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The Scattering of High Energy Neutrons by Protons
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The scattering has been calculated, using the exact formula, for neutron energies between
20 and 80 Mev, with ranges of 2.0 and 2.8X10 "cm for the nuclear force and using ordinary,
exchange, and symmetric forces. The maximum of the scattered intensity at 180' is sensitive
to the range of the forces; experiments with neutrons from 30 to 60 Mev would permit a
rather conclusive determination of the range. The total cross section for forces of the exchange
type is much smaller than that obtained from the Born approximation, even at 80 Mev.

'HE scattering of neutrons by protons at
energies from 20 to 80 Mev has been

calculated, making difkrent assumptions about
the nuclear forces. Throughout the calculation
a pure central force was used and the tensor
force neglected. A square well potential was
assumed in each case.

The range of the nuclear forces was taken to
be either 2.8 or 2.0&iO '3 cm'. The 6rst of
these values is the one commonly assumed and
is in agreement with the results from proton-
proton scattering at low energies. ' The smaller
range is suggested, especially for the triplet
interaction, by the experiments on scattering of
neutrons by para-hydrogen. ' We realize that
this smaller range may result in disagreement
with the experimental total cross section in the
range from 2-5 Mev.

The three customary' types of forces were
assumed, namely: ordinary forces, exchange
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forces, and "symmetric" forces, i.e., those derived
from the symmetric meson theory which are
proportional to the operator tr~ trs~~ ~s (tr =spin,
~=isotopic spin). On the basis of the recent
experiments made with the Berkeley' cyclotron,
ordinary forces may be considered as excluded
and symmetric forces as the most likely.

The exact theory of scattering~ was used
throughout. For the determination of the phase
shifts bg, a convenient method was developed
which is described in the appendix. The depth
of the potential well for the triplet interaction
was determined to 6t the binding energy of the
deuteron, 2, 19 Mev. The depth of the singlet
interaction was determined to give the cross
section of 20 barns for the scattering of slow
neutrons by protons. The well depths, for the
triplet and singlet interaction respectively, are
then 21.3 and fi.9 Mev for the longer range,
and 36.6 and 24.0 Mev for the shorter range of
the forces.

The results for the phase shifts of the triplet
and singlet states are given in Table I. As is to
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be expected, the phase shifts for ordinary forces
are all positive, while for the two other types,
the phase shifts for odd i are negative (repulsive
force). For a given energy and given f, the
negative phase shift for the exchange force is
smaller than the corresponding positive one for
the ordinary force, because a repulsive potential
is less eAective than an attractive potential of
the same magnitude. For the symmetric theory,
the phase shifts b~ are smaller than the corre-
sponding ones for exchange forces in the triplet
states of odd l, but larger in the singlet states,
because the forces are multiplied by factors g
and 3, respectively. For the ordinary force, the
phase shift generally decreases with increasing l
for a given energy; however, this is reversed for
l=0 and 1 when the wave-length inside the
potential well becomes less than twice the range
of the nuclear forces: this is a peculiar eSect for
a square well which can be veri6ed directly from
the formulas for the phase shifts.

The scattered intensity in the center-of-mass
system, was calculated as a function of angle,
and expressed in terms of a power series in cos8,
thus:
d0'= 2prC sln8d8(A p+A y cos8+ ' ' '

+A„ cos"8+ ), (1)
C=X'j16.

The coefficients A„and C are given in Table JI.
It is interesting to note that the coeScient Ao
which gives directly the scattering through 90',
is determined entirely by the phase shifts for
even l because the spherical harmonics of odd l
vanish for 8=90'. Therefore, the 90' scattering
is independent of the type of forces assumed
(always neglecting tensor forces).

In Table III, we have given the differential
scattering cross sections at 180', 90' and 0'
corresponding to protons projected forward, at
45' and at 90' in the laboratory system. We
have also given the ratio of the scattered
intensities at 180' and 90'. It is seen that this
ratio increases rapidly with energy for exchange
and symmetric forces as is to be expected. For
ordinary forces, there is first a decrease which
again is expected, but then, at the higher
energies, an increase; this is due to the well-

known phenomenon' that the scattered intensity
has a secondary maximum in the backward
direction if the exact scattering formula is used.
This maximum does not appear in the Born
approximation and has been investigated in some
detail for proton-neutron scattering by Marshak
and Ashkin. ~ An illustration of the backward
maximum is given in Fig. i.

The maximum of the intensity at f80 for

TABLE I. Phase shifts (in degrees).

