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By introducing a time of relaxation in a wave equation for second sound (1) relations between

the dispersion of second sound and ordinary sound are derived„{2) the high heat conductivity
of He II is related to second sound in the same way as the normal heat conductivity is related
to ordinary sound on Debye's theory; (3) values for the time of relaxation and the velocity of
of the heat Row are computed which are practically the same as for the flow of liquid He II
through narrow slits above the critical velocity, indicating that in both cases the restriction of
the Row is due to the same mechanism.

1. INTRODUCTION

TISZA' ' and L. Landau" independently
~+ derived a wave propagation in helium II

generally called "second sound, " by considering
helium I I as a mixture of two sorts of particles
with din'erent energy contents. These waves
consist of fluctuations of the relative density of
the two sorts of particles, the total density
remaining constant in first approximation. In
their derivation of the wave equation both
authors use separate and independent continuity
equations for the motions of the dift'erent sorts
of particles. This procedure implies that no
interchanges take place between the two sorts of
particles during the time of vibration.

A similar condition has been investigated for
the transmission of ordinary sound in a dis-

sociating gas by A. Einstein. ' Here also two
diferent sorts of particles with different energy
contents take part in the vibrations. Usually
the time of a cycle in ordinary sound is so long
that the two sorts of particles can interact with
each other sufficiently to maintain the state of
equilibrium during all phases of the vibration.
But if the frequency is increased sufficiently the
time necessary to establish equilibrium (generally
called the time of relaxation) becomes larger
than the time of one cycle. Einstein showed that
this causes a change in the velocity of sound,
with a region of dispersion and absorption in the
range of frequencies where the time of relaxation
is comparable with the time of one cycle.

~ L. Tisza, C. R. Acad. Sc. 207, 1035, 1186 (1938).
~ L. Tisza, J. de phys. et rad. VIII, 1, 350 {1940).' L. D. Landau, J. Phys. U.S.S.R. 5, 71 (1941).
4 L. D. Landau, J. Phys. U.S.S.R. 11, 91 (1947).
I' A. Einstein, Sitzungsberichte Herl. Akad. 1920, 380.

2. THE DISPERSION OF SECOND SOUND
AND OF ORDINARY SOUND

It is the aim of this paper to show that by
introducing the same conception of a time of
relaxation in the equations for second sound,
relations between the dispersion of second sound
and of normal sound can be obtained, and
furthermore the extremely high heat conduc-
tivity of helium II can be associated with second
sound in practically the same way as the normal
heat conductivity accompanies ordinary sound
on Debye's theory, ' yielding simultaneously very
reasonable values for the time of relaxation.

In order to simplify the discussion we assume,
like Tisza and Landau, that the energy content
of the particles in the lo~er state of helium II is

negligible compared with that of the others, *

so that the density of these latter so-called
"excited" paiticles alone determines the thermo-
dynamic properties in first approximation. We
therefore write the wave equation for fluctuations
of the concentration of the excited particles p„
including a relaxation term:

v being the velocity of second sound, and v the
time of relaxation. Physically this relation im-

plies that as long as v is great compared with the
period of fluctuations of p„such a fluctuation

6 P. Debye, Vortraege ueber die kinetische Theoric der
Materie (Leipzig, 1914) p. 43.

*This assumption does not mean that we assume a
Bose-Einstein condensation. It would hold equally well
also for a hydrodynamical model of the Landau type, or
even for an order-disorder model of the type suggested by
H. Frohlich (Physica 's Gravenhage 4, 6391 (1937)) and
H. Jones {Proc. Camb. Phil. Soc. 34, 253 {1938)).
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can be propagated as a mave, but when r is
small compared mith this period, a local change
of p, is completely dissipated by a diffusion
process and any "second sound" wave would
suer immediate damping.

Because p, is temperature dependent, fluctua-
tions of p, will occur also in ordinary sound
waves, in complete analogy to the Huctuations
in concentration in a dissociating gas considered

by Einstein. The time of relaxation introduced
into (1) is then essentially the mean time
betmeen exchanges of excitation energy, just as
in Einstein'. s theory (see, e.g. , Rutgers" ). This
leads to the expectation that ordinary sound
should show dispersion and absorption in the
same frequency range as second sound. ** The
main difference between the two sets of phe-
nomena mould be that mhile ordinary sound
should only change its velocity when passing
through the critical frequency, showing an ab-
corption maximum there, second sound can
exist only at higher frequencies, and mill be
entirely damped out at all frequencies lower
than the critical value.

