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hold together as a group and would be captured
as such. This group would then be the di.-neutron
(On' ), but a di-neutron only under very peculiar
physical conditions. It is being found in course
of these (H', p) reactions only for a very short
time, vis. the interval between the instant the
H' begins to be polarized and the instant the
capture takes place.

The di-neutron may be an extremely unstable
particle and hence, the circumstances of the

present investigations may be just the extreme
physical conditions under which it may be
observed.

The authors are grateful for the support re-
ceived from the Ohio State University De-
velopment Fund. Thanks are also due the
Watumull Foundation, Los Angeles, and the
Ghosh Travelling Fellowship Board of the Cal-
cutta University for their support to one of the
authors.
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The results of an extension of Podolsky's generalized electrodynamics, corresponding to
Proca's extension of Maxwellian electrodynamics, are presented. In this extension the La-
grangian is permitted to depend upon the field coordinates themselves, which is a major step
in going from electrodynamics to meson-field theory.

The static interaction and static self-energy, derived by exact classical and quantum methods,
as well as the dynamic interaction and dynamic self-energy, obtained by a quantum-mechanical
perturbation method, are given. The complete interaction and self-energy are free from singu-
larities and infinities. This is in contrast with the results of ordinary relativistic meson-fieM
theory. It thus appears that these defects may be removed from meson theory, just as in
electrodynamics, by going to a generalized field theory in which the Lagrangian contains the
second derivatives of the field coordinates.

1. INTRODUCTION
' 'T is mell known that the outstanding difFiculty
~ ~ in the quantum theory of 6elds is the problem
of infinite self-energies or inertia effects which
arise in those theories which meet the require-
ment of relativistic invariance. In fact, most of
the current research in 6eld theory is directed at
solving this problem. '~

In a recent series of papers Podolsky, ' Po-
dolsky and Kikuchi, ~' Montgomery ' and Green'

i See G. Wentzel, Rev. Mod. Phys. 19, 1 ()947}.
~ Also W. Pauli 3&son Theory of NucEear Forces {Inter-

science Publishers, Inc. , New York, 1946).' B.Podolsky, Phys. Rev. 62, 68 (1942), to be referred to
as GE I.

4 B.Podolsky and C. Kikuchi, Phys. Rev. 65, 228 (1944),
to be referred to as GE II.

~ B.Podolsky and C. Kikuchi, Phys. Rev. 67', 184 (1945),
to be referred to as GE III.' D, J. Montgomery, Phys. Rev. 69, 117 (1946}, to be
referred to as GE IV.

~ A. E. S. Green, Phys. Rev. 'D, (1947), to be referred
to as GE V.

This series of five papers will be called the GE S.

have developed a Completely relativistic electro-
dynamics which appears to be free from the de-
fect of infinite self-energies and which reduces to
the Maxwell-Lorentz formulation for low energy
phenomenon. In the present paper we extend this
generalized field theory by allowing the La-
grangian to contain the field coordinates them-
selves. The corresponding extension of Max-
wellian electrodynamics has been investigated
by Proca' and others"'" and is considered to
be among the more promising of meson-held
theories.

In order to show the essential consequences of
this genera1ization we shall consider only its
simplest aspects. It is probable that modihcation
of this theory by the inclusion of such concepts

~ A. Proca, J. Phys. Rad. (vii) 7, 347 (1936).
9 N. Kemmer, Proc. Roy. Soc. A166, 127 (1938).
"H. Froh1ich, W. Heitler, and N. Kemmer, Proc. Roy.

Soc, A166, 154 (1938).
"H. J. Bhabha, Proc. Roy. Soc. A166, 501 (1938).
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as isotopic spin and symmetry requirements will

be necessary to explain nuclear phenomenon.
Nevertheless it seems worth while to present the
consequences of a development which difkrs
from Podolsky's generalized electrodynamics
merely in two respects.

(1) The Lagrangian of the field depends quad-
ratically upon the field coordinates which are
components of a four vector i4

= (A, &).
(2) The parameter coupling the field with a

nucleon is a constant g instead of the charge e.
As the mathematical formalism used in this

investigation parallels almost exactly that used
in the GE 8 we shall present only the differences
which arise as a result of the modification in

assumptions. The reader should refer to the GE S
for the steps of the calculations and for the
notation, nomenclature, and references.