Range 2.0X10» cm
Triplet Singlet Triplet

Range 2.8 X10-& cm
Singlet

Ord. Exch. Sym. Ord. Exch. Sym. Ord. Exch. Sym. Ord. Exch. Sym.
20 Mev

0
1
2

30 Nev
0
1
2
3

40 Nev
0
1
2
3

80 Mev
0
1
2
3

86.5
6.4
0.13

76.1
11.3
0.22

68.5
16,3
0.65
0.02

49.4
31.0
3.1
0.18

—1.07

—4.4 —1.85

-6.3 -2.7

-0.02 -0.01

—13.4 —5.6

—0.17 —0.05

57.9
3.35 —1.9
0.08

53.0
5.8 —3.2
0.13

—6.7

48.6
8.4 —4.6 -9.5
0.4
0 0 —0.03

36.0
17.2 -9.8 —20.1
1.9
0.12 —0.08 —0.25

75.4
20.5 -6.7
0.75

63.2
31.0 —10.6 —4.6
1.9
0.08 —Q.Q8 —0.03

34.8
40.2 —26.1 —10.5
13.8
1.6 —1.2
0.1

—0.4

54.5
37.5 —14.4 —6.2
3.6
0.20 —0.17 —0.05

47.8
8.0
0.4

—9.1

41.0
12.6 —7.0 —14.4
0.9
0.04 —0.04 —0.17

22.1
22.Q —16.5 -36.2
6.5
0.8 —0.7
0.05

—2.1

35.7
16.4 —9.5 —19.5
1.75
0.10 —0.08 —0.27

~The phenomenon is due to the fact that the Legendre polynomials P& alternate between +1 and —1 at 180'
which permits only very incomplete destructive interference between the contributions of various values of l, whereas
at other angles the values of P~ are more erratic and destructive interference more effective.

~ Marshak and Ashkin, Phys. Rev. , to be published.
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Txsr.s Ii. Cael6cients in Fourier expansion of differential cross section. See Eq. (I).

Range C
Energy in 10-31 cm Force in 10~cd Ae Al Ae Aa

20 Mev

40 Mev

80 Mev

2.0
2.0
2.0
2.8
2.8
2.8

2.0
2.0
2.0
2.8
2.8
2.8

2.0
2.0
2.0
2.8
2.8
2.8

2.0
2.0
2.0
2.8
2.8
2.8

ord.
exch.
sym.
ord.
exch.
sym.

ord.
exch.
SyIII.
ord.
exch.
SyIIl.

ord.
exch.
SyI11.
ord.
exch.
sym.

ord.
exch.
SyII1.
ol d.
exch.
SyI1l.

26.0
26.0
26.0
26.0
26.0
26.0

17.3
17.3
17.3
17.3
17.3
17.3

13.0
13.0
13.0
13.0
13.0
13.0

6.49
6.49
6.49
6.49
6.49
6.49

14.8
14.8
14.8
13.2
13.2
13.2

13.8
13.8
13.8
10.4
10.4
10.4

+12.2
12.2
12.2

'l.4
7.4
7.4

6.5
6.5
6.5
0.59
0.59
0.59

+2.0-0.36-0.71
+15.1-1.6-2.0
+7.0—1.4-2.1

+28.Q
3.2
343

+12.9-2.5-2.4
+31 2—3.6-3.8
+25.3—4,7-4.Q
+3.3
+4.8
+2.0

+1.5
+0.32
+0.27

+14.5
+2.4
+1.9
+4.7
+0.95
+0.81

+32.4
+6.5
+5.2

+10.1
+23
+2.Q

+46.3
+11.8
+9.6

+38.0
+10.9
+9.5

+37.2
+15.5
+9.5

+. 16-0.07—0.04
+2.5-0.95—0.60

+0.44-0.19-0.12
+8.9

3s7
203

+1.9—0.8-0.5
+1S.S—9.0—5.5

+15.2-7.6-4.9
+65.2
-36.4
-23.5

+0.29
+0.19
+0.28

+0.04
+0.02

+1.7
+1.2
+17
+0.3
+0.2
+0,2
+5.2
+3.8
+3.6

+31
+3.0
+3,1

+54.5
+47.7
+45.2

+0.17-0.17—0.09

+0.9-0.7-0.4
+0.8-0.5-0.35

+24.2—17'.5—10.5

+0.2
+0.1
+0.1

+0.1
+0.1
+0.1
+7.2 +1.4
+5.6 —1.2
+5.4 —0.6

exchange and symmetric forces should be ob-
servabie already at 20 Mev neutron energy (in
the laboratory system) if the nuclear forces
have a range of 2.8X j.0-" cm; it becomes quite
marked at 30 and very pronounced at 40 Mev.
For the shorter range, nearly twice as much
energy is required to produce the same asym-
metry in the scattering; this is a direct conse-
quence of the fact that the depth of the potential
wells is nearly twice as great as for the longer
range. Because of this great sensitivity of the
angular distribution to the range of the forces,
it seems very much worth while to make scatter-
ing experiments in the intermediate energy
range, from about 20 to 60 Mev; such experi-
ments would be especially conclusive after the
symmetry properties of the forces have been
established by experiments at higher energy.
Intermediate energies have also the advantage
that relativistic corrections will be unimportant,
while they may be appreciable at 100 Mev.
Also, probably the inhuence of tensor forces is
relatively smaller at intermediate energies.