3. THERMAL RESISTANCE

Second sound waves imply a transport of
heat, just as ordinary sound waves do in
Debye's theory the damping of the waves limits
the conductivity to 6nite values. The folloming

discussion of thermal resistance in terms of
second sound relaxation therefore represents a
complete analogy to Debye's theory in terms of
ordinary sound. Its validity depends on the
assumption that the resistance accompanying
ordinary sound is very large compared with
that accompanying second sound; the two resist-

~ A. J. Rutgers, Ann. d. Physik 16, 350 (1933).
~~ A difference in the two regions of dispersion could

mean only that the damping of second sound is due also
to other influences not present in ordinary sound, e.g., a
mechanical viscosity between the two sorts of particles
when vibrating in opposite directions. In helium II the
exchanges of momentum and of excitation energy have
usually been considered as the same process, but the
experimental determination of the dispersion has to decide
whether this assumption is true.

*~*This is also consistent with Tisza's model, which
leads to a simple classical picture of the nature of second
sound: Helium II consists of two parts which may each
transmit sound waves, (a) which are in phase with each
other —ordinary sound, (b) in opposite phase to each
other —second sound. Only so long as there is no appreci-
able relaxation between the two components can the
second mode of vibration persist.

ances being electively in parallel, so that only
the latter is important.

To obtain the thermal resistance we transform
the fluctuations of concentration (1) into fluctua-
tions of temperature. Under completely relaxed
conditions p, is a function of the equilibrium
temperature T of the system:

(2)

When the system is not completely relaxed me

may still use this equation to dehne a tempera-
ture T, of the excited particles:

(2')

where in general T, will dier from a possibly
measured temperature T by a certain quantity
which depends on frequency. Putting (2') into
(1) we obtain a temperature wave:

j
V' V'T. = (O'T, /B—t')+ T, . —

1
t

It must be emphasized that T, in this wave
equation is not the measurable -thermodynamic-
equilibrium temperature, but the temperature
of the excited particles as defined by (2').t To
obtain nowft the relation between the relaxation
damping according to (3) and the heat resistance,
we use the equation for the conservation of heat
under completely relaxed conditions which apply
to actual measurements of heat conductivity:

V'-h= —pC T

where C„ is the true heat capacity, and T the
true equilibrium temperature, A' the heat How.

Under general conditions we must write T, in

place of T, and by using instead of C~ a di8'er-

ent, suitably dehned frequency-dependent value

f The lack of temperature equilibrium between the two
sorts of particles in second sound necessary to ensure
propagation and not dissipation of a local fluctuation is
overlooked in some derivations by introducing calorically
measured thermodynamic quantities such as entropy, etc.,
which by definition are only valid for the state of equi-
librium. (See, e.g., L. Landau, ' page 85 and D. V. Gogate
and P. D. Pathak, Proc. Phys. Soc. London 59, 457 (1947).)

The use of separate and independent continuity equa-
tions for the relative motion of the two sorts of particles
is inconsistent with the introduction of statically measured
quantities as entropy and temperature which are only
valid f'or the completely relaxed system.

tt This argument is similar to that of H. Jones (Proc.
Camb. Phil. Soc. 34, 253 (1938)) in terms of the flow of
disorder.
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Cse,ttt we may retain (4) in the form:

pC—„*P. (4')

which becomes, for complete relaxation as
present in the irreversible heat How experiment:

h = —p C~rv'V T.

The wave of concentration (1) together with

partial relaxation implies a motion of excited
particles. We may therefore regard the heat How

as a transport of excitation energy by excited
particles diffusing with an average velocity u:

Is = (s/p) p, ts

where s/p means the excitation energy per unit
mass associated with the excited particles. Under
the simplifying assumptions made at the be-

ginning, the energy content of the excited parti-
cles represents practically the total heat content
pQr of helium II, so we may write

(/p)p. =pQ =p
"0

since p is practically independent of T. Therefore
(8) becomes

i's =pQpsc. (10)tttt

ttt Under the simplifying conditions mentioned above
C~ 8{p+e)/BT where e is the "excitation" energy per
particle at the temperature T. For the completely unrelaxed
system v ~, C„~~earp/8T as without interaction, the
excitation energy carried by the particles cannot adjust
itself to the temperature.

fgff Equations {7), {8},{10)have been derived by us
earlier (Phys. Rev. I1, 828 (1947)) on the assumption
that in the absence of a constriction the internal forces
responsible for the fountain eRect are still present, but
produce an internal momentum density M according to
the second law of motion:

VP &VT -d M/d& (11)
where T is the temperature, p the fountain eRect pressure
difference and p. the fountain effect coefficient. L. Tisza
(Phys. Rev. V2, 353 (1947)) criticized this equation,
stating that we had omitted a factor ps/pe where ps' is the
density of the particles in the lower state. This is due to

As relaxation increases C~~ approaches C~, and
T,—+T. We may neglect the second derivative
on the right side of (3) under partially relaxed
conditions if the rate of change of 1 is small

enough:
V 'f/T. = F,/res

Comparing this with (4') we obtain

Using the measured values of Qr and h, s s" we
can compute from (10) the velocity u as a
function of T. Table I contains these values for
a temperature gradient of 0.001'K per cm. This
table also shows the values of v calculated from

