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A theoretical discussion is given of the application of microwave-absorption measurements
to the determination of energy levels in single crystals of paramagnetic salts. Selection rules are
given for magnetic-dipole transitions between sublhvels in the presence of crysta1line electric
6elds of cubic, tetragonal, trigonal, and rhombic symmetry. The Zeeman effect in the presence
of crystalline electric 6elds is discussed in some detail for three special cases: (a) J=5/2, cubic
Geld; (b) J='7/2, cubic held; (c) J=3/2, trigonal field. These examples may correspond
approximately to certain magnetically dilute salts containing Fe+++, Gd+++, and Cr+++ ions,
respectively, provided that exchange interactions do not play an important role and that the
assumed symmetries are approximately correct. Numerical values are tabulated for the
relative frequencies and line strengths associated with magnetic-dipole transitions in the casles
discussed. The character of the spectra may change radically between the limit where the
Zeeman splitting is small in comparison with the Stark splitting, and the opposite limit vrhere
the Stark splitting may be neglected.

I. INTRODUCTION

HE present knowledge'~ of the quantum
states of paramagnetic salts is largely

derived from the interpretation of measurements
of magnetic susceptibilities, specinc heats, and
optical-absorption spectra. The difhculties in
giving a consistent account of the various phe-
nomena have been emphasized by Van Vleck at
the 1939 Strasbourg conference, ' and by Penney
and Kynch. ~

The recent experimental discovery by Zavoisky'
of paramagnetic resonance absorption provides a
new and direct method for the investigation of
closely spaced energy levels in paramagnetic ma-
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terials. The method consists of observing by
means of electrical measurements the quantum
transitions induced by a radiofrequency or micro-
wave electromagnetic field. The salt is placed in
an r-f circuit element situated between the pole
pieces of an electromagnet. As the strength of the
static field is varied the power absorption in the
salt is found to pass through s well de6ned
maxim ulTl.

In the measurements reported by Zavoisky the
position of the resonance satisfies closely the
Larmor equation for electron spins:

f/Ks = =2,80 megacycles/oe,
22PSSC

where f=frequency, Ho=static magnetic field,
e =electronic charge in e.s.u. , m =electronic mass,
and c=velocity of light. The applicability of
Eq. (1) to electron states in solids in which the
spin is free was pointed out by Frenkel. Under
this condition, the experiment is analog &us to the
nuclear magnetic resonance experiment. It may
be noted that this equation also holds in the
presence of strong exchange coupling between
spin s.

On the present picture of paramagnetic solids
the energy levels of the paramagnetic ions are
affected in an important way by the inhomogene-

~ J. Frenkel, J. Phys. U.S.S.R. 9, 299 {1945).



M IC RONA VE RESONANCE ABSORPTION

ous crystaihne electric 6elds, which are caused
largely by the dipole moments of the water of
hydration. The crystaBine Stark e6'ect splits the
degenerate energy levels of the free ions. This
spHtting of a single level into several components
makes possible the occurrence in an r-f 6eld of
magnetic-dipole transitions between the split
components, even in the absence of a static
magnetic 6eM. A second efkct of the splitting is
to change the character of the Zeeman efkct in a
static magnetic field: under certain conditions we

might expect to 6nd several lines in the absorp-
tion spectrum, in contrast to the single line found

by Zavoisky.
In Section II of this paper we discuss some

aspects- of microwave-absorption spectra in the
absence of the Zeeman efkct (Ho —-0). In Section
III the combined Zeeman and crystalline Stark
effects are considered for three particular situa-
tions of interest in the microwave range. AII of
our calculations refer to single crystals, with the
static and r-f magnetic fields aIong crystal axes
of high symmetry. The situation for powdered
specimens of these saIts is extremely complicated,
and would probably not give as much informa-
tion as the single crystals.

It is possible that in a large number of salts the
eHect of the Stark splitting will be erased by
strong exchange coupling between ions. The
prevalence of such coupling is perhaps one of the
more important things which might be deter-
mined by paramagnetic resonance experiments.
The specific cases of cryskdline splitting consuiered

in this paper are presented only as Nustrations of
the kind of behaoior to be expected in the absence of
exchange interactions; our calculations are not ap
pticabte in the presence of strong exchange coupling
Various efI'ects of exchange coupling are con-
sidered by J. H. Van Vleck, in a paper which
is to appear in The Physical 2hsinv. It should
also be emphasized that the angular dependence
of the crystalbne electric 6elds may be more
complicated than assumed here.¹te ace& in proof: Measurements on
Chrome Ammonium Alum at microwave fre-
quencies have been reported very recently"

~ D. M. S. Bagguley and J. H. E. GriSths, Nature NO,
532 t;194'I); P. R. Acies, C. A. %hitler, H. C. Torrey„andJ--%.H-.",P.".'-.~, 7 ( 7)

which show clearly the expected efkct of the
Stark splitting.

