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Theory of Hjgh Frequency Gas Discharges.
IL Ha-~omc Components of the Distribution Function'
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(Received August 18, 1947)

The type of distribution function employed in the foregoing paper is not suSciently general
to be applicable to all conditions of frequency and field strength. To examine its limitations,
and the limitations of corresponding d.c. treatments, the function is developed as a series in
Legendre polynomials of e,/e, x' being the field direction, and Fourier functions of cot, co being
the field frequency. Attention is limited to steady states and to elastic collisions between
electrons and gas molecules. By solving the resulting recurrence equations a number of suc-
cessive approximations has been obtained, and from each approximation the range of validity
of the preceding one is determined. Questions of mathematical convergence are not dealt with,
since the physical meaning of the results is usually clear and reasonable. The current through
the gas is shown to take on d.c. character vrhen eu) &&(m/M)o, X being the mean free path and
e the {mean) velocity of the electrons producing the current.

' 'N the 6rst article of this series' the distribution
' ' function of electrons in a gas under a uniform,
sinusoidal electric 6eM was assumed to be
approximately isotropic, the current being ac-
counted for by a small additive term. Thus

I (=v,/v). The number of electrons contained
within an annular element of velocity space is

dri =f(a, v, t) 2vv'dvdrr (2)

The most general expansion of the distribution
function under these conditions and for a held
with magnitude given by (1) may be written

f(v t) =f'(v)+v. t (» t)

provided the field is taken in the direction of the f(~ v t) = p P,(~), fs&(v)
x'-axis with a magnitude given by

E coast.

An expans1on of the distribution function 1n this
form, however, ca@not be expected to hold for
all frequencies of the impressed field. For very
low frequencies even the isotropic part must be
a function of the time and at high 6eld strengths
one cannot expect that non-linear terms in v,
are absent. A more general expansion will be
investigated in the present paper, and conditions
will be found under which the simple expansion
above may be used.

When di6usion is negligible, the distribution
function under a 6eld in the direction of the
x-axis may be taken to be a function of three
variables: time (t), electronic. speed (v), and

+ Q P„'(v) cosme&t+g '(v) sinm&ot], (3)
va~ 1

where Pi(n) is the Legend re polynomial of
degree $. The electron density becomes:

pOO

m=4' (fss+Q(f 'cosmist

+g s sinm&ut }v'dv (4)

while the current density is

4
I,=-rrs, Ifs'+g(f„' cosmsit

~0 fS

(5)
+g„' sinmtst) Iv'dv,

'Part of a dissertation presented by the second named I J
author to the Faculty of the Graduate School of Yale
University in candidacy for the degree of Doctor of
Phiiosophy. This work has heeu supporters hy the OtSce To determine the functions f ' and g ' the

Boltzmann equation is employed. In terms of
N6ori-44.' H. Margenau, Phys. Rev. 'N, 297 i1948). the variables used here this equation may be
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written:

Bf Bf 1 Bf bf—+y cosa)t a—+-(1—a')—=—,
Bt 88 8 80. Q

where y =sZ/m and the operator bjbt expresses
the time rate of increase as the result of collisions
of all types between electrons and molecules of
the gas. If the distribution function in the form
of (3) is substituted in (6) and use is made of the
orthogonal properties of both Legendre poly-
nomials and the Fourier terms, a set of recurrence
relatiops is obtained, the general equation for
m&1 being:

b (f-') f+g-'i
bt Eg ') 4 f ')—

0'."',+f.",',&

+
2 21+3 s'+'ds &g'+'+g'+' J

m+1/

t'f„',+f.',',)
'

2/ —1 dv (g' '+f' ')
where either the upper or the lower expressions
are chosen in all parentheses.

