two parameters de6ned by

up= (ruX); ug—= (2yX),

we may integrate (9) and obtain

(u+u~) XSdup3Mq
s (11)

& ~ j J„u'P[MuP+24(u+u~)kTj

where

(b)

(10)'K 4(1043'K

FIG. 2. Rate of increase of electrons having velocities
below 5 os. b.

Normalized to unity at 8=1.0

(Here and in what follows, we write f in place of
foo) All non-elastic collisions are accounted for
by the proper choice of the function S. The
1arge majority of collisions occurring in a dis-
charge at a given electronic energy will be
elastic, since the magnitude of the distribution
function will fall oR' rapidly in the energy range
immediately above the energy necessary for

F=exp

kT+
24(u+ug).

(12)

F(u), therefore, is the form that the isotropic
part of the distribution function assumes when

only elastic collisions are taken into account.
A number of special cases are of interest.



BISH FREQUENCY GAS DISCHARGES

Since a differential equation of the same form as
(9) is obtained for a d.c. field, both the micro-
wave and d.c. distributions may be handled by
the present treatment.

(a) ui=0

F(u) is the Druyvesteyn distribution. ' Again uI
refers to the r.m.s. 6eld. This result is given by
Chapman and Cowling. '

(c) T=O

/3q
I
"(u+ui)XSdu

uiuPF

6mu(u+2ui)
lF=exp l—

(3M) ~" XSdu
f=l l~ --, , (»)

~ 2ir ) & „u+Muii+ 12uk T] where

F=exp~—
3funi

kT+

This result has already been presented in article
I' of the present series.

(d) ui =0, ug =0

J"(u) is the Davydov distribution. ' Note that
u, ~ here refers to the r.m.s. 6eld.

(b) ui=0, T=O

t' 3 ) t "XSdu

where

( M ) t XSdu
f=l

&SHEET) 4 „ I'F

F=exp
2kT

(16)

35$u
7= exp I—Muii I
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' M. J. Druyvesteyn, Physica 10, 61 (1930).'S. Chapman and T. G. Cowling, The Matkeeur4icel
Theory of Non- Un~form Gases (Cambridge University
Press, New York, 1939), p. 384.
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Mgq'
T'= T 1+

24egkT
(17)

If (17) is used to eliminate T from Eq. (11), the
distribution function becomes:

E(u) is here a Maxwelhan distribution corre-
sponding to a temperature T. This, therefore,
represents thermal excitation of the gas.

(e) ui»u. If this inequality holds over the
entire range of u within which the magnitude of
the distribution function is significant, it has
been shown in article 114 ~ that F(u) is Max-
wellian at an eR'ective "temperature" T' given by

noted by u, . Then from article I' we have:

p «+«e

5(u) =2s N)l f g, .ud.u

If this is used in conjunction with Eq. (16) for
thermal excitation or with any of the other
integral representations of f, the finite upper
limit of the integral in (19) leads to an integro-
differential equation in f or a difkrentio-differ-
ence equation and no useful result is obtained.
We note, however, that we may rewrite Eq. (19)
as follows:

5(u) =2s.N f rI, udu

This is of the same form as (16). Hence, it
follows that insofar as the electron distribution
function is concerned the effect of an alternating
field of su%ciently high frequency is equivalent
to that of raising the temperature of the gas and
conversely. Thus a thermal "discharge" and a
high frequency discharge can be studied simul-

taneously so long as T' is defined.

The results outlined in the preceding section
can be given practical meaning only if the form
of the function 5(u) is speci6ed. From the
discussion of this function in article I' it is clear
that this specification will involve a choice as to
the nature and number of inelastic processes
which are deemed important for the problem in

question. We shall consider two cases. The first,
the excitation of a single, discrete state of the
molecule, will permit us to develop a method of
using the results of' the preceding section to
compute f The seco. nd case will include ioniza-
tion of the molecule and volume recombination
of electrons and positive ions but will neglect
the excitation of quantized states. %e shall use
the latter to compute the electron density.

Consider then that only a single type of
inelastic collision occurs. Denote the cross section
for this process by g, (u) and let the value of u
corresponding to the excitation energy be de-

' See also H. Margcnau, Phys. Rev. 59, $08 (j946).