2. LAGRANGIAN, HAMILTONIAN, AND
%'AVE EQUATION

GE I, place on the right the nucleon density

p =gb(R). (3.2)

A well behaved solution of (3.1) which gives
rise to the delta-function is

it = (g/44ryR) (e »" -e&'—s), (3 3)

go = L(1+2a4 ) ' —(1—2am) ']/2a,

pi = L(1+2a44) &+ (1—2ap) &]/2a,

(3.4)

(3.5)

V =a'(~i' —
4 o') = (1—«'4 ')'. (3.6)

The volume integral of the Hamiltonian
(henceforth called simply the Hamiltonian) is

r
8=) HdV=(1/2) LI4'y'+(Vit)'

4

+a'(V'y)']d V. (3.7)

Using (3.3) we obtain for the energy of the field

We choose as our basic Lagrangian of the field

I- = (1!2)(—4 'e-'+4. e'+a'(&, v-)'], (2 1)

H = gm/84ra (1+2a44) &.

4. CLASSICAL SOLUTION OF THE
GENERAL CASE

(3 8)

where p, is a constant having the dimension of
reciprocal length and c is a constant with the
dimension of length. The scalar counterpart of
this equation has been suggested by Rayski. "
The development leading to Eqs. Ge II (2.16)
and Ge II (2.22) is altered but slightly by the
additional term in the Lagrangian. The corre-
sponding field equation is

a'CI CI» —CIA +p'q~=o,

~ (r ~) =(1/2~)' '

t.p. (lr) exp( —440)

where

+4-*(I ) exp 44+4-(I ) exp( —4&i)

+44,*(lt) expigi]dit, (4.1)

A general solution of the field equation (2.2),
expressed in terms of Fourier integrals, is"

yo=ckot —k r, yg=ckjt —k r, (4.2)
which is a fourth-order generalization of the
Klein-Jordan equation. The Hamiltonian is

~= (1/2) L4'4.'+ -,4+e(a& 4.)']
—p .4(1 a I-I) s', 4 a s', 44+0'. 4 (2 3)

3. CLASSICAL TREATMENT OF THE
STATIC CASE

For the static case the 6eld equation becomes

k44= k'+ p(P, and ki4 = k'+4444 (4 3)

From the standpoint of quantum mechanics,
Eqs. (4.3) indicate that our field is associated
with particles having the masses

m p = k144/c and mi =kg /c.4(4.4)

To avoid particles of complex mass, Eqs. (3.4)
and (3.5) require that

a2V'V'p —V'Q+ p,2$ =0 (3 1) 2ap, & 1. (4 5)

If we consider the interaction of the field with By expressing all the quantities in (2.3) in
a point nucleon at the origin then we must, as in terms of Fourier amplitudes and carrying out the

'2 G. Rayski, Fhys. Rev. Vo, 573 (1946). "In this paper bars are used in place of tildas.
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integrations over all space we obtain, after a given by
tedious calculation, the Hamiltonian

R, =cn, p, +m~'P.

&= v [&o'(o -e-*+p -'o-)

—h, '(e ~op.*+op. 'op. )$dk. (4.6)

S. QUANTIZATION AND AUXILIARY CONDITIONS

Accepting (4.6) as the quantum-mechanical
Hamiltonian, we may obtain the commutation
rules for amplitudes by requiring that

+g,y(r, t,) g,n—, A(r, t,) (5..1O)

0. THE INTERACTION ENERGY

The extension of the mathematical formalis»i
of Fock, given in GE III, may now be used to
eliminate the scalar potential and part of the
longitudinal component of the vector potential
from the wave functional. We thus obtain for the
static interaction of a system of particles

p.(r, t) = (i/h) [8, e.(r, ~) ). (5.1) V= P', „(g,g./S~qR) (e ~« e »s—), -(6.1)

(6 2)

ExPressing both sides in terms 0 ourier inte and the static self ener .Of a sin le article
grals and equating coefficients of corresponding
exponentials, gives V, =g'/Sw (a1+2ay)&.