Figure 1 gives the angular distribution of the
scattered neutrons in the center-of-mass system
at 80 Mev neutron energy, for the various

TABLE III.

Energy
in

20 Mev

Range
forces

2.'0 ord
2.0 exch
2.0 sym
2.8 ord
2.8 exch
2.8 sym

Total scattering
cross section in

barns (10~cm~)
Born

Exact approxi-
formula mation

Differential cross section in c.m.
system per unit solid angle

in 10~ cm~

at at at Ratio
I 0 8 90 I 180 180/90

4.81
3.82
3.73

11.88
3.42
3,30

3.85
3.85
3.85
3.43
3.43
3.43

3.69 0.96
4.05 1.0$
4.12 1.07
2.72 0.79
4.75 1.38
4.67 1.36

0.500
0.486
0.486
0.590
0.456
0.4$1

0.410
0.410

0.714
0.714

40 Mev

2.0 ord
2.0 exch
2.0 sym
2.S ord
2.8 exch
2.8 sym

2.0 ord
2.0 exch
2.0 sym
2.8 ord
2.8 exch
2.8 sym

4.48
2.27
2.14

14.08
1.89
2.00

4.87
1.48
1.49

14.22
1.28
1.44

228
2.38
2DS
1.79
1.79
1.79

1.59
1.59
1.59
0.96
0.96
0.96

1.92 0.81
2.83 1.19
2.91 1.22
1.2S 0.72
4.37 2.44
3.97 2.22

1.01 0.64
2.34 1.47
2.25 1.42
1.05 1.09
4.72 4.92
3.94 4.10

0.333
0406
0.305
0.466
0.277
0.268

0.256
0.214
0.213
0888
0.201
0.184

0.336
0.336

0.529
0.529

0.290
0.290

0.408
0.408

80 Mev 2.0 ord
2.0 exch
2.0 sym
2.8 ord
2.8 exch
2.8 sym

5.78
0.50
0.65

12.57
1.24
4.32

0.42
0.42
0.42
0.038
0.038
0.038

0.42
2.16
1.85
3.52
7.75
6.05

1.00
5.14
4.40

92.6
204
1$9

0.155
0.0880
0.0837
0.203
0.131
0.111

0.165
0.16$

0.206
0.206

~ Very close to value for ordinary and exchanges forces.

assumptions about the forces. The very deep
minimum near 90' for e =2.8X$0-" is largely an
accidental effect; there is near cancellation of
the contributions from l=0 and l=2 to the
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Fro. 1. Anguhr distribution of scattering of 80 Mev
neutrons by protons.

scattered amplitude, and higher /'s do not yet
contribute appreciably. (At higher energies, this
accidental cancellation disappears but there is a
general tendency for the cross section to decrease,
so that 0(90') actually stays low. ) But even
with e = 2 X j.0 '~ the ratio between 180' and 90'
is S.i and 4.4, respectively, for exchange and
symmetric forces. It is apparent that the range
of the forces is more important for the ratio
180 /90 than their type, i.e., whether they are
pure exchange or symmetric, and this is even
true for the 0' scattering. Moreover, the tensor
forces will greatly increase the scattering at 90'
while not affecting it appreciably at i80',
therefore, it would be premature to draw con-
clusions on the range or the type of nuclear
forces by comparing the present calculations
with experiment.

In Table III we have also given the total
cross section. It is striking that at the higher
energies the total cross section is much smaller
for exchange than for ordinary forces. This is
due to the fact that ~b~~ is much smaller for

exchange than for ordinary forces for any odd
value of /. We mentioned before that this is
caused by the repulsive character of the exchange
force in states of odd /. The main contribution
to the total cross section at 80 Mev for ordinary
forces comes from /= 1; this contribution is very
much reduced for exchange forces. The difkrence
is more pronounced for the shorter range, because
in this case the potential has a greater magnitude.
This e8ect will gradually decrease with further
increase in energy. .