II. MICROWAVE ABSORPTION CAUSED SY
CRVSTAI.I.Im STYX SPX,ITTme

The usual Stark spIittings in crystals are of the
order of some hundred or thousand cm ', in
certain circumstances, however, the splittings are
of the order of one cm-'. This is the case with
some of the salts studied in magnetic cooling
experiments. For example, Gorter' gives the
following oyer-alI splittings of the ground state:

Gdl(SO4)g 8 HgO

Gds(C304) I 10 HgO

KCr(SO4)2 12 HIO
FeNH4(SO4)s 12 H20

1.0 cm ',
0.60 cm ',
0.16cm ',
0.13 cm '.

Splittings in the neighborhood of one cm ' are
in principle accessible to investigation by means
of microwave methods. The selection rules, in

general, permit a number of magnetic-dipole
transitions. Electric dipole transitions are for-
bidden by the parity rule, since the parity of
initial and 6nal states are identical when these
states originate from the same degenerate level of
the free ion. Electric quadrupole transitions are
less probable than magnetic-dipole transitions by
a factor of the order oi (atomic radius/wave-
length)')& (Debye unit/Bohr magneton) P which
is of the order of 10 '~ for' X =1 cm.

Magnitude Of the ESect

The magnitude and detectability of the reso-
nance-absorption effect may be estimated by
reasoning similar to that given by Torrey,
Purcell, and Pounds for the case of nuclear
resonance. VVe shall consider the power absorbed
by a system which has two eigenstates, 1 and 2,
with eigenvalues diEering by the energy kcoo, The
transition probability between states 1 and 2 for
a single system per unit time for x-polarized
radiation is

p = (2s'/k') I u|p I'I (2)

where p~g* is the matrix element of the magnetic-
moment operator y =gp~J and I is the total
energy in the incident radiation 6eld per unit
volume per unit frequency interval.

' H. C. Torrey, E. M. Purcell, and R. V. Pound, Phys.
Rev. 69, 680 (j,946).
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In th(&mal e(Iuihbrium the number of systems
in the ground state is greater than the number of
systems in the excited state; the excess is

N kceo
(X~-Xs) = Xi(I —exp& —h( s/kT j)=— (3)

2 kr

for bess/kT&i; here N is the total number of
systems. The power absorption is given by

1 kryo
(hs)s) Np.

2kT

Suppose that the band width of the incident
electromagnetic wave is t)f and the width of the
resonance Hne (resulting from magnetic-moment
interactions) is h(ss(Whf); then only the fraction
2tthf/icos of the total number of systems have
their resonances within the band width of the r-f
radiation field. Let U=ILLf be the total energy
density in the incident radiation 6eld; then

2tt (a)s itsis i ts
p U

k T64go

is the integrated power absorption per unit
volume, where e is the number of paramagnetic
ions per unit volume.

Now the Q of the system is given by

eo P@ ~0
euoU hcoo kT kT

if the line width is considered as caused by
magnetic-dipole interactions, so that kd(es us/us

~Sf .
From Eq. (()) one has, for T=300 K and ) = I

cm, Q 200, which is e(tsily detectable in the
presence of empty cavity Q's which may be of the
order of itXO or more at this wave-length.

Selection Ru1es

%e have pointed out that the allowed transi-
tions are magnetic-dipole transitions. One can
proceed to calculate the selection rules by group
theoretical methods. The eigenfunctions corre-
sponding to the energy levels in the crystalline
electric 6elds transform according to the irre-
ducible representations, F;, of the symmetry
group of the crystalline 6eld. The characters of

the irreducible representations are given in the
papers of Bethe, 'Tisza, is and Jahn. "The charac-
ter of the magnetic-moment operator under
a rotation through an angle y is given by
x(y) =1+2 cosy, since the magnetic-moment
transforms as an axial vector.

It is a, fundamental result of group theory that
magnetic dipole transitions are aHowed between
levels m and ts only if I"„eXl'„XI' contains the
identical representation I'i, here I'o is the repre-
sentation of an axial vector. The allowed transi-
tions found from the character calculations are
given below; the representations are labeled
according to the notation of Bethe. ' In the cases
of the one- and two-valued rhombic and trigonal
groups, which were not given in detail by Bethe,
the character tables are given in Appendix A.

The notation F~~++F.indicates that the energy
level whose eigenfunctions belong to F. has
allowed magnetic-dipole transitions to and from
the energy levels whose eigenfunctions belong to
I', and r&.

Cubic GrouP (I'. i = I'4)

FL s. 4~F4; Fs. s. 4, 5~Fs', Fe, s~Fe', Fv, s~Fv,'Fs~Fs
Tetrsgotsol Group (Iss(si = Is+Fs = I (I)+I (a s))
Transitions for J,: F~~F~., Fs+-+F4,. Fe+-+Fs,.

Fe~Fe, F;=Fy.
Transitions for J, J&: F~, g3. ~~Fe' Fe, 7~Fe;

F~- =Fy.

