
LETTERS TO THE EDITOR

08-
g
I'.

.06—
O

I
w .04-
es
~4"„

eso
e'.
e. .OR-

IS» clIy n ~ p
CsI CII + n

n(KNOCKOUT]

n+ CI~ C"+ Rn
XCHANGE ASSUMED

IO 20 SO 40 50 60 TO 80 80 IOO

80M8AII'OING ENEIIGY IN MEV

krG. 1.

{total cross section), for k&15. (Energies throughout are
in units of the electron rest energy. ) If one fits the differen-
tial formula, to exact values at the "midpoint, " i.e., for
equal electron and positron energies, these limits become
+1 percent and +$ percent, respectively. Comparisons
below, however, are to the unfitted formula. Errors for
k &20 are roughly (20/k)' times the above limits, for either
type of approximation.

The high energy integral formula usually quoted' is
not as good as just stated; one lower power of k must be
kept, making the total cross section

4 = (28/9) ln2k —{218/2V)+(6.45/k). {1)

leads to excited N~ with the subsequent boiling off of a
proton, while a similar exchange process cannot take place
for the C~(n, 2n)C" reaction. Secondly, there is the dif-
ference between the contributions of the knock-out
process as a result of the difference in the n —p and the
n —n cross sections, which favors the p+C's knock-out
reaction. It will be noted that the parts of the reactions
which go through excited C~, while practically equal, are
so small that they do not greatly affect either reaction.

Although the results of these calculations do not agree
too closely with the experimental results, they are prob-
ably as good as are to be expected because of the crudity
of the assumed model. The results do, however, seem to
give a good qualitative picture of the contributing factors
affecting the total reactions. Finally, it would seem that
the assumption of 50 percent exchange gives better
agreement.

The authors wish to express their great appreciation to
Professor Robert Serber for his continued assistance
throughout the course of these calculations.

This paper is based on work performed under Contract
No. W-7405-eng-48 with the Atomic Energy Commission
in connection with the Radiation Laboratory, University
of California, Berkeley, California.

~ E. M. McMillan and H. F. York, Phys. Rev. p3. 262 (1948).
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&HE appreciable effort required to get numerical re-
sults from the exact Bethe-Heitler differential cross

section for pair productions has suggested its imitation by
a simpler expression. We first consider the well-known

high energy limit, without screening, of the exact formula.
Errors in the high energy formula are positive and

&1.5 percent (di6'erential cross section) or &1 percent

TABLE II. Exact, Eq. (2), and high energy differential
cross sections compared.

4 exact
Eq (2)

k =6 E (2)

0.2

0.937
0.936

0.1

0.2492
0.2494

0.05

Here, and throughout, cross sections are in units of
(Zs/137)(es/mc'). s

As a formula suitable for 2 &k &15 and having reason-
able overlap with the high energy formula at the upper
limit, we propose the following:

4 =PssLI+0. 135(gs—0.52)s(1 —s') j. (2)

x=(E+—1)/(k-2) is the fraction of kinetic energy, k —2,
given to the positron; s=2Ls(l —s:)gI; p, is the cross
section per nucleus per unit x' (cf. Heitler, p. 199); po is

@, at x=$. The second term in the square bracket is fo be

dropped when it becomes negative (belmn k =4.2}.
&0 appears in (2) because no simpler, good k-dependence

has been found. At x'=$ the exact formula simplifies
appreciably (if not spectacularly), giving

go= (1—y) f)(4—yR){L—1)—yea(a —1)—y4a(L —a)j, {3)

with y = {2jk), I.= [2j{1—y') ]in (kj2), n = [Ij(I —v')I j
)(lnf(k/2)+((k/2}~ —1)&j. Table I gives po for several
values of k, (For comparison, several high energy values
are also shown. )

Our formula (2) is, of course, exact at x=$; its per-
formance at small x (and hence near x=1) is shown in
Table II. We may suppose on this basis that for 2 &k &15
{2)deviates from the exact formula by &2 percent, that
deviations of more than 0.2 percent occur only for @&0.2
or &0,8, and accordingly, that total cross sections from
(2) are wrong by &$ percent (and &0.1 percent for k & 10}.

We get from (2) for the total cross section

4 =0.&76o40+0.0180&0~ (k &4,2)
=0.7'854&o (k &4.2).

Values calculated from (4) are presented in Table III,

TABLE I. Di8erentia1 cross section at x =$(@G).

]exact
&')high energy

3 4 6 10 20 50

0.1116 0.4157 1.1419 2.3816 4.3163 6.953
2.367 4.342 6.961

exact
k 10 Eq. (2)

high energy

exact
k ~20 Eq. (2)

high energy

2.046
2.043
2.006

3.968
3.963
4.009

1.565
1.567
1.497

3.194
3.100
3.238

1.122
1.130
1.018

2.324
2.222
2.343
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Tasm III. Total cross section.

3 6 10 20

Eq. (4) 0.0876(0) 0.3265(~1) 0.9096(~8) 1.950(~2) 3.69{-2)
Heitler 0.085 0.32 0.89 1.94 3.V5
Eq (1) 1.89 3.V3(+2)

where we have also reproduced results given by Heitler, '
and at k = j.0, 20 numbers from the high energy formula (i).
The figures in parentheses are expected errors in the last
digit shown. One should note the considerable improve-
ment in accuracy over Heitler's results, and the overlap of
(4) and (1) at k=20. At k=15, the two are still closer.