«+( j+1)«e

2sÃQ
I f g. udu (.20)

g~l 4 «+ j«e

=2sN f g. udu QS(u+—ju, )
/~1

The entire range of u has thus been subdivided
into the finite ranges:

(0, u,), (u„2u,), (2u„3u,),
Since f goes to zero strongly as u increases,
there will be some range of u within which f is

so small that it may be assumed to vanish in

the next higher range without causing appreci-
able error Hence

(1) u~&uu, f=:S=:0

(2) (u 1)u. ~&
—u ~& uu,

F00

5=2aM f g. udu

(3) (u —2)u, ~&u&(u 1)u, —

l (21)
5=2+K~ f g, udu S(u+.u.)—

(u+1) 0&u&u,

5=2mN
~

f g udu —Q 5(u+ju. )
Qg j~l

Expression (21.2) may now be combined with

(11) or one of its reduced forms; 5(u) may be
eliminated and the result is a second-order



differential equation in f T.he solution of this
equation is the distribution function in the cor-
responding range of energy. Similarly (21.3) may
then be combined with (11) to yield a dllkrentlal
equation in f in the next lower energy range
since now 5(u+u, ) is known as a function of u.
The solution is then 6tted to the preceding
solution, and so on. In this way the distribution
function may be found over the entire range of N.

A cumulative error can be avoided by using the
solution corresponding to (21.2) to compute f in

the energy range corresponding to (21.1) and
then repeating the process until consistency has
been achieved. This method of procedure would

appear to be impractical were it not for the
fortunate circumstance that under certain condi-
tions only two steps are required. Thus, for
example, in the case of the rare gases the distri-
bution function may be considered to be negli-

gibly small for energies greater than that corre-
sponding to twice the excitation potential. %hen
this is the case (21) may be reduced to:

negligibly small for energies of the order of that
corresponding to the ionization potential or
larger; the ionization cross section is zero for
energies less than this value. In addition and in

line with the foregoing procedure we shall assume
that the distribution function may be-neglected
for energies greater than that corresponding to
three times the ionization potential. Hence,
making use of these approximations and the
condition (24), we may easily show that:

(a) u&u,

5(u)=:2 2s(N —u) ~ f q; udu

+2s(N n) —f g; udu

—2su' fq, udu
J,

(a) u&u, 5=2sS, f g, mdu.

(b) 0~&u&~u, S=S(u,) —5(u+u, ).
(22) (b) 0~&u~&u;

A similar procedure is possible when only
ionization and volume recombination are as-
sumed to occur. Again following article I' and
making use of the neutral molecule and positive
ion particle densities in (4) and (6) we have:

—2su f g udu

= {5(u;)—5(2u+u;) I

5(u) =2.2s(X—u) i f 'tI, 'udu . t+ 2su)" f g„udu 5(2u+—u;)i.
'll

+21I(+ t$))l f g, .u$u.

—2su f g, udu (.23).
Furthermore, from the de6nition of a steady
state we must also have:

5(&~) =2s'(N —%))~ f g; udu

The second expression in braces in (25b) vanishes
at both ends of the interval: accurately at zero,
approximately at u; since both terms become
negligibly small. Within the interval, as u in-

creases, both terms decrease monotonically in
magnitude. In a 6rst approximation, therefore,
this term will be neglected. To anticipate the
results of the calculation, it will be found that
~hen n&&N, which is still true in the region of
breakdown, this approximation is a good one.

—2su f q„udu=0. (24)

We are now in a position to find an expression
The cross section for recombination becomes for the distribution function. In the remainder
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of this paper only thermal or quasi-thermal
(high frequency) excitation will be discussed.
Consider 6rst the case of excitation of a single
discrete level. The function S(u) is given by
(22). We shall assume a linear cross section of
the form:

( )
E(u ug) uwul

(26)0 u, &~u,

S(u) may be eliminated between (22a) and (16):

where

s —= (c'+4p) ~u k =—

(c'+4p)'
(29)

This is a special form of the differential equation
of the conHuent hypergeometric function. Since
s)cu and W ~, ,(—s) increases as exp(s's) for
large values of s, we must choose as the solution
consistent with the boundary condition that f
must vanish at infinity:

(f)"+ —+ (f)'+ P—(—f) = o (27) g=A Wa, y(s). (3o)
.Q „Q

cEM
c=—;a=—2c+Pu, ; P=

2kT 2m'
NgX= 1

We have finally:

f=u-'e &'"g- (28)

1 k1
g"+ —-+- 'g =0

4 z

3
'

I 3 2 I

and the mean free path, X, has been assumed for
convenience to be a constant in the energy.
The second term of (27) is removed by the
substitution:

Hence, by means of (16) and (22) the distribution
function may be found over the entire range of
u. There are four steps:

(a) u&~ u, f=Au 'e~'"TVg)(s),

(b) u&m. $=2+EJ f K,(u u, )ud—u,

(31)
(c) u&~u, S=S{u,)-S{u+u,),

(d) u~&u, f= ~~ e '"

For the case of ionization and volume recom-
bination (no excitation of discrete levels) we
note that since the form of (25a) is identical
with that of (22a) the same solution may be
used as before, if a linear cross section in the
form of (3) is adopted. Hence, the distribution
function may again be computed over the entire
range of u by means of four steps. We shall
assume henceforth that u«X. Then Eqs. (31)
remain valid for ionization provided we make
the following simple changes:

I, must be replaced by u;; the constant X, by
the appropriate Z;, and Eq. (31c) reads

He S=S(u;) —S(2u+ u;) . (32)

p&1-mm Hg
u 3(10') sec. '

1. 8=10 o cm4 sec.~
2. 8~10 ~

3. R=10 8

J/J JVJ
8 lZ

K(volts c~-')

FIG. 5. P1ot of e/N es. 6e1d strength.