Trsgotioi Group (Iss(al = Is+I s = I ( )+I (, s) )
Transitions for J, : F~~F~,. Fs+-+Fs, F4+-+F4,

Fg,++Fg.
Transitions for J, J„:F~~F; F ~F; F +-+F;

Fe++Fs.
Rhombic Group (I', ;,)=i's+I's+I's=l'(, )+I'(„)

+I'(.))
Transitions for F~. F~~F~, F3+-+F4, FI~F~.
Transitions for Fs. F~+-+Fs, Fm+-+F4, Fe+-+F~.

Transitions for F4'. FR~F4, Fg~Fs, Fe+-+Fg.

The selection rules for the tetragonal case have
been given previously by Bethe."

The application of these select'ion rules may be
illustrated by the case of the Gd+++ ion, for
which 7=7/2. According to Bethe, ' the ground

H. A. Bethe, Ann. d, Physik 3, 133 (1929); see also E.
Vhgner, G5ttingen Nachrichten 133 (1930).

oI. T~~~, Zeits f Physik 82 48 (1933)
~ H. Jahn, Pmc. Roy. Sae. 4154, 11T (1938);see also W.

Opechowshi, Physica '7, 552 (1940).
~ H. Bethe, Zeits. f. Physik M, 218 (1930).
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state of the ion splits in a cubic 6eld into a two-
fold degenerate level belonging to I'I, a twofold
degenerate level belonging to I'~, and a fourfold
degenerate level belonging to I'8. The selection
rules permit transitions between Fq and I'8, and
between I'y and I'8, but not between I'g and Fy.

If the over-all splitting of the ground state in

Gd&(SO4) I SH2O is 1.0 cm ', as given by
Gorter, ' the allowed transitions will correspond
to wave-lengths of 1.6 cm and 2.7 cm. This
follows from the fact that, if only the cubic term
of the fourth degree in the crystalline potential is
considered, '~ the splitting is in the ratio of 5 to 3,
with the fourfold level between the two twofold
levels.

Intensity Factors

Equation (5) is a quite general expression for
the power absorption when the band width le of
the incident electromagnetic wave is small in
comparison with the efFective band width duo of
the resonance, and for kT&&ku~. In the absence of
detailed knowledge regarding the dependence of
6+0 on the crystalline and applied magnetic
fields, we shall suppose for the sake of discussion
that ha 0 is a constant for a,ny specific salt. Under
this assumption the dependence of the power
absorption on frequency and magnetic field in-
tensity is determined by the factor a&0'Iiiim'I~ in

Eq (5).
For convenience, we prefer to discuss the

dimensionless quantity

0 „'=(hey, /8)'I(ml J;Ie)/hl'. (7)

This will be called the intensity factor. Here J is
the angular-momentum operator; b is an energy
which must be defined for each speci6c problem-
it is closely related to the purely crystallize
splitting.

In general it is more convenient to work with
the operators J+=J',+iJ„and J .=J —iJ„,
than with J or J„separately. One has

~.= k(~++~-); (8)
now from the reality of J and J„,

(ml J le)~=(ll J+Im), (9)
so that

(~I J*l~) =kl(~I I+I+)+(~I~+I~)*) (&0)
» M. H. Hebb and E. M. Purcell, J. Chem. Phys. 5, 338

(1937).

This relation is used to calculate the matrix
elements of J, from those of J+.

Tables of numerical values of the intensity
factor are given in the following sections along
with the energy difFerences associated with the
various transitions.

III. COMBINED CRYSTALLINE AND
ZEEMAN SPLITTING

It is not possible to discuss in a general fashion
the behavior of energy levels in the presence of
combined crystalline electric fields and external
static magnetic fields. Rather, it is necessary to
find in detail for each individual case the solu-
tion to the quantum-mechanical perturbation
problem.

Level splittings corresponding to microwave
frequencies are believed to arise only in some-
what special situations, including:

(a) When the ground state of the free ion is an
5 state, the crystalline field causes splitting only
in conjunction with spin-orbit coupling. '4 The
resultant splitting is small.

(b) A small crystalline 6eld of low symmetry
may remove the degeneracy left by a larger
crystalline field of higher symmetry. For ex-
ample, a predominantly cubic field may have a
small trigonal component which gives rise to a
further splitting.

Hebb and Purcell" in their theoretical study of

Fn. 1. Energy levels of S state after splitting by cubic
electrostatic potential of form V=D(x'+y'+s'); the over-
all separation is 88,

~4 J. H. Van Vleck and %'. G. Penney, Phil. Nag, j,T, 96I
(1934).
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listed below.

fs = s L3i4'sos —4'- ps/
4"'=kL3'4-b! s —4 vsj
$b —(7/12)&L4ps (5/35i)4 i/s j
6"'= (I/12)'L4'-vs —(5/35') 4 vsj,
A"' = s t.4'bib+3 4'-vs j 1's, (11)

A"' =-'L4'-v +3'4'w j
f &'& = (5/12)&L4rgs+(7/35&)4 ijsj
0""'= (5/12)'L4'-vs+ (&/35') 4'vs j