[ip *(k), pe(k') 1= —b ob(k k')ch—/2hpy, (5.2)

[pp *(k), ioe(k')] = 8 eb(k —k')ch!2hiy. (5.3)

'I.'o reduce the number of degrees of freedom of
t.he field, we take as auxiliary conditions on oiir
~rave functional

These are in agreement with the results obtained
classically. Applying the procedure given at the
end of GE III and beginning of GE IV gives, as
the wave equation for a system of particles,

,
' P„[cn, p, g-,n, —D(r, t.) +rn, c'p,

+g,'/Soa(1+2aa)&]++'„„(g,g /SpiyR)

c(k)4 =LQ(k) —4(k)34 =o,

C(k)0 = N(k) —4(k) j4 = o,

and their complex conjugates where

(5.4) wliei e

(5 5)
and

D(k) =A(k) —kQ(k)/ki (6.4)

X (e-~p' —e »') }0=[ih-8/Bt]0, (6.3)

D(k) =A(k) —kQ(k)/kp

[Q~(k), Q(k')]= —8(k —k')ch/2kpy, (5.6)

I Q*(k), Q(k') j= b(k —k')ch/2kiy. (5.7)

Tllis insures tllat C(r, 3) commutes wltll C(r, i' )
taken at another space-time poin t.

When nucleons are present in tht: field, the
niodihed auxiliary conditions are

To calculate the dynamic interaction we write
the wave equation (6.3) as

[H ih8/Bt]Q = [P—, g„n, D(r, i) j0, (6.5)

~nd treat the right-hand side as a perturbation.
An analysis corresponding to that given in

GE V gives as a first-order approximation the
perturbation energy

C(k)0=[Q( ) —4(k)+f(r &.)/»p'Vjt=O, (5 S) &.= —2;- (g g-/16''~)

&( n, n„expik. R(1/ho'- —1/kP)dk
t

C(k)4 =
I 0(k) —@(k)—f(r.~.)/2»'v10 = o (5 9)

This modification is made so that C(r, l) com-
mutes with the operator R, ih8/Bt„where R„—
the sum of the relativistic Hamiltonian of the
particle and the field-particle interaction, is

t(n, k/h)(n k/h)

Xexpik R(h'/kp' —k'/h&')dk . (6.6)
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After integration this becomes

Ug = —Q,, „(g,g„/16m'r)

X Ia, a„(e "'s e—"'s)/R

+(e, R/R)(e„. R/R)

energy is

U= Q'...(g,g /16sa'q)

X[(1 e, —a /2)e "s sinh)R/gR

—(1/2) (e, R/R) (a„R/R) e~"(sin h)R/$R

+qR sin h(R/$R —cosh)R) ], (6.10)

The dynamic self-energy of a single particle is
thus

Ug, ———e .eg'/16m a(1+2ap) &

g = (1+2ap) &/2a and (= (1—2ap) '*/2a. (6.11)

The complete self-energy is finite in contrast
with the results of most relativistic theories. It
ls given by

= —3g'/16+a(1+2ap) &. (6.8) U, = —g'/16m. a(1+2ap) & (6.12)

Considering the static terms, we have for the
complete interaction

U= 2'...(g.g-/8~v)

X j(1 e, e„/—2)(e ~o' e~~')/—R

-- (1/2)(a, R/R)(e„R/R)

X9 ""'(~a+1~'R) e""(~i+—1/R)1l (6 9)

This result resembles in its spatial and spin
dependence the interaction function used in

several of the mixed" theories of meson forces. "
An important di8'erence is the fact that the
present interaction function contains no singu-

larities. Ke also do not have as a factor the iso-

topic spin operator, as the isotopic spin formal-

ism, "which seems to be necessary in order to
predict the correct sign for the interaction energy,
is not considered in this paper.

An equivalent expression for the interaction

"See references 1 and 2."B. Cassen and E. U. Condon, Phys. Rev. 50, 846
(1936).

Generalized electrodynamics is now a special
case in which p =0 and g =e. With these con-
stants Eq. (6.9) reduces to GE V (4.1). Letting
a=o, this further reduces to Breit's formula, a
result of ordinary quantum electrodynamics.

Placing a=0 in (6.9) gives

5i= Q', . (g,g, 'Sn)

X[(1—a,. a„/2)e ~'/R —(1/2)(e, R/R)

X (a R/R)e &~(g+1/R) j. (6.13)

As might be expected, this result, apart from
a matter of constants, is the same as that ob-
tained from the ordinary Proca equations.

'V. CONCLUSION

It appears from the present investigation that
infinities and singularities may be removed from
meson theory, just as in the case of electro-
dynamics, by allowing the Lagrangian to contain
the second derivatives of the field coordinates.

The writer wishes to acknowledge his in-

debtedness to Dr. Boris Podolsky for his valuable
suggestions and criticism.


