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A theoretical discussion is given of the application of microwave-absorption measurements
to the determination of energy levels in single crystals of paramagnetic salts. Selection rules are
given for magnetic-dipole transitions between sublevels in the presence of crystalline electric
fields of cubic, tetragonal, trigonal, and rhombic symmetry. The Zeeman effect in the presence
of crystalline elettric fields is discussed in some detail for three special cases: (a) J=5/2, cubic
field; (b) J=7/2, cubic field; (¢) J=3/2, trigonal field. These examples may correspond
approximately to certain magnetically dilute salts containing Fe*++, Gd+*+, and Cr*++ ions,
respectively, provided that exchange interactions do not play an important role and that the
assumed symmetries are approximately correct. Numerical values are tabulated for the
relative frequencies and line strengths associated with magnetic-dipole transitions in the cases
discussed. The character of the spectra may change radically between the limit where the
Zeeman splitting is small in comparison with the Stark splitting, and the opposite limit where
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the Stark splitting may be neglected.

I. INTRODUCTION

HE present knowledge'™ of the quantum
states of paramagnetic salts is largely
derived from the interpretation of measurements
of magnetic susceptibilities, specific heats, and
optical-absorption spectra. The difficulties in
giving a consistent account of the various phe-
nomena have been emphasized by Van Vleck at
the 1939 Strasbourg conference,® and by Penney
and Kynch.5
Therecent experimental discovery by Zavoisky®
of paramagnetic resonance absorption provides a
new and direct method for the investigation of
closely spaced energy levels in paramagnetic ma-
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terials. The method consists of observing by
means of electrical measurements the quantum
transitions induced by a radiofrequency or micro-
wave electromagnetic field. The salt is placed in
an r-f circuit element situated between the pole
pieces of an electromagnet. As the strength of the
static field is varied the power absorption in the
salt is found to pass through a well defined
maximum,.

In the measurements reported by Zavoisky the
position of the resonance satisfies closely the
Larmor equation for electron spins:

f/Ho—

=2.80 megacycles/oe, (1)
27mc

where f=frequency, H,=static magnetic field,
e=celectronic charge in e.s.u., m = electronic mass,
and c=velocity of light. The applicability of
Eq. (1) to electron states in solids in which the
spin is free was pointed out by Frenkel.” Under
this condition, the experiment is analog jus to the
nuclear magnetic resonance experiment. It may
be noted that this equation also holds in the
presence of strong exchange coupling between
spins.

On the present picture of paramagnetic solids
the energy levels of the paramagnetic ions are
affected in an important way by the inhomogene-

7J. Frenkel, J. Phys. U.S.S.R. 9, 299 (1945).
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ous crystalline electric fields, which are caused
largely by the dipole moments of the water of
hydration. The crystalline Stark effect splits the
degenerate energy levels of the free ions. This
splitting of a single level into several components
makes possible the occurrence in an r-f field of
magnetic-dipole transitions between the split
components, even in the absence of a static
magnetic field. A second effect of the splitting is
to change the character of the Zeeman effect in a
static magnetic field : under certain conditions we
might expect to find several lines in the absorp-
tion spectrum, in contrast to the single line found
by Zavoisky.

In Section II of this paper we discuss some
aspects of microwave-absorption spectra in the
absence of the Zeeman effect (Ho=0). In Section
III the combined Zeeman and crystalline Stark
effects are considered for three particular situa-
tions of interest in the microwave range. All of
our calculations refer to single crystals, with the
static and r-f magnetic fields along crystal axes
of high symmetry. The situation for powdered
specimens of these salts is extremely complicated,
and would probably net give as much informa-
tion as the single crystals.

It is possible that in a large number of salts the
effect of the Stark splitting will be erased by
strong exchange coupling between ions. The
prevalence of such coupling is perhaps one of the
more important things which might be deter-
mined by paramagnetic resonance experiments.
The specific cases of crystalline splitting considered
in this paper are presented only as illustrations of
the kind of behavior to be expected in the absence of
exchange interactions; our calculations are not ap-
plicable in the presence of strong exchange coupling.
Various effects of exchange coupling are con-
sidered by J. H. Van Vleck, in a paper which
is to appear in The Physical Review. It should
also be emphasized that the angular dependence
of the crystalline electric fields may be more
complicated than assumed here.