The parameters of the Whittaker function are
defined as in the erst case. It is interesting to
note that in 6rst approximation the form of the
distribution function does not depend upon any
sperific assumptions concerning the recombina-
tion cross section but only upon its existence in

the equation of the steady state.

The distribution function has been calculated
by means of (31) and (32) for helium and neon,
since only for these two, among the rare gases,
can the assumption of a constant mean free path
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be justi6ed even in approximation. The calcula-
tion was made for four temperatures: (104),
2(104), 3(104), 4(104)'K. The results could then
be interpreted in terms of the high frequency
field by means of the relation, obtained from (17):

T' —T &

«2

«4

clmg .6
O

E= 7.98(10 ")v

A
(33)

Here 8 is measured in volts per centimeter, u is
the 6eld frequency, A is the molecular weight of
the gas molecule, and T is taken to be room
temperature. The frequency of the 6eld was
assumed to be 3(10') sec.-' since measurements
exist at this frequency. The treatment as one of
"thermal" ionization is then va, lid for pressures
below about 1-mm Hg, in accordance with the
conditions attending the use of (17).

The slopes, X;, of the ionization cross sections
for helium and neon were measured from the
published curves of Druyvesteyn and Penning. '
The total collision cross sections were obtained
by averaging over the collision probabilities as
published by Brode. "

Direct evaluation of the %hittaker function
in (3ia) was found to be possible only for helium

and at the temperature 4(10')'K. This was due,
first, to the fact that the large values of the
parameter k required by the problem necessitated
the evaluation of a very large number of terms
of either the power series or asymptotic series
expansions of the tAt'hittaker function, and,
second, to the circumstance that over the range
of s in question we are near the zero of the
coefficient of g in Eq. (29) and hence were forced
to use an impracticably large number of signi6-
cant 6gures. The matter was resolved by ob-
taining approximate, numerical solutions of Eq.
(29) directly. Let' zo denote the value of s
corresponding to I;. Then for s&~Bi&so the
J.W.K.B. solution was found to be satisfactory.
A suitable value of s~ was that corresponding to
8=1.05, where the variable b may be defined,
as in article I of this paper, by either of the
relations:

u Scg, s Bso.

'o M J Druyvesteyn and F M Penning Rev
Phys. 12, 92 (1940).

R. B.Br', Re&. MM. I hys. 5, 263 (1933).

(b)

3 4
E(VOlta Crn-l)

Fro. 6. Plot of logn/N es. field strength.

Neon
v=3(10') sec. ' p=1-mm Hg

Thus:
p(») '

Wg, i(s) =:

- p(s)-

where

exp —,I p(s)ds

s&~si&sp (35)

For s~~&s~&si we may rewrite Eq. (29):

g"— (s—4k)g=0.
16k

This has the solution:

i(s —4k) &

Wi, , i(s).=(s—4k)& A Jim's
6k&

+~J—1/3
i(s 4k)&—

6k~
sp & s & si. (37)

(b) Wg, i'(s) = (s—4k)

i(s —4k) &

6k~

i(s-4k)&
)—8Jg(3

si +~ s ~+sg, (38)

The solutions (35) and (37) may be equated at
si. An additional relation in A and 8 is obtained
by equating the derivatives at this point. Thus:

(a) Wa, i'(s) =- p+ Wa, i(s)
4p2g2
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aA/s+bJ i/s

~1/s+s/8+ J I/s+ s-/3-

where

0~ 2)3—&~X)38=-
4/sA/s+~ 1/s+ s/s— —

Z Zgi

Ws, i(s) s4k&Ws, i'(z)
6= b-=—

(s—4k) & (s —4k)

The Bessel functions were evaluated at zj. by
interpolation from the tables of Jahnke-Emde, "
at zo by using the series expansion for the Bessel
functions, "the first three terms being sufticient.

It was found convenient to let f(N, ) = 1

throughout the calculation. A check of the
approximation outlined above was possible for
helium at the temperature 4(10') 'K since at this
temperature the asymptotic expansion of the
Whittaker function could be used. Agreement to
within 6ve percent was found over the range of
energies considered. In Fig. 1 the common
logarithm of f is plotted as a function of b for
the four temperatures considered and for both
helium and neon.

