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system. A conclusive test of the general applica-
bility of the present functions would be available
through an experimental study of the concentric
spherical system where the field is an inverse
square function of the radius.

The writer is indebted to Professor L. B.

Loeb for suggestion of the probIem, and, for
stimulation and assistance throughout the re-
search, to Professor Loeb and members of his
seminar. The writer is also grateful to the
Research Corporation of New York whose
fellowship grant made this work possible.
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After a brief summary of the "free-electron" theory of a.c. currents in gases, which is shown
to be inadequate for microwaves, methods for calculating distribution functions for electrons
with consideration of all types of collisions are developed and discussed. Conditions are specified
under which non-elastic collisions may be introduced as integral and as difFerential expressions
in the Boltzmann transfer equation. In Section VI this equation is solved approximately and
the diH'erences between direct current and h.f. current discharges are pointed out. Finally,
Section VIII is concerned with an aspect of w'hat is usually called Paschen's law; it indicates
that a minimum should exist in the graph of voltage vs. pressure, and of voltage tIs. frequency,
both at constant current. This minimum comes'when the frequency of the field is of the order
of magnitude of the collision frequency of the electrons.

~HIS series of papers presents a study of
what happens when a gas at low pressure

becomes conducting under high frequency elec-
tromagnetic waves. While the precise meaning
of the term "high frequency" is de6ned in
Article II, it will usually ref'er to situations in
which the frequency of the electromagnetic
waves is comparable with the frequency of
collisions between free electrons and gas atoms.

Although one's 6rst impression is to the con-
trary, such microwave discharges are probably
less complicated with regard to the physical
processes which they involve, and therefore
possibly more instructive, thao. direct current
discharges. This is true primarily because con-
ditions can be arranged under which ionization

'The contents of this' paper form part of' Radiation
Laboratory Report No. 967; they are based on work done
for the Once of Scientific Research and Development
under Contract OEMsr-262 with the Massachusetts
Institute of Technology.' Some of the developments in this paper are parallel to
the work of T. Holstein, Phys. Rev. Vo, 367 (1945). It is
hoped that the difFerence in approach justi6es the inclusion
of those portions of the present paper which are already
dealt with in Holstein's pubhcation,

occurs predominantly in the body of the gas, and
secondary processes at the electrodes and at the
walls of the discharge chamber are of lesser
importance. In addition to this simplifying
aspect, it is proper to assume that the gas
acquires no net volume charge, its condition
being similar to a d.c. plasma. Diffusion of
electrons, being ambipolar, will be slow; it can,
in a certain range of gas pressures„be made the
dominant mechanism for the disposal of elec-
trons. In another pressure range it can be made
subordinate to volume recombination, permitting
this mechanism to be studied.

Unfortunately, theory enjoys in this field at
present the large amount of liberty that always
goes with a scarcity of experimental data. The
subject is new and measurements are dificult.
Checks on assumptions are imposed only by
comparison with known analogous situations in
d.c. discharges, and with the few facts now
available. But tq show what theory can do is
perhaps not wholly useless in advance of experi-
mentation, since the experimenter may be aided



by kenning what kind of measurements are,
and what are not, theoretically interesting.

The first article contains a development and
summary of methods for calculating the energy
distribution of electrons in a discharge, as a
function of field strength, frequency of the field,
and gas pressure. The eEect of diferent physical
processes on the shape of the distribution func-
tion will be investigated, but the work is based
on the assumption that this function departs very
little from being isotropie in the velocity space
of the electrons and has the periodicity of the
impressed electric fie'Jd.

In Article I I these assumptions are scrutinized
and the physical conditions are determined under
which various possible forms of the distribution
function are usable approximations. This is done
with neglect of inelastic collisions. The results
enable one to set limits depending upon field

strength, frequency, and gas pressure, beyond
which customary formulas fail.

One of the methods discussed in the present
paper is developed in Article III for the purpose
of calculating the breakdown potential in a gas
filling an infinite region, so that direct recombi-
nation is the only process which disposes of
electrons, and volume ionization is assumed to
be the only mechanism producing them. %bile
it is difficult to define the meaning of a sharp
breakdown potential, it does turn out that the
number of electrons per unit volume rises quite
suddenly at a certain field strength; the value of
this more or less critical held strength is smaller
than the breakdown fields which have been
measured (in finite enclosures). The difference can
be ascribed to other disposal mechanisms, such as
diffusion of electrons to the walls of the vessel.

In Article IV some general consequences re-
specting current voltage characteristics of a.c.
discharges are discussed, and attention is drawn
to the form which the similarity principle, known
from d.c. work, takes under conditions of micro-
wave excitation.