For m=o:

bfo' y
t
1+1 d

s I o[s-l+-of &+15

Q 2 21+3 dv

l d
+ sl-1 [si ff / —13 I (g)

2t 1 d.
'

f

For m=1:

b (f& ) t'+g& )
bt Eg~') ( f~'i—

$+1 d - (2f l+1+f /+1)-
+ s-l—'o sl+oi

2 23+3 ds ( go'+' )

(2f E-1+f /—1) -
t (9)

2l —1 ds & go' '

A similar treatment can be carried through for
the d.c. distribution. The expansion of the dis-
tribution function is then given by:

The natation y~., serves as a reminder that the
d.c. field strength corresponds to the a.c. r. m. s.
value. As the frequency of the alternating field

goes to zero the distribution function in ex-
pansion (3) reduces to (10) by means of the
identification:

f'=lim Q f '
~0

(12)

If the electron density is constant in the time,
as is assumed throughout this paper, an im-

portant consequence may be inferred -from the
recurrence relations (7), for then

fO

fo'4ors'ds=ot; f~'s'du=) g~'tl'ds=0, m&0.

But the recurrence relations connect in the same
equation only those functions, f„' and g ', for
which the sum of the upper and lower indices is
either odd or even. Now the electron density is
either greater than or equal to zero. If it is equal
to zero, all terms of the distribution function
vanish; if it is not equal to zero, it is given as
above by the integral of fo', which combines only
with functions of even 1+m. Hence, for a con-
stant electron density one must set equal to zero
all terms for which m+1 is odd. The distribution
function then assumes the form:

f(a, s„ t) = (fop+ foo cos2pot+goo sin2&at+ )

+a(f~' cosoot+g~' since+ fo' cos3cat

+go' sm3pot+ )+ . (13)

This form of the distribution function will here
be assumed to hold. Physically it means that a
sinusoidal eleotric field can generate only even
harmonics in thh isotropic part of the distribu-
tion function and odd harmonics in the current
density, e.g. , no d.c. current component.

and the recurrence relations become:

bf' 1+1 d
s t -o—[si+ofi+15

Q 2l+3 dv

l d
+ pl—1 [gl—nfl

—1j I (]1)
2/ —1 dv

f(a s) =2 &i(a)f'(s) (10) Expressions involving the operator b/bt may
be easily evaluated. Again we shall study here
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only the case of elastic colhsions. Consider that
during an elastic collision at time 5 the electron
leaves the volume element about a' and v' and
enters that about a, e; or that it leaves n, e and
proceeds to 0.", v". The positions of these three
volume elements are mutually related by the

nature and the geometry of the collision; the
loss in speed was discussed in article I.' Consider
further that there exists a well de6ned mean free
path X.(v) and let A(a, n')dada' be the proba-
bility that during the collision the electron wi11

proceed from (n', a'+da') to (a, a+de). Then:

—v'dvda. = f(a', v', t) v" dv'Adada' — f(a, v, t) v'dv
bt, ~ . X.(v') X,(v)

3

= P ~ Pi(~')A(~, ~')d~' dv'dago'(v')+g (f '(v') cosmcA+g '(v') sinma&t)]

Q R(a)da[fa'(v)+Q (f„'(v) cosm(ot+g '(v) sinm~t)]v'dv. (14)
X,(v) std

By Eq. (3), this quantity also equals

bfo' (bf '
gg

g Pg(a)da +P~ cosm&at+ sinm~t
~

v'dvg, ~E g )

%e shall assume that scattering is isotropic, so In the remainder of this paper, no attention
that A becomes a constant and is equal to ~. will be given to inelastic collisions.
Then

P&(a')da'Ada'= ba, ).

Comparison of (14) and (15) yields

f.', l&0
),(v)

(16)
bf 0 v&3 y8

(b) v'dv =f '(v') dv' f '(v) — —dv,
bt . X,(v') X,(v)

and expressions of the same form hold for g '

and g„'. Equation (16a} can be generalized and
shown to be true for all, not only elastic col-
lisions, if the meaning of P is suitably changed.
Thus:

V f.', I&0
bt X(v)

and similarly for g„', where X(v) is the electron
mean free path with respect to all collisions. For
the case of elastic collisions (16b) may be written,
in the form:

bf ' m d t'v' g kT d (v'df 'y
f-' I+,——

~

—
( (»)bt, Mv'dv kX, j 3A'dv 4X, dv j

as d18CQssed ln art1cle I,

In order to make use of these results a con-
sistent approximation procedure must be devised,
since the recurrence relations, a quadru ply
in6nite set of difkrence-difkrential equations,
cannot in general be solved. Approximate solu-
tions can be obtained if the distribution function
(3), or (10) in the d.c. case, is terminated after
several terms. In certain simple cases a solution
may be found in closed form. It is then necessary
to examine the conditions which must be im-

posed on the discharge parameters, consistent
with the termination adopted. Two requirements
must be satis6ed if consistency is to be main-
tained:

(a) For a given pair of indices, m and I, both the sine
and cosine terms must be included in the terminated dis-
tribution function.