Note added in proof: Measurements on
Chrome Ammonium Alum at microwave fre-
quencies have been reported very recently’

s D. M. S. Bagguley and J. H. E. Griffiths, Nature 160,
532 (1947); P. R. Weiss, C. A. Whitmer, H. C. Torrey, and
Jen-Sen Hsiang, Phys. Rev. 72, 975 (1947).
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which show clearly the expected effect of the
Stark splitting.

II. MICROWAVE ABSORPTION CAUSED BY
CRYSTALLINE STARK SPLITTING

The usual Stark splittings in crystals are of the
order of some hundred or thousand cm™; in
certain circumstances, however, the splittings are
of the order of one cm~L. This is the case with
some of the salts studied in magnetic cooling
experiments. For example, Gorter* gives the
following over-all splittings of the ground state:

Gdz(SO4)3'8 Hzo 1.0 cm“,

Gdz(C204)3' 10 HgO 0.60 cm“,
KCI‘(SO4)2' 12 Hzo 0.16 cm“l,
FeNH4(SOy)2-12 H,O 0.13 cm™.

Splittings in the neighborhood of one cm™! are
in principle accessible to investigation by means
of microwave methods. The selection rules, in
general, permit a number of magnetic-dipole
transitions. Electric dipole transitions are for-
bidden by the parity rule, since the parity of
initial and final states are identical when these
states originate from the same degenerate level of
the free ion. Electric quadrupole transitions are
less probable than magnetic-dipole transitions by
a factor of the order of (atomic radius/wave-
length)? X (Debye unit/Bohr magneton),? which
is of the order of 10~ for A=1 cm.

Magnitude of the Effect

The magnitude and detectability of the reso-
nance-absorption effect may be estimated by
reasoning similar to that given by Torrey,
Purcell, and Pound® for the case of nuclear
resonance. We shall consider the power absorbed
by a system which has two eigenstates, 1 and 2,
with eigenvalues differing by the energy %wo. The
transition probability between states 1 and 2 for
a single system per unit time for x-polarized
radiation is

p=(2x/8) | pr® |, ()

where p127 is the matrix element of the magnetic-
moment operator u,=gugpJ, and I is the total
energy in the incident radiation field per unit
volume per unit frequency interval.

8 H. C. Torrey, E. M. Purcell, and R. V. Pound, Phys.
Rev. 69, 680 (1946).
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In thermal equilibrium the number of systems
in the ground state is greater than the number of
systems in the excited state; the excess is

Ni—Na) = Ni(1 hoo BT (3
(N1—N3) = N1(1 — exp[[—hwo/ ])=3"’;F 3)

for hwo/BT<1; here N is the total number of
systems. The power absorption is given by

e oo @
2aT N

Suppose that the band width of the incident
electromagnetic wave is Af and the width of the
resonance line (resulting from magnetic-moment
interactions) is Awo(">Af) ; then only the fraction
2xAf/Awo of the total number of systems have
their resonances within the band width of the r-f
radiation field. Let U=1IAf be the total energy
density in the incident radiation field; then

272002 | w1 | 20

kTAwo

©)

is the integrated power absorption per unit
volume, where # is the number of paramagnetic
ions per unit volume.

Now the Q of the system is given by

P wo un hwo

e ~—~

(6)
woU Awo BT RT

if the line width is considered as caused by
magnetic-dipole interactions, so that Awo~p?/a®
~nu,

From Eq. (6) one has, for T=300°K and A=1
cm, Q~200, which is easily detectable in the
presence of empty cavity Q’s which may be of the
order of 1000 or more at this wave-length.

Selection Rules

We have pointed out that the allowed transi-
tions are magnetic-dipole transitions. One can
proceed to calculate the selection rules by group
theoretical methods. The eigenfunctions corre-
sponding to the energy levels in the crystalline
electric fields transform according to the irre-
ducible representations, T';, of the symmetry
group of the crystalline field. The characters of
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the irreducible representations are given in the
papers of Bethe,® Tisza,!? and Jahn.!! The charac-
ter of the magnetic-moment operator under
a rotation through an angle ¢ is given by
x(¢) =142 cosp, since the magnetic-moment
transforms as an axial vector.