4 denotes a function with 1=7/2, 3IIg =35 We.
obtain for the secular equation in the presence of
an L001) directed magnetic field:

ri-s/2

2 4 6 8 10 12 t4 X~
MhGNETiC FEEI 0 STRENGTH IN VN&TS OF 5/Qpe

ti, (&) fb(s) P ti)

7
88+—u —(35)&a

6 3

FIG. 2. Eigenvalues of IS state as a function of the —E
strength of the static magnetic 6eid in the L001) directions;
a constant cubic electrostatic 6eld is also present. The
The Sub.crjpts on the y's indicate the value of the magnetic (y)
quantum number, 3Ez, characterizing the state for x))t. 4'b (35) + 5g+

3 6
=0. (12)

magnetic cooling experiments discuss examples
where the splitting is of the order of magnitude
of one cm '. Type (a) splitting is found, for
example, in salts of trivalent gadolinium, where

the ground level is 'S~gg, and in Fe+++ and Mn++

(sSbls). Type (b) splitting is found, for example,
in potassium chromic alum (Kcr(SOs) s 12 HsO),
where there is thought to be a small trigonal 6eld
superposed on the predominant cubic field. The
possible transitions and corresponding intensity
factors for the cases just cited are discussed in

detail below.

Case L 1=V/2 (66+++)

In the absence of external magnetic 6eMs this
state is split by. a cubic electric 6eld into two
twofold levels and one fourfold level. The validity
of the cubic 6eld assumption is uncertain. Ac-

cording to Bethe (cf. reference 9, p. 155), the
twofoM levels belong to I'I and Fy, the fourfoM
level to I'8. We assume that the splitting* takes
place as in Fig. I, which is consistent with the
work of Hebb and Purcell. "The zero-order wave
functions belonging to these representations are

~ However, the situation in the Gd+++ salts may not be
so simple. %'e are indebted to Professor F.J.Belinfante for
cxevespondence regarding a detailed treatment of the
energy-level scheme in preparation by Van Dyk and
himself.

Pb(s) 0

P ti) 0
3

V3a -e—Z
2

3 13 1 ( ( 2 i ' 140
g,l, ——~-x+—~-I

)
3~-x [+ x' (,3J 9 )

Here a=gfssH(g =2 since I =0), and there is a
similar block involving (—a) for (e) and the re-

maining functions. This result has been essen-

tially given by Hebb and Purcell in another con-
nection. Introducing dimensionless quantities
rf =Z/g, x =a/g, one finds for the eigenvalues:

3 1.3 1 f f' 2 y
' 140„.„,=~-x+—+-~

~

3~-x )+3i 9 )
1 5 1

iias)s= &—x+—&—((5%2x) +12x~)i,
2 2 2

~ (13)
5

ii+s(s = W~+ & ((5&2x) +'12x )»,
2 2 2
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TxsLE I. Frequencies and intensity factors for transitions in 7=7/2 case; cubic 6eId. TabIe is labe1ed in terms of
dimensioniess quantities e~Ejb and g g sB/s, where 8 is as shown in Fig. 1.The intensity factor is defined by Eq. (7)
and is given in this case by 8 =$ t (si [J+ ii) t'(ae)' and 8,= [(ei [ J&[a) ) s(the)'. The static magnetic field is in the Z direc-
tion i this is ahio the L001j d1rectioil.