I. FREE ELECTRONS IN ALTERNATING FIELDS

For the sake of orientation we first sketch the
results of the simple theory' of electrons in an

~G. Mierdel, Ann. d. Physik 85, 612 (1&28); K. K.
Darrow, Bell Sys. Tech. J., XI, 576 (1932);XII, 91 (1933);
L. B. Loeb, Puedameete/ Processes of Ekctrica/ Discharge
ie Gases Q. Wiley and Sons, Inc. , New York, 1939).

alternating 6eld, a theory which neglects colli-
sions. An electron, born with zero velocity at
time t' and under the action of the field Ee' '

along the x-axis, has a velocity

ieEi = (exp(is)t') e—xp(icot)),
25co

and hence a maximum velocity

eZ
v= (1+sin(at'(.

fScd

This is reached at t=&+/co, when the field
reverses its direction. Electrons born at these
instants will reach greater speeds than the others
since the field has an entire half-period to
accelerate them, The maximum speeds of these
electrons are

e, =2eE/tnt =0.94&(10'E/v e-volts, (1)

if E is in volts/cm and v is the frequency of the
field. According to this formula, E must be of
the order of 10,000 volts/cm in the microwave
region (v=10"/sec. ) if an electron is to attain
ionizing velocities.

The displacement is

eE
x= (1+i&et exp(irut') —exp(Rut)).

wc''

It corresponds to an oscillation of amplitude

xD eE/5$(0~ =0.44 X 10"E/v' cm, (2)

if E is expressed in volts/cm; this osciHation is
superposed on a drift with velocity (eE/ncaa)

Xsin&'.

For microwaves at ionizing field strengths as
given by Eq. (1)

so=10 ' cm.

The mean current density ne(i)A. , the average
being taken over all t', is

J —(ine'E/mes) e ~ '.

It is in quadrature with the 6eld and yields the
vre11-known conductivity

J/Ee'= cr = ine'/ncco—

The conditions under which this simple theory
is applicable are these: (a) the frequency of the
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waves, v, must be much greater than the collision

frequency, s.,&&, (b) xo must be much smaller
than the mean free path, ), of the electrons.
Using kinetic-theory expressions for ) and v.,i~,

these conditions become:

xo(&1/Nq,

v&&Ng8,

(a)

provided X is the number density of gas mole-

cules, g their collision cross section, and 8 their
mean velocity. At: a pressure of 1 cm Hg, (Nq) '
is about 10 ' cm; hence the value given by
Eq. (3) violates condition (a). At electron speeds
prevailing in a discharge Ngi is about 10'o sec
hence microwave frequencies violate condition
(b).

The simple theory here sketched is therefore
inadequate to provide information about micro-
wave discharges.

f(v, r, t)dvdr

is the total number of electrons present, and

~tf(v, r, t)dv=n(r, t)

the number density of electrons. If e is not a
function of t, the state represented by f is said
to be steady; if f is not a function of r, the
distribution is uniform; if f is a function only of
~v~, it is isotropic.

The Boltzmann transfer equation, ' together
with certain physical conditions, determines the
distribution function. It reads

Bf/Bf+v vf+a Vf= bf/bt

II. COLLISIONS AND THEIR EFFECT ON THE
DISTRIBUTION FUNCTION

To take account of collisions it is necessary to
introduce a distribution function, f, whose value
is the number of electrons having velocities
about v and enclosed in a volume about r at
time t. It is a function of r, v, 5 and will be
normalized so that

Here bf/8t is the smooth local rate of change,
while bf/Q represents the rate of change occa-
sioned only by collisions, but by all collisions,
elastic and inelastic, including those which result
in ionization or capture. The symbols v and V'

denote, respectively, the gradients in r-space
and in v-space.

The presence of the term bf/bt, which makes
the value of f at v depend on the number of
electrons at very different velocities, marks Eq.
(5) as a partial differentio-integral equation, for
which no general method of solution is known.
Even explicit evaluation of bf/bt is possible only
with the use of speci6c assumptions concerning
the collisions as well as the form of the distribu-
tion function. As to the latter, we suppose for
the present that f does not depart much from
being isotropic, and that the small non-isotropic
part has the spatial symmetry of the 6eld. Let
us also at first assOme a uniform density of
electrons (thus disregarding diffusion). Then

f(v) =f&'&(s)+s.y(s)

and P is presumably small. The term bf/Q now
consists of two parts, bf&'&/bt and b(s,g(v))/bt,
and these require separate treatment in detail.

The general formula for bf/g, well known from
kinetic theory, is obtained as follows. DiAerent
types of collision (such as elastic, or causing
excitation of molecules between a given pair of
levels, or ionizing, and so forth) of which an
electron is capable will be labeled by an index

p. ' Collisions of one electron with another are
here disregarded as unlikely. If we denote by
v„' the velocity before encounter of an electron
which is about to suR'er a collision of type p,
and which after collision will have velocity v,
the rate of increase of electrons at v is given by

s„'Nq„(v„')f(v„')dv„'.