It is a fundamental result of group theory that
magnetic dipole transitions are allowed between
levels m and » only if I',* XT'» XTI, contains the
identical representation I'y; here I', is the repre-
sentation of an axial vector. The allowed transi-
tions found from the character calculations are
given below; the representations are labeled
according to the notation of Bethe.? In the cases
of the one- and two-valued rhombic and trigonal
groups, which were not given in detail by Bethe,
the character tables are given in Appendix A.

The notation I'g 3T indicates that the energy
level whose eigenfunctions belong to I'. has
allowed magnetic-dipole transitions to and from
the energy levels whose eigenfunctions belong to
T, and T

Cubic Group (Taxiai=T'4)

Ty,5463T4; 79,545 s; I's 5T ; I'7, 5217 ; T3 T

Tetragonal Group (Taxiat=T2+Ts=T(+T(z)

Transitions for J,: T'ioTy; Iyeoly; Tyols;
Pg(—)ro; I‘7<->I‘7.

Transitions for J,, Jy:
F7<—>P7.

Trigonal Group (Taxiat=T2+Ts=T(+ T )

Transitions for J,: T'jeoly; el TieoTy;
I‘;HI‘.;.

Transitions for J,, Jy: I'ioT's; TyeoTy; Tyl
I‘5(—-)I‘5.

Rhombic Group (Taxiat=T2+T3+T4i=T»+T(y
+T'w)

Transitions for I's: I'yeI'z; 'yl ; Tl

Transitions for I'z: 'y T';; T2y Tyl

Transitions for T'y: I'yeTy; e T'3; T T,

T340 s; TereT;

The selection rules for the tetragonal case have
been given previously by Bethe.1?

The application of these selection rules may be
illustrated by the case of the Gd+++ ion, for
which J=7/2. According to Bethe,?® the ground

? H. A. Bethe, Ann. d, Physik 3, 133 (1929); see also E.
Wigner, Géttingen Nachrichten 133 (1930)

0], Tisza, Zeits. f. Physik 82, 48 (1933)

1 H. Jahn, Proc. Roy. A164 117 (1938); see also W.
Opechowski, Physica 7 '552 (1940

12 H, Bethe, Zeits. f. Physxk 60, 218 (1930).



MICROWAVE RESONANCE ABSORPTION

state of the ion splits in a cubic field into a two-
fold degenerate level belonging to T's, a twofold
degenerate level belonging to I'z, and a fourfold
degenerate level belonging to I's. The selection
rules permit transitions between I's and T's, and
between I'z and TI's, but not between I'g and T'.

If the over-all splitting of the ground state in
Gd:(S04);-8H,O is 1.0 cm™, as given by
Gorter,* the allowed transitions will correspond
to wave-lengths of 1.6 cm and 2.7 cm. This
follows from the fact that, if only the cubic term
of the fourth degree in the crystalline potential is
considered,!? the splitting is in the ratio of 5 to 3,
with the fourfold level between the two twofold
levels.

Intensity Factors

Equation (5) is a quite general expression for
the power absorption when the band width Af of
the incident electromagnetic wave is small in
comparison with the effective band width Aw of
the resonance, and for 27> hw,. In the absence of
detailed knowledge regarding the dependence of
Awo on the crystalline and applied magnetic
fields, we shall suppose for the sake of discussion
that Aw, is a constant for any specific salt. Under
this assumption the dependence of the power
absorption on frequency and magnetic field in-
tensity is determined by the factor we?|p1?|? in
Eq. (5).

For convenience, we prefer to discuss the
dimensionless quantity

Omn’=(hwo/8)*| (m| J:|m) /e . @)

This will be called the intensity factor. Here J is
the angular-momentum operator; & is an energy
which must be defined for each specific problem—
it is closely related to the purely crystalline
splitting.