S(3) is plotted in Fig. 2 for both helium and
neon and for the two extreme temperatures
considered. The function has a maximum at
8=1. The curve becomes progressively Hatter
for 5&1 as the temperature is reduced and may
be approximated by a horizontal, straight line

over most of this range for the temperatures in

question.
In Fig. 3 is plotted the integral of (31d) for

both gases. These curves illustrate the way in
which the distribution function approaches a
Maxwellian distribution for 8&1 as the temper-
ature is reduced. At a temperature of (10')'K
the integral is e8'ectively constant over the whole

range of 8 less than about 0.8 and, as seen by
inspection of (31d), the distribution function is
accordingly Maxwellian in this range. The inte-
grand of (31d) actually possesses two maxima:

L" E. Jahnke and F. Emde, ENnktieneeAxfeln (Dover
Publishers, New York, 1943), p. 235.

'~E. T. %hittaker and G. N. Qfatson, A Course of
M'odere Aeclysk (Cambridge University Press, New York,
&985), p. 358.

one, quite sharp, near the origin, and a second,
considerably broader, near 1.0. As the tempera-
ture decreases the latter maximum increases
rapidly in height relative to the former.

In Fig. 4 the common logarithm of the inte-
grals Ij and I2 as dehned in article I is plotted
as a function of the temperature. In Fig. 5 the
quantity n/X is plotted as a function of the field

strength; it was calculated by means of Eq. (8a),
the relation between the field strength and the
temperature being given by (33). The range of
e/N is an arbitrary one satisfying the relation
e((X. The proper values of R (cf. Eq. (5))
remain uncertain, and the values indicated on
the graphs are taken as being probably repre-
sentative, on the basis of Weasel's calculations
for doubly charged helium ions, for the singly
charged ions here involved. Several facts should
be noted. First, the characteristics for neon are
steeper than for helium. Second, the character-
istic becomes steeper as the value chosen for 8
is reduced. Third, the characteristic becomes
steeper as the field strength is reduced and hence
as n/N becomes smaller. This last is better
illustrated in Fig. 6 ~here the common logarithm
of e/X is plotted as a function of the field

strength for neon and where, in addition, the
weak field characteristic is plotted with the use
of (8b). The latter calculation was carried out
by assuming that the distribution is Maxwellian,
that ionization by electron-molecule collision
could be neglected for the small 6eld strengths
involved, and that 10 ion pairs per cubic centi-
meter per second are produced by external
agencies at atmospheric pressure. The calculation
was made for a pressure of 1-mm Hg and for
&= (10 '). Similar results are obtained for other
values of R and for other pressures. In order to
connect the two curves it would be necessary to
use (8) in its full form.

It is clear from Figs. 5 and 6 that the phe-
nomenon of breakdown into a Townsend type
discharge may be studied by this method and
that the essential mechanisms cooperating to
produce breakdown may well be ionizing elec-
tron-molecule encounters and volume recombi-
nation of electrons and positive ions. Rough
values of the 6eld strengths at breakdown may
be estimated from Fig. 5, e.g. , 5 volts/cm for
neon and 13 volts/cm for helium. These may be
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compared with the observed values obtained at
M.I.T.'4 The experiments indicate that at about
1-cm Hg the r.m.s. 6elds at breakdown are about
9 volts/cm for neon and 19 volts/cm for helium.
The fact that the calculated values are too low
is encouraging, for it leaves room for disposal of
electrons by other mechanisms. The calculated
results here are independent of the pressure, but
the approximation upon which they are based
breaks down for pressures above about 1-mm Hg.
On the other hand, because of the small volume
of the discharge vessel used for the measurements
at M.IT. the results below about 1-cm Hg are
di6'usion dependent. Additional calculations
must be carried out at higher pressures, there-
fore, before a detailed comparison between
experiment and theory will be in order. Taking

~4 S. C. Brown, report at M.I.T. Conference on Physical
Electronics, March, 1947; material unpublished.

these considerations into account and also the
facts that inelastic collisions have been neglected„
that additional mechanisms such as radiation
trapping, diR'usion, etc. , will have a significant
e8'ect upon the shape of the characteristic,
agreement between experimental results and the
predictions of the present treatment appear to
be satisfactory.

It should be noted finally that specific assump-
tions concerning the detailed shape of the cress
sections involved have little efkct upon the
results of these calculations. Additional calcula-
tions made for helium with the slope of the
ionization cross section multiplied by 2 shift tHe
positions of the curves of n/1V towards higher
fields by less than 2 volts/cm. Similarly, an even
smaller efkct is introduced by varying the
exponent of I in the recombination cross section
(5) about the value unity.