To see this, we recall that v„'X„', )„, repre-
senting the mean free path for a collision of type
p, , is the number of p,-encounters made by one
electron of speed v„' per second, and that

'S. Chapman and Y. G. Cowling, The j/Iuthemctkul
Theory of ¹n-Uzifornax Gases (Cambridge University
Press, New York, )939), Chapter 3; P. M. Morse, W. P.
Allis, and E. S. Lamar, Phys. Rev. 48, 412 (1935}.

~ Collisions of unspeci6ed type will be labeled by the
index ga, elastic collisions by e, inelastic (but non-ionizing)
by s, ionizing by i. Similar indices will be used on cross
sections (g, etc.) and mean free paths (X, etc.).
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is the general relation connecting E, the number
of gas molecules per cm3, and g„, the cross
section for a p-encounter, with the mean free
path. The rate of decrease of electrons at v is
due to collisions which lead from v to some lower
velocity, with cross section g„; it is given by an
expression similar to (7). Hence

(t'&f/t'&t)dv =NP v„'q„(v„')f(v„')dv„'

—NZ vq„(v)f(v)dv (.9)

If the form of f which was assumed in Eq. (6)
is substituted into this formula, the collisional
rate of increase of f is obtained. But of the two
terms in Eq. (6), the second is much the easier
to compute and will be considered first.

We have

fraction of its original energy or speed, while in
an inelastic collision the actual amount of energy
lost is prescribed. Thus for an elastic encounter,

v' = (1+m/M) v (12)

provided the molecules, whose mass is 3f, are
effectively at rest, and m is the mass of an
electron. The approximation of treating all elastic
co11isions as belonging to a single type, which
involves always the average loss of speed, is
made valid by the smallness of each loss.

uation (11) now reduces to the form

f(0&

=—Lv"a.(v')f"'(v') -v'a. (v)f"'(v) 3Q, v
Xd

("—a—.f"') (v' v)—
d8

—Lv.&t&(v) ]dv =Ngv„'g„(v„') v&.'g(v.„')dv„'
St

—Nvv, p(v) d vga„(v) .

On using (12), we thus obtain

bf&' & m N d—Lv—'a.f—"&)
St, M v'dv

(13)

The last summation is the total collision cross
section g, which by (8) is (Ãh) '. The remaining
summation over p, in the first term on the right
includes an integration over all orientations of
the vector v„'. This will not be zero if g„depends
on the orientation of v„'. However, if this is not
the case, that is, if the cross section is isotropic,
the only term aR'ected by this integration is v&,',
and it yields zero, Isotropy of collisions will now
be assumed, so that we may write

Wg—'PA(v)] =—4(v)
Q

(10)

We now turn to the calculation of ttf@~/t'&t, which,
in view of Eq. (9), is given by

4''dv =N Pe„'g„f'0& (v„')4vv„"dv, '

—Ngvg j"&(v) 4sv'dv. (11)

III. ELASTIC COLLISIONS

The relation between e' and e, needed in
evaluating (11), is di&erent for elastic and
inelastic collisions. The characteristic feature of
an elastic one is that the electron loses, on the
average over all encounters, a small and constant

If account is taken of the velocity distribution
of the molecules, this relation is replaced by

t&f&0& m N d
=———Lv'a f'"]bt, 3I v' dv

kT d df&'&

+ &pe
m dv ~dv

(13')

IV. NON-ELASTIC COLLISIONS; INTEGRAL
REPRESENTATION

This section contains some modihcations and
a slight extension of the work of Smit' and of
Chapman and Cowling, 4 Chapter is. Considera-
tion will be given not only to inelastic collisions,
but also to impacts which result in ionization,
capture, and so forth. Assume that an ordinary
inelastic collision of type s causes the electron

' J. A. Smit, Physica 3, 543 (193tI').

as is shown by Chapman and Cowling, 4 pp.
348 fF. The added term, which needs to be intro-
duced in order that the vanishing of t'&f"&/t'&t~,

shall yield a Boltzmann distribution for f'", is
not exact under discharge conditions. For the
most part in this work, it will be regarded as
correct in order of magnitude; it may usually
be neglected.
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S (v) i
f(o&(v) .4svmdv

X,(v)
(14)

It represents the rate of increase in the concen-
tration of electrons having speeds below v. In
terms of the variable I=e'

p Q+Qs

S,(u) =2sN)l f('&(u) g, (u) udu. (14')

We note that S,(0|&)=0. If S=P, S„Eq. (11)
can be written

1 dS bf(0—+
ht 4'' dv

To calculate S, one would have to know the
function f(0& in advance; i.e., the use of Eq. (14)
would convert the transfer equation into an
integro-differential equation. There may be
situations, however, in which the physical sig-
nihcance of S leads to a fairly reasonable con-
jecture as to the form of this function and where
this may be used as a starting approximation i&i

the calculation of f('&. A way of doing this is

suggested by Chapman and Cowling. An attempt
was made in the present investigation to assume
a flexible form for f(o& which conta, ined two
adjustable parameters, theo to compute 8, and
finalIy to 6x the parameters so as to achieve
self-consistency for the solutions of the transfer
equation. But the results were not encouraging,
even when ionizing collisions were neglected.