In general it is more convenient to work with
the operators J,=J,4+4J, and J_=J.—1J,,
than with J, or J, separately. One has

Je=3(J++JT2); (8)
now from the reality of J, and J,,
(m|J-|n)*=(n|J;|m), 9)

so that
(m|Je|n)=3{(m|Jy|n)+(n|JL|m)*}. (10)

13 M. H. Hebb and E. M. Purcell, J. Chem. Phys. 5, 338
(1937).
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This relation is used to calculate the matrix
elements of J, from those of J,.

Tables of numerical values of the intensity
factor are given in the following sections along
with the energy differences associated with the
various transitions.

III. COMBINED CRYSTALLINE AND
ZEEMAN SPLITTING

It is not possible to discuss in a general fashion
the behavior of energy levels in the presence of
combined crystalline electric fields and external
static magnetic fields. Rather, it is necessary to
find in detail for each individual case the solu-
tion to the quantum-mechanical perturbation
problem.

Level splittings corresponding to microwave
frequencies are believed to arise only in some-
what special situations, including:

(a) When the ground state of the free ion is an
S state, the crystalline field causes splitting only
in conjunction with spin-orbit coupling.* The
resultant splitting is small.

(b) A small crystalline field of low symmetry
may remove the degeneracy left by a larger
crystalline field of higher symmetry. For ex-
ample, a predominantly cubic field may have a
small trigonal component which gives rise to a
further splitting.

Hebb and Purcell® in their theoretical study of

Ig

3T6
!
T
5

s

6

ol

FiG. 1. Energy levels of S state after splitting by cubic
electrostatic potential of form V=D (x*+*+3%); the over-
all separation is 83.

1 J. H. Van Vleck and W. G. Penney, Phil. Mag. 17, 961
(1934).
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FiG. 2. Eigenvalues of 8S state as a function of the
strength of the static magnetic field in the [001] directions;
a constant cubic electrostatic field is also present. The
The subscripts on the 's indicate the value of the magnetic
quantum number, M, characterizing the state for >>1.

magnetic cooling experiments discuss examples
where the splitting is of the order of magnitude
of one cm™ Type (a) splitting is found, for
example, in salts of trivalent gadolinium, where
the ground level is 8573, and in Fe*t++ and Mn*++
(8Ss/2). Type (b) splitting is found, for example,
in potassium chromic alum (KCr(SOy),-12 H,0),
where there is thought to be a small trigonal field
superposed on the predominant cubic field. The
possible transitions and corresponding intensity
factors for the cases just cited are discussed in
detail below.

Case I. J=7/2 (Gd++*)

In the absence of external magnetic fields this
state is split by a cubic electric field into two
twofold levels and one fourfold level. The validity
of the cubic field assumption is uncertain. Ac-
cording to Bethe (cf. reference 9, p. 155), the
twofold levels belong to T's and I';, the fourfold
level to I's. We assume that the splitting* takes
place as in Fig. 1, which is consistent with the
work of Hebb and Purcell.’® The zero-order wave
functions belonging to these representations are

* However, the situation in the Gd*+* salts may not be
so simple. We are indebted to Professor F. J. Belinfante for
correspondence regarding a detailed treatment of the

energy-level scheme in preparation by Van Dyk and
himself.
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listed below.

Ya® =3[ 31®5s— P32 ] ] I
Va® =3[3_g/a— D3]] "

V® = (7/12) ®7/5— (5/35)®_1/2]
¥® = (1/12)4[8_r/s— (5/35)®ua] | [,
Vo ® =3[ @50+ 34D_3/2] &
Vo = 5[ D_s/a+34Dy2 ]

Yo = (5/12)[ &7+ (7/35)®_1/2] ] I
Ve® = (/12 [@_r/2+(7/35)®12 ]| ©

&,, denotes a function with J=7/2, M;=M. We
obtain for the secular equation in the presence of
an [001] directed magnetic field:

(1)

b v ® U® | .
711
Y.V | 85+-a| —(35) 0 0
6 |3
—E
1 11
h® g(35)ia si+—al 0 0
=0. (12)
—E
1
¥ 0 0 56—-a| V3a
—E
3
Ya® 0 0 V3a —Z-a—E