Transitions Quanthy 0.1

7/2- = 1/2 a& 0.23
8, 0.07

0.71
0.59

0.5

1.22
1.35

0.7

1.76
2.08

1.0

2.60
2.93

1.5

4.05
3.74

5.53
4.15

3.0

8.51
4.51

5.0

14.51
4.73

7.5

22.00
4.82

29.50
4.86

|5.0
44.50
4.88

7/2~~- 7/2

7/2= = 5/2

5/2- - —1/2

—) /2~~ —3/2

Sl-'= = 3/2

3/2 = - -3/2

5/2= - —5/2

—3/2= = -5/2

3/2 = - 1/2

1/2= = —5/2

3/~--- = -7/2

—5/2- - —7/2

3.33
8.10

2.73
9.27

0.37
0.09

3.17
28.02

0.21
0.02

7 99
0.10

5.03
58.41

0.10
0.02

4.91
17.94

5.11
19.43

0.30
0.20

2.84
24.52

8.05
0.09

0.25
0.02

4.96
53.93

4.13
6.57

2.33
9.97

1.09
0.73

3.56
31.75

0.52
0.14

8.08
0.87

5.04
62.23

0.29
0.19

4.81
15.90

5.41
20.13

0.89
1.82

2.56
21.19

8.25
0.68

0.85
0.12

4.84
49.01

5.09
5.04

2.09
10.49

1.78
1.63

3.98
35.13

0.66
0.26

8.34
1.95

5.02
66.32

0.44
0.47

4.80
13.62

5.80
19.88

1.44
5.02

2.31
18.08

8.56
1.44

1.56
0.23

4.69
44.13

6.19
3.78

1.99
11.14

2.44
2.46

4.40
40.73

0.66
0.25

8.74
2.72

5.00
69.50

0.55
0.77

4.89
11.32

6.29
18.72

1.95
9.63

2.09
15.21

8.94
2.10

2.34
0.31

4.51
39.58

7.98
2.47

1.98
12.74

3.40
3.35

5.00
48.86

0.42
0.08

9.58
2.92

5.00
76.14

0.61
2.02

5.20
8.25

7.20
15.83

2.61
18.41

1.79
11.36

9.60
2.80

3.60
0.35

4.21
33.49

11.19
1.34

2.19
17.28

4.95
4.14

5.84
63.20

0.41
0.04

11.41
2.07

5.16
89.59

0.49
0.67

6.05
4.77

9.05
10.68

3.49
34.87

1.30
6.15

10.84
3.35

5.84
0.32

3.70
25.04

14.53
0.82

2.53
24.04

6.47
4.49

6.53
7'j.32

1.53
0.36

13.53
1.28

5.47
105.55

0.18
0.09

7.18
2.92

11.18
7.08

4.18
51.40

0.82
2.47

12.18
3.55

8.18
0.27

3.18
18.21

21.36
0.39

3.36
43.85

9.49
4 76

7.72
105.98

4.16
1.04

18.16
0.55

6.28
144.42

0.65
1.28

9.79
1.36

15.79
3.53

5.35
85.33

0.14
0.08

14.99
3.62

12.99
0.17

2.14
8.16

35.22
0.14

5.22
107.71

15.49
4 89

9.85
170.79

9.88
1.77

27.88
0.18

8.15
247.28

2.56
19.61

15.47
0.49

25.47
1.34

7.44
166.07

2.10
16.46

20.81
3.43

22.81
0.08

0.10
0.02

52.65
0.09

7.65
232.68

23.00
4.93

12.40
270.04

40.24
0.07

10.60
419.62

5.03
75.'j5

22.81
0.22

37.81
0.60

9.97
298.44

4.57
78.19

28.22
3.29

35.22
0.04

2.43
10.34

70.11
0.04

10.11
407.68

30.50
4.93

14.93
390.j8

24.68
2.33

52.68
0.04

13.07
639.47

7.51
169.42

30.23
0.12

50.23
0.34

12.49
46 j.63

7.06
186.47

35.66
3.18

47.66
0.02

4.94
42.84

105.07
0.02

15.07
907.61

45.50

19.96
697.32

39.62
2.50

77.62
0.02

18.04
1220.2

12.5 1

469.24

45.16
0.05

75.16
0.15

17.49
918.01

12.04
543.19

50.61
3.07

72.61
0.01

9.96
173.77

7/2= - = —1/2

I/2 = = —7/2

5/2= — =-3/2

—5/2: — = 3/2

2.96
35.0

3.09
35.0

4.81
7,5.0

5.21
75.0

3.04
35.0

3.41
35.00

4.52
75.0

5.70
75.0

3.32
35.0

3.87
35.00

4.36
75.0

6.24
75.0

3.75
35.0

4.34
75.0

6.84
75.0

4.58
35.0

5.39
35.00

4„58
75.0

7.81
75.0

6.24
35.0

7.14
35.00

5.57
75.0

9.S4
75.0

8.06
35.0

9.00
35.0

7.00
75.0

11.36
75.0

11.87
35.0

12.85
35.0

10.44
75.0

15.13
75.0

19.72
35.0

20.71
35.0

18.03
75.0

22.91
75.0

29.65
35.0

30.64
35.0

27.84
75.0

32.79
75.0

39.61
35.0

40.61
35.0

37.75
75.0

42.72
75.0

59.57
35.0

60.57
35.0

57.66
75.0

62.65
75.0
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Fee. 3. Frequency and intensity factor for some typical
absorption haes resulting from an IS state; the intensity
factor is prcgxmtional to the power absorption and is
defined by Eq. {7).¹Ieadded is proof: Two frequency
curves are labeled in the figure as 7/2= -=1/2; of these
two curves the left hand one is incorrectly labeled and
should read I/2= = —1/2.

the y's being labeled according to the levels they
represent jn very large 6elds. These are plotted
in Fig. 2. The numerical values of the frequencies
and intensity factors corresponding to non-
vanishipg matrix elements are to be found~~ in
Table I, while Fig. 3 gives plots of intensity
factors and frequencies of typical lines ss. applied
magnetic 6eM.

The sum of the squares of all the matrix
elements of J+ is exactly 84 for J=7/2, inde-
pendent of the value of x. This result follows
from the principle of spectroscopic stability (cf.
reference 1, p. 139), and provides a very useful
check on the numerical calculations.