A diferent situation arises when collisions are
included in which electrons are produced or
captured. To take account of ionization, for

to lose an amount of energy equal to e, = )tlu,
In the evaluation of the terms of Eq. (11) which
correspond to this collision, we must then put

'vI 2='v +us( vs dvI =vdvy

and the contribution of the collision to that
equation is

f"&(v')v" f "((v) v'

4m'
X,(v, ') X,(v)

again in view of Eq. (8). But this expression can
be written as (dS,/dv)dv provided the function
S, is defined by

example, the first summation on the right of
Eq. (11)must be doubled because every ionizing
electron of speed v' produces two electrons.
Furthermore, to specify v', an assumption re-
garding the division of energy available to the
two electrons after ionization must be made. To
say that it is divided equally seems not far from
the truth. We may therefore take

e;"=2m'+u;, v dp =2pdv,

I; being the ionization "energy" of the atom or
molecule. Instead of (11) we then have

(0)

4vv'dv = 2v duL4Eg, (u, ')f(0&(u, ') u, '

Q; —Ng;(u)y"&(u) u)

provided g; is the ionization cross section. If this
is to be written in the form dS;(u), S; must
have the form

S,(u) =2sN 2 I f('& g; udu

+ f( &g,u0du . (15)
f",
0

The significance of the two integrals occurring
here is clear: the first accounts for the two
electrons produced at energies below e by ioniza-
tions with the energy of the ionizing electron
above u; the second for the one additional
electron created by ionizations below u. Thus,
S,(0(&) is not zero; it becomes in fact

2sN ~ f(0&g,+du.

The case of capture can be dealt with in a
similar way. The total S, defined as the sum of
all S„S;,and S„must vanish at infinity if the
number of electrons in the discharge is to be
constant. In Article III, Mr. L. M. Hartman
has applied the analysis of this section to the
calculation of breakdown potentials in He and
Ne under certain conditions.

V. NON-ELASTIC COLLISIONS; DIFPERENTIAL
REPRESENTATION

Instead of dealing with each type of non-elastic
collision individually, as in the preceding section,
we now treat the extreme case in which there
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Rrc so many different k1Qds of 1nclastlc cIlcoun-
ters that the index s in Eq. (11) may be regarded
as a continuous variable. To simplify matters
further, ionization and electron removal wi11 be
included among the ordinary inelastic collisions,
no account being taken of the efkct of "number"
production and destruction upon the distribution
function.

As before, s,'dv, '=sds, and Eq. (11) takes the
form

bf"'
—=—Pu, 'q, (u, ')f&0& (u, ')

8t v

—uf"&(u) Qg. (u) (16)

so far as iwelosHc collisions are concerned. As
will be clear later (see Eq. (28)), if the transfer
equation is to reduce to an ordinary second-
order difkrcntial equation, the right-hand side
of (16) must be transformable to

fs oo——X(u) y(u, t)f"&(t)dt .
v du

Here X and Y are arbitrary functions, at present
unknown. But (16) is thus transformable only if
certain rather special assumptions are made con-
cerning the cross sections g, . Two fairly obvious
assumptions leading to solutions will here be
studied.

The cross section g,(u, ') is a function of two
variables: the initial "energy" u, ' and the final
energy u. We therefore put

mation over s in Eq. (16) then turns into an
integration over u, ' and p.

The function g,(u) is constructed by analogy
with (19);

g, (u) =g(u, u,")
=A(p, u.")b(u,",u p)du—,"dp. (20)

One may then write in place of (16), after
integrating over u, ' and u,",
bf&'&

(u+p)A(p, u)f&'&(u+p)dp
St v

uf"'(—u) A(p, u p)dp —
~ (21)1

~o

if it is remembered that A vanishes when its
second argument is negative.

A given value of p characterizes a molecular
transition; the probability of its occurrence is a
function of u. Hence A(p, u) is factorable,

A(p, u) =A&(p)A2(u),

bf &'& N
=—A, (u) tA, (t —u)f&'& (t)dt

bt

p tt

—uf&" (u) A~(t)A2(u —t)dt . (22)
~0

To see under what conditions this can be
expressed in the form (17) we expand that
quantity, taking Yto be tA~(t —u), and obtaining

N—X'(u) tA, (t —u)f&'& (t)dt

g.(u.') =g(u, ', u). (18)

But initial and final energy of the electron are
not useful variables in terms of which to specify
the probabilities of transitions; it seems prefer-
able to use the energy loss together with the final
(or the initial) energy, because energy loss, i.e. ,

the diR'erence between two molecular energy
levels, is more significant in the description of
transitions.