(b) Only these recurrence equations are used for which
the term in 8/bt does not vanish. That is, if the left-hagd
side of any member of {'tp') is assumed to vanish, the right-
hand side must be wholly ignored.

Since a non-vanishing electron density re-
quires the inclusion of fa', or fo in the d.c. case,
in the distribution function, and since the recur-
rence relation in be/bt, or bfo/bt, connects fo',
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or fo, only with fi', or f', it follows that suc-
cessive approximations Rre:

(a) f=f',

following set of recurrence equations:

bf' yg, . d
(s—'f');

Q Be' de
(b) f=f'+af'
(c) f=fo+af'+ k(3a' 1)f—;

(a) f=fo'.

(b) f=foo+a(fi' coaot+gi' sinoot),

(c) f= (fo'+ foo cos2oot+goo sin2&ot)

(19)
s t 2 d df't—f'—=Vo' ' . ~'f'+

I5s' dv ds I

e 2 df—'=~o. ~(s-'f')
X 3 de

(24)

Sfo/m =0; tf,o/a =0. (21)

In both the d.c. and a.c. cases the operator 8/N
for I=0 has the form given by (18). Hence, on
integrating Eqs. (21), the distribution becomes
Maxwellian in 6rst approximation, as expected.
Similarly, the recurrence equations which cor-
respond to (19b) are obtained immediately from
Eqs. (11).They are:

bf yo, . d s dfo
(fs') ' — f'=&~,— (22)

Q Be~ de X de

These equations may be integrated directly. The
solution is the Druyvesteyn distributiono (2 =0)
or the Davydov distribution' (TWO). In the
same way', the equations determining (20b) are
obtained directly from (T):

hfoo y d—(&'fi') '

Q 6e' de

dfoo
fl &gl +7 t gl oofi ~

X de X

+a(fi' cosset+ g i' siniot)

+ -', (3a' —1)(fo'+ foo cos2iot

+go' sin2oot). (20)

The equations resulting from the use of (19a)
and (20a) are

Rather than attempting to handle Eqs. (24), it is
of interest to learn when their solution will
reduce approximately to that of Eqs. (22). This
will be the case when:

(25)

Considering here only the case of low tempera-
tures, let us assume that fo and f' satisfy Eqs. (22).
Then for T=O:

We evaluate fi by the second of Eqs. (22) and f'
by the third of Eqs. (24). On forming the ratio of
f' to f' it is seen that condition (25) is satisfied
provided

ye~ 2yg. , X
((1, where it =2m/M.

Be'

Physically, y is the mean energy loss of an elec-
tron per collision. It is convenient to introduce a
variable x defined by

and to express this inequality in terms of p. The
mean value of so is given by

I'(5/4)
(s') = (8/3) & g-&go .X.

F(3/4)
The solution of these equations has been treated et en ave, na y,
oy Margenau. '

0.55
q& 1.21X— &&i.

Under a d.c. field the distribution function in
the form oI (19c) is given by the solution of the

~ M. J. Druyvesteyn, Physica 10, 61 (1930).
B. DQVjjQOVo Phpslk. ZC1ts. SOVjetUG106& So $9 (1935).

li H. Nargenau, Phys. Rev, 59, 508 (1946).

Since y is of the order of 10~ this is seen to be
satisfied over a fairly wide range of energies
about the mean energy, e.g. , 10-'~& x~& y. This



HIGH FREQUENCY GAS DisCHARGES

result is independent of the field strength. Only
the very fast and the very slow electrons have a
distribution in energy which differs from the
Druyvesteyn distribution. These exceptions are
not unexpected. The very fast electrons are those
whose motion in the 6eld has been largely unim-

peded by ndlisions with molecules, hence those
with abnormally long free times. The very slow
electron, on the other hand, are those whose
recent history has been relatively unafkcted by
the 6eld, that is, those which have made a great
many collisions with the molecules of the gas and
whose distribution, therefore, is not independent
of the gas temperature and must approach a
Maxwellian form.