For strong magnetic 6elds the eigenvalues and
matrix elements approach the values charac-
teristic of free ions. From Table I we see, for
example, that for large x the largest values of the
intensity factors belong to those I-polarized
transitions for which d, Mg ——~I, in agreement
with the usual selection rule. An example of such
a transition is 7/2~5/2, for which the values of
the frequency and intensity factor are shown in

~*The authors have available copies of the analytical
expressions for the wave functions and ma~ elements as
functions of x for distribution to anyone who may require
them,

FrG. 4. Eigenvalues of '8 state as a function of the static
magnetic acid in the $001j direction.

Fig. 3. A number of lines are weak for all x: an
example is 3/2~ —7/2. All of the Z-polarized
lines have constant values of the intensity factor,
independent of x; an example is the line 7/2~1/2
shown in Fig. 3. The crossing points on the
eigenvalue diagram (Fig. 2) correspond to lines of
zero frequency.

Case IL 1=5/2 (Fe+++, Mn++)

The case of 7=5/2 is very similar to that of
J= 7/2. The roots of the secular equation for an
L001]magnetic field and a cubic electric field have
been given by Debye" and also by Kronig and
8ouwkamp. '6

We shall not discuss this state in any detaiI,
but merely give results. The energy levels are

1
0+Lfg —1+ Xs2'

x
e+gt= +———+2Lx'+@+(3/4)t]»

(
(14)

2 2

x 1
ewigt ——W———W2Lx'Wx+ (3/4)'ji,

2 2

where, as before, x=giisH/6, e=E/8 (38 being

» P. Debye, Ann. d. Physik 32, 85 (i938).
'8 R. de L. Kronig and C. J. Bouwkamp, Physica 6, 290

(1939).
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the over-all splitting in the crystalline electric
field alone). In the case under consideration, just
as in the 7/2 case, one has L, =0 so that g =2. In
Fig. 4 one finds these energies plotted as a
function of external field, Table II gives the
numerical values of the frequencies and intensity
factors.

The principle of spectroscopic stability applied
to the J=S/2 case tells us that the sum of the
squares of all the matrix elements of J+ is 35,
independent of x.

Case IIL (KCr(804)s 12HsO)

According to Hebb and Purcell the Cr+++ ion
in this salt is in a 'FI's state, which is not split by
the cubic crystalline 6eld. If one assumes that
there is also present a small field of trigonal
symmetry the axis of which coincides with one of
the body diagonals of the cubic lattice (this is to
be expected from x-ray studies of the salt), then
the @=3/2 state does split and give rise to

3 3
2 2

2 2

FIG. 5. Energy levels for KCr(SO&)& ~ 12 H&O in presence of
axial electrostatic field.

possibilities for microwave absorption. Now in
this alum the Cr+++ ions lie on a face-centered
cubic lattice, i.e., on interpenetrating simple
cubic lattices. If one resolves the face-centered
lattice into the four simple cubic lattices, then
one 6nds that the trigonal axis of the electric held
is in each case along a different body diagonal of
the unit cube. We shall treat these four simple
cubic system independently. ***

Taking for the crystalline potential on1y the

TzM.E II. Frequencies and intensity'factors for transitions in J=5/2 case; cubic field. Table is labelled in terms of
dimensionless quantities a =8/8 and x =gp gH/b, where b is the over-all splitting in the electric field alone. The intensity
factor is deaned by Eil. p) and is given in this case by 8~=i)(m) J+[n)(s(as)s and 8,= ((si)J,(n})s(as)s. The static
magnetic field is in the Z direction; this is also the L001j direction.

Transitions Quantity 0.1

3/2- = 1/2 a~ 0.23
8~ 0.02

5.02.0 ia.o0.3 0.5 i.o 1.5 3.0 15.0

0.61 0.88 1.01 1.00 0.71 0.30 0.62 2.57 5.04 7.53 12.52
0.25 0.78 1.37 1.67 0.94 0.17 0.77 13.15 50.82 113.40 313.44