Let us therefore characterize a process s by
the loss of "speed" u. ' —u—=p, and let p be a
continuous variable. Then

g(u. ', u) =A (p, u) b(u, ', u+p)du, 'dp, (19)

where 8 is Dirac's singular function. The sum-

—X(u) uA &(0)f&"(u)

—X(u) tA&'(t u)f&'&(t)dt .—(23)
f

If this is to be identical with (22), it is seen,
first of all, that A ~' must be zero. Therefore, the
scheme works only if we take A &(p) to be a
constant, which would imply that every pair of
molecular levels has the same intrinsic transition
probability. The present method thus limits our
consideration to artificial physical situations,
which are perhaps approximated in complicated
molecules having a great number of excitable
levels.
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tf&0) 1 d 1
~~ tB(t)f")(t)«. (»)

bt s du Bi(u)X(u)
X'(u) =As(u).

To make Eqs. (22) and (23) agree no further so that, finally,
conditions need be imposed, but one must take

This causes both the remaining terms in (22)
and (23) to become identical. The result is

bf & Nd &" t"
]

,

I A(t)dt tf«)(t)dt,
tQ 8dQ

The result is more general than (24); it is
identical with it when B~ is constant. In the
following sections various suppositions will be
made regarding Bi(u), and. for each of them the
distribution function will be computed.

f
the left. Ignoring the difFusion of electmns, we
set vf =0. We choose the field strength to be of
the form E cosset along the x-axis, so that
a = (eB/m) cos&0t =—7 cosset. The distribution func-
tion is given by (6). But p will have one part in

phase with the field and another part out of
phase. Thus,

t)f & 1d( 1
tf(0) (t)dt

i)t &&duI, X,(u)&„
(24)

Another workable method for evaluating the
inelastic collision rate has been suggested by
Bennett and Thomas. ' Starting again with Eq.
(18) we now put

f(v) =f&o)(&&)+(&&,/s)(f&i& cosrA+g&') sin&A). (26)
g(u. ', u) =B(u', u) b(u, ', u')du'du'

and use a product function for B(u', u):
B(u', u) =Bi(u')B~(u), u'~~ u.

Substitution of f in Eq. (5) and subsequent
reduction in a way similar to that used in a
previous publication' leads to the following
three equations:

Evidently this implies that the collision proba-
bility is composed independently of a probability
associated with the initial speed and one associ-
ated with the 6nal speed. This hypothesis is less
reasonable than (19), but it has greater mathe-
matical fertility, for it permits transformation to
the form (17) without further restrictions.

Since

()f(0) t')f (0)

—,—(s'f(") = +
6v' Bv St, Q

df (0)

yX +«&(g«& = —vf&"
dv

(b) (27)

(c)~gf0) —&&g(o

&(u) =Q(u, ue") =Bi(u)Ba(u")t')(ue", u")due"du", If we use Eq. (13), they combine to give
Sz~ Q

1 d
t

Xu' df&')q

Eq. (16) becomes, on combining the two inte-
grals, sdu(u+cu9, ' du 2

where A(t) is now written for A&Ai(t). But it is
easily shown that J'"A(t)dt is the inelastic colli-
sion cross section which will here be written q

AN A.C. FIELD

since we are concerned only with inelastic en- Having calculated the right-hand side of Eq.
counters in this section of the paper. Hence, (5), we now turn our attention to the terms o

t)f(0) + d
I

a ~w

B&,(t)dt i
u'B, (u')f&'&(u')du' .

Q && dut&o

2m d e' 8(')——f"'(u) +
3&du X,

(2g)
s

In this case

g(u) =Bi(u))t Bg(t)dt

Inspection of this equation shows that t)f/Q must
be of the form (17) if f&'& is to be the solution of
a second-order difFerential equation. Using the
integral representation for the inelastic collision,

~Vf. H. Bennett and I. H. Thomas, Phys. Rev. 62, 41
(1942). I H. Margenau, Phys. Rev. 69, 508 (1946).
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if we use the abbreviations

ui = (&oX), uo = 2'r&&. (3o)

Since Iim(f&o)/F) = 0 for u—+ ~, this equation has
the solution

3 t" u+ui S(u)
f&=—F~ X du.

em'u' Il
(31)

This formula, with refinements, mill be used in
the work presented in the third paper by Mr.
Hartman.

. In the remainder of this section we pursue the
consequences of the differential representation.
If Eq. (28) is integrated with the use of Eq.
(25), one obtains

Xu' df&o) 2&r& u'
2.-.2fV f&o)—

S+Ny dQ M Xg

~I »B,(~)f&o)(~)d&, (32)
Bi(u))&,~ „

and all*three mean-free-paths appear. This equa-
tion will be solved for two ranges of e: the
"elastic-impact" region where I lies below some
critical value and X,= ~, and the "inelastic-

Eq. (14) e&l. seg. , we find

bf& &/$t!, = (1/2se) (dS/du).