Here a=_gupH(g=2 since L=0), and there is a
similar block involving (—a) for (a) and the re-
maining functions. This result has been essen-
tially given by Hebb and Purcell in another con-
nection. Introducing dimensionless quantities
n=E/8, x=a/$, one finds for the eigenvalues:

3 131 2 \? 140 \})
NE7y2= :l:—x+——;{:—-((3q:—x) +—x2) ,
2 2 2 3 9
1 51
N2 = i5x+5i5((5 F2x)24+12x2)3,
- (13)
1 51
Nxy2= :F-2-x+5:t:-2-((5 +2x)2+12x2)},

3 13 1 2 \? 140 3
LES =F~x+——:!:-—((3:l:-—x) +——-—xz) ,
2 2 2 3 9 J
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_TaBLE I. Frequencies and intensity factors for transitions in J=7/2 case; cubic field. Table is labeled in terms of
dimensionless quantities n=E/s and x =gugH/s, where § is as shown in Fig. 1. The intensity factor is defined by Eg ()
and is given in this case by ©,=13|(m|J|n)|2(An)? and 8,= | (m|J|n) |2(An)2. The static magnetic field is in the Z direc-
tion; this is also the [001] direction.

Transitions Quantity 0.1 0.3 0.5 0.7 1.0 1.5 ‘_2’.‘0_' 3.0 5.0 7.5 10.0 15.0
72— 1/2 Ay 023 071 122 176 2.60 4.05 5.53 851 14.51 22.00 29.50 44.50
e 007 059 135 208 293 3.74 4.15 4.51 4.73 4.82 4.86 4.88
7/2<-—>—7/2 Ay 333 413 509 6.19 798 11.19 1453 21.36 3522 52.65 70.11 105.07
©, 810 657 504 378 247 134 0.82 0.39 0.14 0.09 0.04 0.02

1/2¢——1/2 aAq 2.73 233 209 199 198 2.19 2.53 3.36 5.22 7.65 10.11 15.07
@: 9.27 997 1049 11.14 12.74 17.28 24.04 43.85 107.71 232.68 407.68 907.61

6.47 949 1549 23.00 30.50 45.50

—1/2«——=7/2 Ap 037 109 178 244 340 5
4 4.49 4.76 4.89 4.93 4.93 4.92

4
0. 009 073 163 246 335 4.

7/2«— 5/2 Aq 317 3.56 398 440 500 5.84 6.53 7.72 9.85 1240 14.93 19.96
®, 28.02 31.75 35.13 40.73 48.86 63.20 77.32 105.98 170.79 270.04 390.78 697.32

5/2«——1/2 Ay 021 0.52 0.6 0.66 042 041 1.53 4.16 9.88 17.24 24.68 39.62
©; 002 0.14 026 025 008 0.04 0.36 1.04 1.77 2.15 2.33 2.50

7/2«——3/2 An 799 8.08 834 874 9.58 1141 1353 18.16 27.88 40.24 52.68 77.62
©; 010 087 195 272 292 207 1.28 0.55 0.18 0.07 0.04 0.02

—1/2«—>~3/2 An 503 504 5.02 500 500 35.16 5.47 6.28 8.15 10.60 13.07 18.04
O, 5841 6223 66.32 69.50 76.14 89.59 105.55 144.42 247.28 419.62 639.47 1220.2

§/2«— 3/2 An

0.10 0.29 044 055 0.61 049 0.18 0.65 2.56 5.03 7.51 12.51
0, 0.02

0.19 047 077 2.02 0.67 0.09 1.28 19.61 75.75 169.42 469.24

3/2«——=3/2 Aq 491 481 480 4.89 520 6.05 7.18 9.79 1547 2281 30.23 45.16
0: 17.94 1590 13.62 11.32 8125 4.77 2.92 1.36 0.49 0.22 0.12 0.05

5/2«<——-5/2 Ay 511 541 580 629 720 905 11.18 1579 2547 37.81 50.23 75.16
0. 19.43 20.13 19.88 18.72 15.83 10.68 7.08 3.53 1.34 0.60 0.34 0.15

—3/2<——5/2 Ay 030 0.89 144 195 261 349 4,18 5.35 7.44 9.97 12.49 17.49
®, 020 1.82 502 9.63 1841 34.87 51.40 8533 166.07 29844 467.63 918.01