Under an a.c. 6eM the situation is considerably
more complex. The equations which determine
the distribution function written in the form
(20c) are:

x d &foo—(s'fi') =
6v' dv Q

(a)

v d, , &f1'
2~g"+ —(s'fi') =

6e' de Q

d bg~'
2~fo'+ -—(s'gi') =

Q~ dyQ(c)
311s'

tfoo =Aexp, t'
4(y)1) '

(29)

(d) ~gi'+ —Ls'(2fo'+fo')3
Se~ de if we restrict ourselves to low temperatures. Iffi'

is evaluated by means of (23) and the variable x
is introduced as before, the mean "energy" being
given by:

p d
+——(2foo+foo) = fi——

2 i& 'A

submit to an exact solution. Ke shall assume
6rst, as in the d.c. case, that the distribution
function may be written approximately in the
form (20b) and therefore start with the solution
of Eqs. (23). Equation (20c) diifers from (29b)
by inclusion of (a) isotropic terms foo, and goo,

(b) non-isotropic terms fo', fo', and goo. The con-
ditions under which set (a) is negligible are dif-
ferent from those under which set (b) is negli-
gible. Inspection of Eqs. (28) shows that these
conditions can be studied separately. In the
remainder of this section, we give attention to
set b.

According to (28f, g, h), the functions fo', foo,
and goo are exPressed in terms of f,' and gi'.
Now these latter develop peculiarities when e is
either very large or very small in comyarison
with coX, and are quite regular when e auX. If,
therefore, the roles Played by fo', foo, goo are
investigated for these two limiting cases (for
which the analysis is easy), predictions for the
intermediate range can safely be made.

There are two cases of interest.
(A) (ooX)«s over the important range of the

distribution function. Then the first terms on the
left of (28g) and (28h) may be neglected. goo is
smaller in absolute value than foo, and foo is equal
to fo' Further. more

7 d Vdg&
(e) ~fi'+ ——(s'go')+-

So' de 2 dv

+V d
2oigo'+ (w —'fi') = ——-f-o',3' X

gad e
2~f1'+ —('gs)=—1——go'3' X

wlle1e the foI'111 of 8/I for elastic collls1011s is
again given by (18). These equations do not

2 I'(5/4)

VX I'(3/4)

we obtain 6nally the result that the terms in

P&(n) may be neglected provided that

(30)

The situation ia essentially the same as that
under a d.c. 6eld and the same remarks apply
here.

(B) (cod)&s over the range of s within which
the distribution function is significant. Then fo'
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mv'y ahfi'=, fo', gi'= f—i'
kT'co'X e

(32)

is Maxwellian' at an efkctive "temperature" T' marizing the results, one may say that the func-
given by: tions of set (b) can usually be ignored. They are

of importance only for electron energies difkring
T'=T iy

M pyXq'
widely from the mean, and possibly, at small

6kT &oiX) pressures, when condition (35) is true. For these
cases they are given by Eqs. (30) and (33).

Substituting these expressions in (28f, g, h) and
solving for fo', foo, and go', we obtain the fol-

lowing expressions:

The situation is somewhat different with
respect to the time-dependent isotropic terms in

(20c). To neglect them,

foo myX ) kT'y

fi' kT' ( ms')

g2—«1
0, 0

(36)

foo 1 mph

fi' 6 kT'

go' 1 s myX ~ 2kT')

fi' 4ooX kT' ( 3mvoJ

(33)

Since now oim(s')=$kT' it follows that these
ratios will all be small if

myX

kT'

except for very small values of e. The expression
on the left of (34) is usually negligible except in

the neighborhood of its maximum with respect
to y which occurs at

(6kTq &

I
~&u) (35)

Now y/oi is roughly the speed acquired by a free
electron in one cycle, (6kT'/M)& roughly the
speed of the molecules. %hen these are equal,
therefore, the necessity for including higher
Legendre terms may arise.