Integration of Eq. (28) yields

4&r Xu' df &'& u'
—~R =2s&r—f&o)+5. (29)

3 u+(&oX)' du

Here X, the gas-kinetic mean free path, is a
function of u depending on the gas. It satisfies
the relation

1/X = 1/&&, +1/X,.

If nearly all collisions are elastic, which is the
case for small e, ) and X, may be identified.
This will now be done. Let F(u) be the distribu-
tion function calculated without considering
inelastic collisions, that is, the solution of Eq.
(29) with 8=0. It was derived and discussed in
reference 8. In terms of it, Eq. (29) can be
written

d (f&o)) 3X u+ui 5(u)

du&F) ~ u'uoo F

impact" region. The solution for the first region
is E and is known. In the second region X, is
finite and depends on u. We shall assume it to
be constant and put

d'f&'& (r+2
+!

dg' E u

1 12&r& I&. —1 u+ui) df&o&

+
u+ui 3E Zo uoo ) du

6 u+ui
1 2(t'+2) (X 1) f&o) 0

Ku M

Now m/3f is of the order 10 o, I&. and r pre-
sumably not far from 1 in the region of inelastic
impacts; hence, neglect of the last term in the
preceding equation is always legitimate. In
the parentheses, zc must attain a value of
(12&u/M)~uo, if its last member is to be con-.
siderable. For such high energies the distribution
function is usually small and the term in question
has no appreciable effect. It is a permissible
approximation, therefore, to reduce Eq. (32) to
the form

d ( u"+' df&o)) 6 u"+'
(0)

du Eu+ui du ) E uoo
(33)

when dealing with the region of inelastic colli-
sions. In solving this equation we consider two
instances: the d.c. case (ui=0) and the high

frequency case.

D.C. Case

Equation (33) can be solved exactly. If we put

f&o) =u—&'Z
&,&o) (iku).

Xuoo E(eEX)'

Since f"& must vanish at infinity, the Bessel
function Z must be identified with the Hankel

so that ),=EX/(Z —1). Moreover, let us put
the probability of an inelastic encounter

Bi(u) =const. u"

and see how the distribution function in the
inelastic region depends on r. More refined
assumptions require numerical integrations of
the resulting equations and do not seem worth
while at the present time. Equation (32) becomes,
after differentiation,
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6 ()s«)'
a'= —

I

—
I

~

I( Z Lgql

The equation to be solved is

d'f(') fr+2 1 ~
df(q) p 1~

+I —
I =I '+- (&V") (36)

dx' ( x x+ii dx ( x~

Since it is not valid for small x, and our interest
is in the region of large x, we endeavor to find a
solution valid to terms in x-' and expand the
equation with retention of terms in x-'. On
writing

f( )=qexp — '

y(x)dx
I 4 4

and employing what is known as the J-W-K-B-
method, one 6nds

g+r+1 1+(r'—1)/2g —(I/2
&=a+ + +''

2x 4x

and therefore

f(q) g x (q+r+1)/q-
1+(rs —1)/2(I —(I/2

Xexp —gx+
4x

(37)

To facilitate interpretation a summary of the
meaning of symbols employed thus far and of
the results is given below.

'E. Jehr)ke end F. Ende, Zebras of Pqssotqons (Dover
Publications, Neer York, 194$), p. 13K

function H~ ~, which has the as+Hlptotlc expan-
sion'

H «„(ik««) =const. «see-»Sq, (2k««)

with
rq —1 (rq —1)(rq -9)

S«,(2kqs) = 1+ +
Skqs 128(kss)q

(r' —1)(r' —9) (r' —25)
+ ~ ~ ~ (34)

3072(k««)'

Hence
Pq) = ass-'"+'& "e-~"S«,(2k(s) .

A.C. Case

It is convenient to write

List of Symbols
e= speed of electrons
Q=O

X, X,=total and inelastic e1ectronic mean free
path

X=l(./l(, treated as constant
co=radian frequency of 6eld

u(= ((o4)'
r dehned by: cross section for inelastic collisions

Q

8=amplitude of 6eld strength
m=mass of electron
M= mass of molecule
qsq

——2eEl(/ss«
ks =6/Egqs
g'= 6/E(s««/ssq)'

fe .("=&ss ('+"'se ""(1+(r' 1)/Sks«+ ' ' ')
f (q) —gqs-(q+~+0/Re-» (38)

X (1+(r' —1)/Skss
+ (2 (I)qs—&/Sqs+ ).