5/2 =- = —1/2 ~» 0.24
0.02

0.75 1.29 1.85 2.70 4.15 5.62 8.59
0.10 0.21 0.32 0.46 0.64 0.76 0.92

14.56 22.04 29.53 44.52
1.09 1.18 1.23 1.29

—3/2= = —1/2 b,e 3.04 3.15 3.29
16.00 18.08 20.29

3.45 3.70 4.25 4.62 5.59
22.66 26.54 35.52 42.24 62.08

7.56
113.92

10.03 12.53 17.52
201.32 313.76 613.5$

-5/2 = 1/2

5/2 = = -5/2

3/2= - -3/2

—5/2 = = —3/2

5/2- - 3/2

d e 2.97 2,99 3.12
14.00 11.93 9.72

3.11 3.44 3.91
5.28 5.45 4.89

d,s 0.37 1.06 1.67
es 0.09 0.89 2.60

2.91 2.84 2.91
8, 4.63 3.71 2.71

he 0.17 0.46 0.67
8, 0.02 0.17 0.42

3.39 4.00
7.61 5,33

4.54 5.70
3.82 2.34

2.16 2.70
4.97 8.60

3.14 3.70
1.82 0.98

0.76 0.70
0.62 0.58

5.29 6.70
3,56 2.83

7.94 10.33
1.10 0.62

9.62
2.23

15.21
0.27

4.94 6.33
0.43 0.23

0.36 0.08
O.'16 0.'01

9.21
0.10

1.$3
1.34

3.36 3.92 4.97
13.93 19.14 30.79

15.57
1.85

25.13
0.10

6.99
61.02

15.13
0.04

3.01
11.34

23.04
1.69

37.58
0.04

9.49
112.68

22.58
0.02

5.51
37.89

30.53
1.61

50.06
0.02

45.52
1.54

I5.04
0.01

30.06
0.01

45.04
0.00

8.00 13.00
80.07 211.38

12.00 17.00
179.91 361.10

5/2= = -3/2 d e 3.28 3.90 4.58 $.80 6.40 8.31 10.25 14.18 22.11 32.08 42.06 62.04
20.00 20.00 20.00 20.00 20,00 20.00 20.00 20.00 20,00 20.00 20.00 20.00

—5/2 = = 3/2 5a 2.75 2.37 2.24 2.37 3.00 4.58 6.40 10.25 18.14 28.09 38.07 58.00
20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

~**Part of this calculation was performed previously for another purpose by L. J. F. Broer, Physica 9, 547 (1942).
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Tain, s III. Frequencies he for transitions in case of KCr(SO4)s ~ 12HsO; H, Parallel L001).e

Transition 2.0 S.O 10.0 15.0

3/2=
3/2=—3/2=—1/2=—3/2=

-3/2=

1/2
= -1/2

3/2
1/2
1/2

= —1/2

.30
1.03
1.33
.73

1.03
.30

.57
1.13
1.70
.55

1.13
.57

.80
1.31
2.11
.50

1.31
.80

.99
1.56
2.54
.57

1.56
.99

1.29
2.17
3.47
.88

2.17
1.29

1.91
3.52
5.42
1.61
3.52
1.91

3.56
6.95

10.51
3.39
6.95
3.56

8.70
17.33
26.03
8.63

17.33
8.70

17.34
34.65
51.98
17.31
34.65
17.34

25.99
51.96
77.96
25.97
51.96
25.99

'«Table is labeled ln terms of dimensionless quantities e ~Z/8 and s gpBH/8+3, where 8 is as shown in Fig. S.

second-order terms, we 6nd

Vg„s =D(xs+y —2s'), (15)

where the s axis is here taken as the body
diagonal. This potential has more than trigonal
(i.e., it has axial) symmetry as a result of our
dropping higher terms. Just because of this
apparent axial symmetry, however, a magnetic
6eld placed in the (0017crystallographic direction
wi11 look the same to each component simple
cubic array. That is, the properties of the states
as functions of the 6eld should depend only on the
strength of the 6eld and the angle between the
6eld direction and the trigonal axis. We therefore
need consider only one of the component arrays,
say the one with trigonal axis in the L1117
direction.

%e now have to solve the problem of an atom

with J=3/2 perturbed by an interaction

~= ~tris+Iimas
= I tris+giis(H J) ~ (16)

Taking t'he direction of quantization to be along
the (1117 direction, and choosing the x and y
axes such that the component of H perpendicular
to the s axis lies equally between them, we have

II
H J=—(J.+J„+J.) (17)

or
~-s=~(s(I —i)J++s(I+i)J-+J.) (Ig)

v'here
o.=giisH/3&.

The level scheme in the absence of H ~ is as
shown in Fig. 5. Here the levels are labeled by
their teemed field quantum numbers. Introducing
now H „,we get as our secular equation:

s i+ ex

1+i
3&x —)+fax —e (1—s)x

(1+i)x ——,
' —px —e is (I—i)3&x

1+i
3&x -' —~x —e

where e=—8/8, x=—a/L Expanding gives

ee —$(1+15xs)es+~~' (I+81xs—6x') =0

the roots of which are

e($) =$(1+15xs+6x(1+4x')&)&,
e($) =$(i+15x'—6x(1+4xs)&)&,

e(-$) = —i(1+15xs—6x(i+4x')&)&,
e(—$) = -$(1+15m'+6x(1+4x')&)&,

where we have labeled the energies with their

(20) appropriate stroeg field quantum numbers. To
find the selection and intensity rules it is neces-
sary to find the wave functions lf (M) belonging to
e(M) and also the matrix elements of J+, J,. It
should be remembered that these are J, and J+
relative to the system of quantization used in

this problem. For an r-f field along the t 0017axis,



for example, we will not have only J, elements
present. The wave functions and the corre-
sponding matric elements are to be found in
Appendix C.