We have also listed the cross sections according
to the Born approximation. At 80 Mev there is
quite good agreement between the Born approxi-
mation and the exact cross section in the case of
ordinary forces. For the exchange types, the
exact calculation gives much lower cross sections.
The agreement in the case of ordinary forces is
due to a compensation between two eEects: the
exact calculation will, in general, give greater
phase shifts than the Born approximation for an
attractive potential, but the cross section is
proportional to sin'b& in the exact theory instead
of b~' in the Born approximation. In the case of
a repulsive potential, the exact b~ is smaller in
absolute magnitude than the Born approxima-
tion value, and the replacement of b&' by sin'5&

causes a further reduction in the cross section.
For the symmetric force, the calculations in the
Born approximation were not carried out ex-
plicitly, but it was found that the result is nearly
the same as for exchange forces. The same is seen
to be true in the exact theory.

Since the nuclear forces appear to be of the
exchange or symmetric type, the total cross
section at 80 Mev, and probably still at higher
energies, is considerably smaller than the value
derived from the Born approximation. This
tends to bring about better agreement with the
experimental value of the cross section of about
0.08 barns4 at 90 Mev. Shorter range of the
forces would also help to lower the cross section
and thereby improve the agreement with experi-
ment. But it must, again be remembered that
these results may be modified by tensor forces,
and that also relativistic corrections may easily
have ari effect of about 10 percent, The sign of
these corrections is unknown.

At lower energies, agreement between Born
approximation and exact calculation is not to be
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expected. Considering the magnitude of the
nuclear potential, the actual agreement at the
lower energies is surprisingly good. It might be
expected that the Born approximation gives too
large a cross section at lower energies —this, at
least, is its behavior in most problems of atomic
collisions. In contrast to this expectation, the
Born approximation cross section is smaller than
the exact one for 20 Mev and a=2.0X10 ~ cm.
This can be understood from a calculation at
zero energy; here the Born approximation would
give 0.6 barns as against the correct value of
20 barns. (With a=2.8X10 ", the Born approxi-
mation gives 1.8 barns. ) The high value from
the exact calculation is known to be caused by
a resonance effect which, of course, cannot be
simulated by the Born approximation. Since the
latter gives a cross section which increases
montonically with decreasing energy, it must
fall below the actual cross section already at
some 6nite energy.

APPENDIX

Z„'(x) =Z, i(x) —(p/x)Z, (x),

Z,+i(x) = (2p/x)Z„(x) —Z, &(x).

Therefore, we have

Zi+i'(x)

Zi+i(x)

I+si Zi i(x)
+

x Zi+i(x)

x 21—i Z) 3/2

Zl —f

2l —3 Z~

Zl—3/2

respect to the argument. Equations (6) and (4)
serve to determine the phase shift b.

Equation (6) may be simplified by using the
following relations between the generalized
Bessel function:

The radial wave function for a given l inside
the potential well is given by Continuing to express the Bessel functions by

those of lower order, we 6nally arrive at the ratio,
v=v &Ji+i(xr),

and outside the potential well by:

u=Ar &Zi+i(kr),

where Z is the generalized Bessel function,

(2)

Zi(ka)
=cot(ka+ h) .

Equating both sides of Eq. (6), the term
—(l+$)/x cancels and we obtain

Z(+i(kr) =Xi+i(kr) costi Pi+i(kr) s—indi, (4)
2l —1

where J is the Bessel and N the Neumann
function, and

ke 2l —3

k' = MZ/k', ~' =3f(E+ Vo)/L'.

Z&+i'(ka) Ji+i'(~a)
k— =K

Z&+i(ka) Jr+i(~a)
(6)

where the prime denotes differentiation with

8 is the energy in the center-of-mass system
and Vo the depth of the potential. The two
functions u and e must join with continuous
derivative at r =a. Setting the logarithmic
derivatives equal, we obtain the condition:

——cot(ka+ b)
ke

~a 2l —3

1——cote'
xQ
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This can be solved and gives the formula,

cot(ka+ b) =——
As 3

ku 5

ke

2l —1 ke (2/ —1

ku ~a E aa 2l —3

(12)

The use of this formula obviates the necessity of calculating the explicit formulae for the Bessel
functions of high order. It also reduces the numerical work for higher / partly to that already done
for lower /.

In some cases, the potential is repulsive and greater than the energy of the system. In this
case a comes out imaginary, and if we use a' =

~
s~ instead, we must replace Eq. (12) by

1
cot(ka+5) =——

ha 3

kQ 5

ka

(13)

2E —1 ku (2/ —1+, ( +
+

-cotl "c
~

Note the change of sign and the change from
cot to coth.

It is worth noting that in actual calculations
with Eq. (13) and occasionally with (12), espe-
cially for large /, the two terms which have to be
added in each denominator, tend to cancel each
other so that considerable numerical accuracy
is needed.

For the higher values of / it is convenient to
use the recursion formula derived from perturba-
tion theory:

(ku) '

(2l+1) (21+3)

This formula was found to be quite accurate if
the phase was less than 1 .