3/2«— 1/2 An 284 256 231 209 179 130 0.82 0.14 2.10 4.57 7.06 12.04
©. 24.52 21.19 18.08 15.21 11.36 6.15 2.47 0.08 1646 78.19 186.47 543.19

1/2«——54/2 An 805 825 856 894 9.60 10.84 1218 14.99 20.81 2822 35.66 50.61
©®, 009 068 144 210 2.80 335 3.55 3.62 3.43 3.29 3.18 3.07

3/2«—=7/2 Ay 025

085 1.56 234 3.60 584 8.18 1299 22.81 3522 47.66 72.61
9. 0.02 0.12
4

023 031 035 0.32 0.27 0.17 0.08 0.04 0.02 0.01

—5/2«——=7/2 An 496 84 4.69 451 421 3.70 3.18 2.14 0.10 2.43 4.94 9.96
©, 53.93 49.01 44.13 39.58 33.49 25.04 18.21 8.16 0.02 10.34 42.8¢ 173.77

7/2«——1/2 Ap 296 3.04 332 3.75 4.58 6.24 8.06 11.87 19.72 29.65 39.61 59.57
®, 350 350 350 350 350 35.0 35.0 35.0 35.0 35.0 35.0 35.0

1/2«——7/2 Ap 3.09 341 3.87 443 3539 7.4 9.00 12.85 20.71 30.64 40.61 60.57
®. 350 3500 35.00 35.00 3500 35.00 35.0 35.0 35.0 35.0 35.0 35.0

5/2«——3/2 Ay 481 452 436 434 4.58 5.57 7.00 1044 18.03 27.84 37.75 57.66
@, 750 750 750 750 750 75.0 75.0 75.0 75.0 75.0 75.0 75.0

—~5/2«<— 3/2 Ap 521 570 624 684 7.81 9.54 11.36 15.13 2291 32.79 42.72 62.65
@, 750 750 750 750 750 75.0 75.0 75.0 75.0 75.0 75.0 75.0
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Fi1G. 3. Frequency and intensity factor for some typical
absorption lines resulting from an 8S state; the intensity
factor is proportional to the power absorption and is
defined by Eq. (7). Note added in proof: Two frequency
curves are labeled in the figure as 7/2«—>1/2; of these
two curves the left hand one is incorrectly labeled and
should read 7/2«———1/2.

the 9's being labeled according to the levels they
represent in very large fields. These are plotted
in Fig. 2. The numerical values of the frequencies
and intensity factors corresponding to non-
vanishing matrix elements are to be found** in
Table I, while Fig. 3 gives plots of intensity
factors and frequencies of typical lines vs. applied
magnetic field.

The sum of the squares of all the matrix
elements of J, is exactly 84 for J=7/2, inde-
pendent of the value of x. This result follows
from the principle of spectroscopic stability (cf.
reference 1, p. 139), and provides a very useful
check on the numerical calculations.

For strong magnetic fields the eigenvalues and
matrix elements approach the values charac-
teristic of free ions. From Table I we see, for
example, that for large x the largest values of the
intensity factors belong to those X-polarized
transitions for which AM ;= 41, in agreement
with the usual selection rule. An example of such
a transition is 7/2+5/2, for which the values of
the frequency and intensity factor are shown in

** The authors have available copies of the analytical
expressions for the wave functions and matrix elements as

ﬁﬁnctions of x for distribution to anyone who may require
them.
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F1G. 4. Eigenvalues of &S state as a function of the static
magnetic field in the [001] direction.

Fig. 3. A number of lines are weak for all x: an
example is 3/2<>—7/2. All of the Z-polarized
lines have constant values of the intensity factor,
independent of x; an example is the line 7/2¢>1/2
shown in Fig. 3. The crossing points on the
eigenvalue diagram (Fig. 2) correspond to lines of
zero frequency.