As an example we note that for helium at
300'K and at a frequency of 3000 megacycles,
Eq. (35) defines a field strength of about 2

volts/cm, and the value of myX/kT' correspond-
ing to this 6eld strength reaches i for pressures
of a few millimeters. The present analysis indi-
cates that for pressures as low as this and for
6eld strengths of this critical value, higher
Legendre terms may have to be included

Similar conclusions hold when o)X =e. Sum-

must be true. Ne estimate these expressions from
the recurrence Eqs. (28b) and (28c) directly.
Assume that the right-hand numbers of these
equations are small. We then have at once ap-
Proximate exPressions for foo and goo which

satisfy automatically the condition of nor-
malization to a constant electron density. These
expressions may be used on the right of Eqs.
(28b) and (28c) to obtain a second approximation
to foo and goo, etc. This scheme converges well
and indicates that the first approximation to g~'
is satisfactory. The functions foo and fi' are
calculated from Eqs. (23). Then, with restriction
to zero temperature, one 6nds

ilw 3qv'(v'+oioX')
t

g 0 fo,
oh l 4y9, o

I

Provided v is not too far from the mean velocity,
g~' is appreciable only when aoX is of the order of
ge or less. Similarly, we obtain from the second
approximation for foo (again neglecting T)

q d t qs'y
fo' —s')—1+ (fo',

4v' ds ( (ooX)'J

in the neighborhood of the mean velocity. If
q&v (cu) this reduces further and one 6nds

f 0—=0(~)&&1.
f 0

Hence it follows that for (&oX))il~s both foo and
g~' may be neglected. Numerically this means
that under discharge conditions (ooX) must exceed
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about 10~ cm sec.-'.I The distribution function
in the form of (20b) therefore is valid only for
frequencies higher than iIIv/X.

A similar investigation shows that for very low
frequencies, g00 approaches zero while f00 remains
finite.

To summarize, therefore, we have three dis-
tinct frequency regions in each of which the dis-
tribution function assumes a characteristic form:

Then from Eqs. (38):
bG t'

trav

—=0; G=~ exp(—
2&ri

Also
d bF ydF v—(v'fi') =—,——= f—i'-

2v 4v bt 2 dv X
or

m~v
2

(a) 0iX« iIv

f= (f0 +fi

cos20iI)+defi

cohI,

F=j3 exp

We write

M(yX) '
kT+

4v'

f= (f00+f0' cos200I+g00 sin200t)

+a(fi' cos0iI+gi' sln00I),

(c) 0&x)&s'v

f=f00+vi(fi' coa0I+gi' sinait).

(37)
mMy9'

x=
8k'T' 2kT

Then, integrating (41):
X&

2f, +f,o=a) 1+-
)

n)
or

(42)

f ' f 0=2—e-0
(43)

1 ~ xy
f.o+f,o= 2a~ 1-+-

~

—a e=.
3 i .) I

(b)

The distribution function in the form of (37a)
is amenable to exact solution. The equations to
be satisfied are found from (28):

But f00&f00 is the form 'taken on by the isotropic
part of f when 00I=ir/2 or 0, respectively, i.e. ,

when the field is zero or a maximum. Hence, once
every half-cyde, when the magnitude of the
field is zero, the isotropic part of the distribution
function is Maxwellian; when the field is a
maximum, the isotropic part of the distribution
has the form given by (43b). This shows pre-
cisely how the theory of a.c. discharges goes over
continuously into the d.c. theory. The constants
A and 8 are determined by normalizing f0' to
the value n, f00 to zero. On calculation they are
found to diR'er somewhat from the corresponding
constant in the d.c. distribution function —as
they should because of the neglect of higher har-
monics in (37a), but become identical with the
latter at small field strengths.

gf 0 gf 0

(v'fi')—=- -=
6v~ dv 8t Q

(a)

v
(2f'+f0'—) =— fi' —-~

2 dv X
(38)

P 2f 0+f0 ~ G f0 f0 (39)

' It is interesting to note that in the measurements of
L. Rohde (Ann. d. Physik. (5) 12 (1932),especially p. $85)
the variation of the critical discharge potential with fre-
quency seemed to cease in the region of caX below this
value. This is probab1y an indication of the fact that fP
becomes important, giving the discharge certajn direct-
current features which will be discussed in the next section.

A d.c. situation is one for which condition (a) a
1s true.