(7) and the same experimental data on l's and
the observed values of second sound velocity. "

From the experimental fact that h ~ (VT)& it
follows that r ~ 1/It'. (See Eq. (/). $) Taking into
account that the energy supplied to the system
in second sound measurements is at least ten
times smaller than for the heat conduction
experiments used in Table I (1/25 watt over a
cross section of several cm' in the sound tube
compared with between 1 and 3 watts per cm'
in the heat conductivity measurements), it must
be expected that the time of relaxation is in this
case at least a hundred times greater than the
values given in Table I. Dispersion and absorp-
tion ought therefore to appear in both kinds of
sound (at such an energy input) at around 1 to
10 cycles per second. This is not in conflict with
Peshkov's" results, in which no dispersion was

a misunderstanding: The above Eq. (11) was written
simply as a definition of the momentum in terms of the
fountain efFect, but is not the momentum appearing in
Tisza's model. Incidentally the momentum cancels from
the equations leading to (7), so that Tisza's factor makes
no difFerence to our evaluation of v and I from the observed
values of Q, C and o.

The equivafence of both derivations can be shown as
follows: Comparing (g) with (6) yields:

(p/s) pCs"-ssffT, =p.n/r (12}
where p.g represents a momentum density. Equation (12)
has the form of the second law of motion under conditions
of considerable relaxation:

-VP= j/I+ j/I/. =: j/I/&. (13)
Comparing (12) with {13)gives:

VP (p/e) pC,*~T, (14)
which represents a fountain pressure relation:

VP=pVT, . (14'}
W. H. Keesom, B. F. Saris, L. Meyer, Physica 's

Gravenhage V, 870 {1940).
'L. Meyer and J. H. Mellink, Physica 's Gravenhage

1a, 197 (1947).' W. H. Keesom, HelAcm (Elzevier, Amsterdam-New
York, 1942).

» C. T. Lane, H. A. Fairbank, W. M. Fairbank, Phys.
Rev. 71, 600 (1947).

f The derivation of Eq. (7) is, at least for one-dimen-
sional How as discussed here, practically unaRected by the
fact that v is a function of VT: Introducing into (5}
instead of a constant ~, the expression

~ =~{VT}-~
leads to

k 3pC~~{VT)&=3pC~PvV T.
~ V. P. Peshkov, Vestnik Akademii Nauk 4, 117 (1945};

Nature 157, 200 (1946};J. Phys. U.S.S.R. 10, 389 (1946).
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found in the frequency range from 100 to 10,000
cycles per second.

The fact that the compressibility of helium II
derived from measurements by Burton, "and by
Findlay, Pitt, Grayson-Smith and Wilhelm, '4 on
ordinary sound in helium II differs from the
statically measured values at Leiden" by about
15 percent, may be due to the dispersion effect;
the frequencies used (e.g. , 1338 kc by Burton)
were certainly higher than the critical value to
be expected by our estimates of the relaxation
time.

The sudden change in velocity of ordinary
sound at the lambda temperature may also at
least partly be due to this same dispersion.
Above the transition, the time of relaxation has
vanished, whereas below, it has already become
long compared with the period of the waves.

The velocities cc calculated from (10) are of
the same order of magnitude as the critical
velocities u, for the frictionless Rom through
narrow shts' given in column 3.ff It is very
interesting that in the supercritical region —i.e. ,

u E. F. Burton, Nature 141, 9y0 (1938).
'~ J. C. Findlay, A. Pitt, H. Grayson-Smith and J. O.

Wilhelm, Phys. Rev. 54, 506 (1938); Phys. Rev. 55, 122
(1939).

Tasr. E I. Values of s and of v.

1.2
1.5
].8
2.0
2.1

54

cm/SeC.

19
1S
11
5
2

Qe
cm jsec.

25
20
13
8
3

r
SCCA

9. 104
f. 104
6. 104
5. 104
4. 10

above the critical velocity —the velocity of How

through narrow slits is approximately propor-
tional to (VT)&,f/) just as (10) demands for u.
This leads to the conclusion that the restriction
of the flow of particles in the heat current is the
same as in the supercritical Row through slits,
both being controlled by the time of relaxa-
tion. ffg

We want to thank Professors J. E. Mayer,
E. A. Long, A. W. Lawson and J. W. Stout for
vat.uable discussions.

fI The values of e, contain with regard to their absolute
magnitude an uncertainty up to about 25 percent due to
the difficulties in measuring the exact width of the slit.

f/) Reevaluation of the Leyden Measurements by L.
Meyer and J. H. Mellink'.

tttt Experimental evidence (see reference 9) already
lead to the conclusion that the friction in the supercritical
Row is not produced in the slit itself but at its ends where
the jet of "film" leaves or enters the bulk of the liquid.