It may be noted that the d.c. distribution
function (35) is Maxwellian when r = —1. It then
corresponds to an electron temperature (for
electrons capable of inelastic collisions)

'8 = (I(./6) «eE)(,

where 8 is Boltzmao. n's constant times T. This
implies that the mean energy of an electron is
about equal to the energy it gains between
collisions. The Maxwellian case, however, refers
to the rather implausible situation where the
collision cross section decreases with growing
speed. In all other instances fI) falls off more
rapidly at large I than does e ~".

For very large frequencies the alternating 6eld
has no e6'ect on the distribution function. This
is seen from Eq. (28). If (o—) qo, the left-hand
side vanishes, which is equivalent to equating y
to zero.

As an illustrative example we treat the follow-

ing case. A discharge is excited by the passage
of 10-cm waves through argon gas at a pressure
of 6 mm of Hg. The resulting distribution func-
tion is to be compared with that for a similar
d.c. discharge. Assume

co=1.88& iO" sec. '; X=7.2&10 ' cm. '

u~= 1.80X10' cm' sec.-',
Ng = 7.65)( iO"E cm' see.-';
k=(3.20/E)X10 "cm 'sec.' (I=5.80/E;

sr)/M= 1.36X10-'; E is in e.s.u. per cm.
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First of all, it is necessary to include the term
v Bf/Bx in the transfer equation (assuming that
diffusion occurs in the x-direction). Also, to
obtain a steady state, ionization must be in-
duded explicitly in the formalism. This is best
done by writing

bf &'& 1 &&l—(&,+&a),
Q 4+v' dv

where S; refers to ionization, Sg to all other
collisions. Finally, Eq. (26) is replaced by

f=f ' (v, x) +—

5 6XIO

&i( v~) jt&~cm

FIG. 1. Plot of Nf(o)(u} as a function of I for argon at
6-mm pressure and vrave-length 10 cm 8 is in electrostatic
un1ts.

X Lb&i& (v, x) +f&"(v) cos&0t+g "& (v) sin&dt].

On separation one then obtains, instead of
Eq. (27), the following set

Excitation in argon starts at 0=4.0X10'~ cm'
sec.

Below this value of u the distribution function
is I" and this turns out to be essentially constant
for field strengths high enough to cause a dis-

charge. Hence, there arises no distinction be-
tween the d.c. and the a.c. distribution in this
region. At higher energies, however, there is an
important difference which is illustrated in Fig.
1 by plotting uf ' &a&gainst u. These curves were
drawn for the case Bi(u) =constant; they are
not normalized, and E for the a.c. curves is the
amplitude, not the r.m.s. value of the fieM

strength.
In Table I are collected the results of numerical

integrations yielding the relative numbers of
electrons capable of inelastic collisions at differ-

ent field strengths. In the a.c. case these numbers
rise faster with the root mean square value of E
than the d.c. values rise with E.

VII. DIFFUSION OF ELECTRONS

d f VXg
f&'& 4vv'dv. +5,(~) =0

dX s~o 3
(39)

since S&,(~)=0. Now in the kinetic theory of
gases the diffusion coefficient, D(v), is de6ned as
vl&~/3. The integral in (39) is therefore n times

TABLE I. Values of the relative numbers, v, of electrons
having speeds greater than 2X10' cm sec. '.

f(o)dz N&f(o)d
4xlo+ 0

y7&Bf"&/Bv+a)) g&'& = vf&"—

~Xf&'& =vg&"

Bf&"/Bx = —&h' &/g&&,

where X~ is a mean free path characteristic of
the diffusion of electrons. In microwave dis-
charges it corresponds to ambipolar diffusion.
When the last of these relations is introduced in

the first and the result is multiplied by 4m''dv

and integrated over the entire range of v, there
results

In this section it is desired to show what
modifications are required in the present formal-
ism when diffusion of electrons is to be included.
A brief indication will sufBce, since the results
are not new.

B (volts cm-1) Li.c.

1.09X10~
2.31X 10~
3.43X 10~

a.c.

1.08X 10~
1.99X10~
2.90X10 '
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the mean of D(s) or stD, and

d'(eD) /dx'+ S;(~ ) =0.

This result implies equality of the rate of removal
and the rate of pr oduction of electrons.

To proceed from here on, special assumptions
have to be made concerning the dependence of
f&'& on s and x. The simplest is to say that
f&"(n, x) = y(e) X(x) so that

t"As
y(s) s'ds I ys'ds

0

fm.p.

g~ Pre SOVI y

FIG. 2. Least maintaining potential vs. gas pressure.

a quantity independent of x but through V a
function of 8, ~, and X. Holstein's results are
obtained when y is taken to be f"', computed
without taking account of diffusion, as in the
previous section.

VIII. MAINTENANCE POTENTIAL IN HIGH
FREQUENCY DISCHARGES

The experimental evidence concerning current-
voltage characteristics of a.c. discharges is some-
what confused. For a discharge at a given
frequency and pressure there is usually observed
a "least maintaining potential, " a potential
below which the discharge is extinguished. To
what extent it is a function of the circuit pa-
rameters is di%cult to say.