In order to calculate the relative intensities of
the different lines we must know the direction of
the r-f field. If, for example, the r-f field is
directed along the [0011 axis, then the relative
intensities are given by calculating the matrix
elements of J,+J„'+J,= T. A simple calculation
shows

I(MI2'IM') I'=s l(MI J+IM') I'
+-', l(M' J+ M) I'+I(M J,IM') I'
+Im(M J+ M')(M' J+ M)
+Re((MI J+IM')(M J,IM')*
+(M'

I J+ I M) (M I J, M'))
+Im((MI J+IM')(Ml J, l

M')*
+(M'I J+IM)(MI J,IM')). (22)

All of the intensity factors for this case are very
small. This is partly the consequence of taking
the r-f field parallel to the static field. A plot of
the eigenvalues as a function of x is given in
Fig. 6; and the associated frequencies are tabu-
lated in Table III.

IV. CONCI, USIOÃ

It is seen from the above treatment, which is
based on the usual simplified model, that the
microwave-absorption spectrum of paramagnetic
crystals is expected to be a rather complicated
function of the external static magnetic field. Ke
wish to emphasize again that the inHuence of
exchange coupling between paramagnetic ions
has been entirely neglected. This coupling in
many salts may submerge the efkcts we have
considered, and may result in a simpler spectrum.
Indeed, it may well be that an eBect of this sort
occurs in the measurements of Zavoisky and of
Cummerow and Halliday, most of which were
made on magnetically concentrated salts. The
type of situation which we have treated is most
likely to be realized in salts which are magnetically
very dilute. One shouM also note the importance
of using single crystals with the static and r-f
magnetic fields along crystal axes of high

o)
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FIG. 6. Eigenvalues for KCr(SO4)2 12 HsO as a function
of the strength of the static Inagnetic held in the (001)
direction.

and Miss Ruth Krock for computational assist-
ance. One of us (C.K.) is indebted to the John
Simon Guggenheim Memorial Foundation for a
Fellowship, during the tenure of which this work
was carried out.

APPENDIX A

Character Table Trios—a/ Double GrouP {after Jahn")

Fl
Fs
rs
r,
Fs

8
1

1

2
2

2

1

1

2
—2
—2

2C ' 2C"
1 1

1 1
—1 —1
4 2

—1

3''
1

—1

0
0
0

3C tt

1

0
0
0

F1
Fs
Fs
F4
r,

z
1

1

1

1

2

R
1

1

1

1
-2

2C1

—1
—1

1

0

2'
1

—1
—1

0

2Cs
1

—1

1
—1

0

Note —F4 is used to denote two conjugate-complex one-
dimensional representations.

Character Table —Rhombi Double Group {after Bethe' )

symmetry.
Center of Gravity Sum Rule for
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sultigg from an external non-~mmular electric 6eid satis-
fying LaphLce's equation. %e shaH show that center of
gravity of the 27+1 components of the originaHy degener-
ate energy level is not shifted to the 6rst order, except by
the amount of the Madelung potential.

Let the eigenfunctions of' the perturbed system be
p; (i~1; ~ ~ ., 27+1). Then the center of gravity of the
levels will be given by

change of the energy zero plaint) and 1/r (which is singular),
we can say that the representation to which t/' belongs does
not contain the identity representation. Therefore, ac-
cording to the usual group theoretical argument the
integral in 8' vanishes, and the required result has been
established. A weaker form of this theorem has been given
previously by Kynch. »

R =— Z f.~Vlf/dV2J+1

where V is the perturbing potential. However, this is simply
the trace of V in the representation p; and is invariant
under choice of representation. %e could, therefore, just as
well use the eigenfunctions if sr (M'= —J, ~ ~ ~, +J) of the
unperturbed system. That is,

Z JpicsVi/srdr
1

1
dv V(Z /~*i/~).

Now Z p*&~ is rotationally invariant, since the f~ form

the basis vectors of a (2J+1)-dimensional irreducible
representation of the rotation group, and in this "repre-
sentation space" the sum indicated is just a scalar product.
Now by the assumption that t/" satis6es Laplace's equation
(which is rotationally invariant}, we see that V must
transform as one component of some representation of the
rotation group. Since the only invariant solutions of
Laplace's equation are a constant (which shifts all levels
equally by the Madelung potential and just amounts to a

This appendix contains the wave functions and matrix
element for K Cr alum in an C001]static magnetic field. The
wave functions are given by

4'(~) = P@sts+sar%ta+bM us+cd -sis3/
Cl+!s~l'+ lb~I'+ le~I'j'

where

(g+$~-.(M)),

b"=-'(3k/2) {1+'~( ~+~" '{M))a
2x

(1+~){3&/2)~4&
a-~.—(~))

The matrix elements of J+ and J, are now

$+ft(a *a b'b )—$—c "c
C(1+la~Is+lb~I*+le I')

&&(1+I&~ I'+lb~ I'+lc~ I'3'

3&+~+2~ *4r+3&4r'~~
L(1+la~I'+lb~I'+ le~I')

X(1+la~ I'+14 I'+ lc~ I')3'

» G. J. Kynch, Trans. Faraday Soc. 33, 1402 (1937).