The low energy form of (2), p, =pog, was found by ex-
panding the exact formula in powers of the excess energy,
k-2; the limiting k-dependence found for @s is

yo = ($)(k —2)s (k —2)«1. {5)

(5) is interesting in that the coeScients of three lower
powers of (k-2) vanish, so there results a higher order of
contact of the total cross section curve at k =2 than might
have been expected. The range of validity shown in (5)
must be taken seriously: at k~2.5 (5) is already almost
double the true value. As pointed out to me by Professor
H. A. Bethe, multiplying (5) by (2/k)' gives the best
possible power law approximation for large k; the im-

proved formula is 12 percent low at k =3, 50 percent low

at k =6, and gives a total cross section at high energies ~2
instead of actual limits {if screening is included) of ~12.

I wish to thank Professor Bethe for suggesting these
calculations and for helpful discussions of many points
while carrying them out.

~ H. Bethe and W. Heitler, Proc. Roy. Soc. 146, 90 (1934).Eq. (21);
or W. Heitler, Quaetets Theory of EaChat ms (Oxford, University Press,
1936)'. p. 196,'Eq. (8).

~%'. Heitler, Qeaetxm. Theory of Rediatioe (Oxford University Press,
1936), p, 197, Eq. (9).I See reference 2, p. 200, Eq. (15).

~ See reference 2, p. 200, Table V.

A study of the activation energy associated with the
viscous slip along grain boundaries seems to contribute
to our understanding of the structure of the grain boundary,
It has been found that the activation energy associated
with the grain boundary slip in alpha-brass is close to the
value for the diffusion of zinc in alpha-brass of the same
composition. ' Recently, in the study of the anelastic effects
in alpha-iron, 4 the value obtained for the activation energy
of grain boundary slip agrees, within experimental error,
with the value for the self-diffusion in alpha-iron reported
by Birchenall and Mehl. s Such an agreement has also been
found in the case of aluminum. The activation energies
for volume diffusion and grain boundary slip of these
metals are summarized in the second and third columns of
Table I.

If such an agreement in activation energies were found
to be a general phenomenon in all metals, this would
indicate that the grain boundary slip involves the same
mechanism as does volume diffusion. This would also
indicate that, at least as far as the local order is concerned,
the structure of the transition region at the grain boundary
cannot be markedly different from that of the interior of
the grains. The grain boundary slip can thus be considered
as creep on a microscopic scale, and this creep occurs at a
lower temperature than creep in single crystals because of
the disturbed crystallinity at the grain boundary. This
viewpoint is strengthened by the 6ndings that the activa-
tion energies for the creep in these metals (shown in the
fourth column of Table I) are comparable with that of
grain boundary slip.

The upper limit of the width of grain boundary has been
suggested tobe fiveatomicdiameterson the basis that the
forces between atoms in solids are of short-range type ex-
tending with appreciable intensity only over a few atomic
distances. s It seems that the boundary region within which
creep may take place must have a width of at least a few
atomic diameters. Actually the mere fact of short-ranged
forces in solids does not necessarily imply that the tran-
sitional region can only be very thin. Reference canbe made

On the Structure of Grain Boundaries in Metals
T'&No-San IQh

I~stitlte for the Shed@ of Metals, The University of Chkago,
Chicago, IQisois
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&HERE is no method known at present of determining
the structure of grain boundaries in metals. Con-

siderations based on the atomistic viewpoint suggest that
the grain boundary is a transition region, where the atom
positions represent a compromise between the crystalline
arrangements in the two adjoining grains. Extensive ex-
periments on internal friction and related effects have
demonstrated that this transition region behaves in a
viscous manner in the sense that it cannot sustain per-
manently a shear stress and it has a coeScient of viscosity
decreasing with an increase of temperature. &' This does
not, however, tell us about the structure of this transition
region, since any layer of disturbed crystallinity when con-
sidered as an entity may manifest a viscous behavior.

Terai. m I. Different types of activation energy of a few metals
{in calories per mole).

Grain boundary
Type of metal Volume diffusion slip Creep

Alpha-brass
Alpha-iron
Aluminum

41,7~
78,00%~
37,500s

41,000b +
85,~~+
34,500b f

42,0006 ~
90,000&
37,000i t

*29 percent Zn.~ 40 percent Zn.~WestlQghouse Puron.
f 99.99 percent aluminum.
+A. E. Van Ark@1, Metalhvirtschaft 7, 656 (1928); see also R. F.

Mehl, Trans. A.I.M.E. 122, 11 (1936).
b See reference 3.
o H. Tapsell, A. Johnson, and W. Clenshaw, Eng. Research Report

No. 18, Dept. Sci. and Ind, . Research. London (1932).
~ See reference 5.
+ See reference 4.
t J. J. Kanter, Trans. A.I.M.E. 131, 385 (1938).

Estimated on the basis of binding energy and of melting tempera-
ture according to an empirical rule for face-centered, cubic metals ob-
served by W. A. Johnson, Trans. A.I.M.E. 143, 102 (1941);also private
communication to the writer.

h See reference 1.
i S. Dushman, L. W. Dunbar, and H. Huthsteiner, J.App. Phys. 15,

108 (1944);extrapolated to cero stress by C. Zener and J.H. Hollomon,
J.App. Phys. 17, 69 (1946).