%hen the l.m.p. is plotted against the pressure
of the gas, the result is a curve either of type (a)
or type (b), Fig. 2. Curve (a) has a minimum
and is found in the work of Kirchner. '~ Rohde"
finds graphs with a horizontal slope like (b). ln
both of these the current varies from point to
point of the curve.

Brase6eld's" measurements are in one respect
more definite, for he determines the potential
required to maintain a constant current, as a
function of gas pressure and of the frequency.
He definitely obtains curves of type (a). His
results invite a theoretical interpretation which
will be given in the sequel.

Other investigations'~ designed to determine
the dependence of voltage on current for a

given frequency and pressure, while interesting
in themselves, have an indirect bearing upon the
l.m. p. They indicate for the graph of V against I
a curve like (b), with a horizontal slope. The
current is therefore independent of the voltage
over a very wide range of values. If this result
is accepted and coupled with Brase6eld's 6nd-
ings, it would appear that the curves of l.m. p.
vs. gas pressure should also show a minimum in
accordance with (a), since the current corre-
sponding to the l.m. p. must lie on the horizontal
part of the characteristic. Deviations from this
behavior may well be caused by circuit peculi-
arities.

Brase6eld has given a qualitative explanation
for the occurrence of minima, and the following
considerations show how his results are related
to the distribution functions computed in this
paper.

If, for a given frequency, the pressure is too
low, a high 6eld is required to produce ionization,
since the electrons are essentially free and have
to draw all their energy from the alternating
6eld in a single period, as described in Section I.
On the other hand, if the pressure is too high,
frequent collisions interfere with the transfer of
energy from the 6eld to the electrons.

These facts can be recognized from the fol-

lowing simpli6ed and non-rigorous considera-
tions. The current density across the discharge
is given by

dv
7= ried, = e s '(f&'& coaot+g&'& sin&st) —.(40)

0 8

'o F. Kirchner, Ann. d. Physik (4), Vl, 287 (1925)."L. Rohde, Ann. d. Physik (5},12, 569 (1932).
~ C. F. Brase6eld, Phys. Rev. M, 101'3 (1930}."M. A. Berlin and S. C. Brown, Phys. Rev. 69, 696

(j946) ' L D Sm",l'n a""C. G M "g. me&- ~~" ~~7' The 6rst term under the integral represents the
Dupkxers, Radiation Laboratory Series (McGraw-Hill
Book Company, Ino. , New York (in press)), VoL I4. dissipative current upon which attention will be



H, MARGENAU

focused here. From Eqe. (27b, c), at once to

(41)

For f&" we shall use the approximate formula

(37) which may be written

f(o) g &u-(o+r+t) lo

8uo Jut (Z) &) a 4u

&jul J const. ~uo ( 6 J ) & k&tt ( ut—
( u+—~du

~ uoo ( Sui

(cf. Table I, Section VI, for the meaning of &I, k).
The ratio of the remaining integrals is positive,
hence the graph of Ng vs. N~ has a m&simlre at

2 —
&I t1q

)(exp —ku+ ut+Oi —
i (42)

Su Eku) I

)Eq &

Sj,= — Q2.(6) (44)

and drop terms of order 1/ku and its higher

powers. The examples discussed in Section VI
show this to be reasonable for microwaves,
although it is detrimental to quantitative accu-
racy. Equation (42) holds above some critical
value u'; below u', f&o~ is nearly constant and
makes a small contribution to f('& With. in this
set of simplifications, the integral in (40) is to be
extended over an algebraic function of I, ej., and
N~ times the exponential

y(u, ut, uo) =exp —ku+ ut
I Su

It will be seen that a similar minimum occurs
when 8 is plotted against X (or pressure) at
constant frequency, or Z against co at constant
pressure.

Equation (44) is equivalent to

2sEX (6y~
I

~o)p
m &E)

(45)

Now eBX is approximately the energy acquired
by an electron between collisions, $ttt V' Henc. e
the minimum occurs when

and between the 6xed limits e' and ~.
The condition that the current be constant

under a variation of the independent parameters
Nj and ug is that the difkrential of this integral
with respect to these two parameters be zero.
The major change in the integral is expected to
comt. from the exponential factor in the inte-
grand, hence we require that

that is, when the frequency of the 6eld is about
equal to the collision frequency.

Equation (45) is in accord with the main results
of Brase6eld's work, giving correctly both the
dependence of 8 on ) and on cu. As to numerical
agreement, we note that in a typical case he 6nds

E= j.o volts cm ' co=2xX1.5)(10' sec. ';
X=5 cm.

8Q
dut+ duo k(u, ut, uo)du=0, (43)

Rgb BQg
Using formula (45) we find for Z the value 10,

where h is an algebraic function. But this leads which is not unreasonable.