Case II. J=5/2 (Fet++, Mn*+)

The case of J=5/2 is very similar to that of
J=17/2. The roots of the secular equation for an
[001 ] magnetic field and a cubic electric field have
been given by Debye!® and also by Kronig and
Bouwkamp.!¢

We shall not discuss this state in any detail,
but merely give results. The energy levels are

1 R
€x+y2=1+4-x,
2

—

x 1
€tp/0= :{:-2-—:2-:1:2[x2:hx+(3/4)2]*, (14)

x 1
€x3/2= ‘FE—Eiz[x’q:x*‘ /97,

J

where, as before, x =gupH /%, e=E/§ (35 being

15 P, Debye, Ann. d. Physik 32, 85 (1938).
a ;;"I){) de L. Kronig and C. J. Bouwkamp, Physica 6, 290
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the over-all splitting in the crystalline electric
field alone). In the case under consideration, just
as in the 7/2 case, one has L=0 so that g=2. In
Fig. 4 one finds these energies plotted as a
function of external field. Table II gives the
numerical values of the frequencies and intensity
factors.

The principle of spectroscopic stability applied
to the J=5/2 case tells us that the sum of the
squares of all the matrix elements of J; is 35,
independent of x.

Case III. (KCr(SO,),-12H,0)

According to Hebb and Purcell the Cr+++ ion
in this salt is in a 4FT's state, which is not split by
the cubic crystalline field. If one assumes that
there is also present a small field of trigonal
symmetry the axis of which coincides with one of
the body diagonals of the cubic lattice (this is to
be expected from x-ray studies of the salt), then
the J=3/2 state does split and give rise to
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F16. 5. Energy levels for KCr(SO4)2-12 H.0 in presence of
axial electrostatic field.

possibilities for microwave absorption. Now in
this alum the Cr**++ ions lie on a face-centered
cubic lattice, i.e., on interpenetrating simple
cubic lattices. If one resolves the face-centered
lattice into the four simple cubic lattices, then
one finds that the trigonal axis of the electric field
is in each case along a different body diagonal of
the unit cube. We shall treat these four simple
cubic system independently.***

Taking for the crystalline potential only the

TasLE II. Frequencies and intensity factors for transitions in J=35/2 case; cubic field. Table is labelled in terms of
dimensionless quantities e=E/5 and x =gupH /5, where § is the over-all splitting in the electric field alone. The intensity
factor is defined by Eq. (7) and is given in this case by ©,=1|(m|J.|n)|2(Ae)? and 8,=|(m|J,|n)|2(Ae)2 The static
magnetic field is in the Z direction; this is also the [001] direction.

Transitions Quantity 0.1

e
~
-
(=}

—x—>

1.5 2.0 3.0 5.0 7.5 10.0 15.0

3/2«— 1/2  Ae 023 0.1 088 101 100 071 030 0.62 2.57 5.04 7.53 12.52
® 002 025 078 137 167 094 0.17 0.77 13.15 50.82 113.40 313.44

5/2+—>—1/2 Ae 024 075 129 185 270 4.15 562 859 1456 22.04 29.53 44.52
® 002 010 021 032 046 064 076 092 1.09 1.18 1.23 1.29

—3/2«——1/2 Ae 304 315 329 345 3.70 425 4.62 5.59 7.56 1003 12.53 17.52
©. 16.00 18.08 20.29 22.66 26.54 35.52 42.24 62.08 113.92 201.32 313.76 613.55

—5/2«— 1/2  Ae 297 299 312 339 4.00 529 6.70 9.62 1557 23.04 30.53 45.52
0, 14.00 1193 9.72 761 533 356 2.83 2.23 1.85 1.69 1.61 1.54

5/2«—>—=5/2 Ae 341 344 391 454 570 794 1033 1521 2513 37.58 50.06 75.04
®; 528 545 489 382 234 110 0.62 0.27 0.10 0.04 0.02 0.01

5/2«— 3/2 Ae 037 1.06 167 216 270 3.36 3.92 497 6.99 949 12.00 17,00
e: 009 089 2.60 497 860 1393 19.14 30.79 61.02 112.68 179.91 361.10

3/2«——=3/2 Ae 291 2.8 291 314 370 494 633 921 1513 22.58 30.06 45.04
. 463 371 271 182 098 043 023 0.10 0.04 0.02 0.01 0.00

—5/2«—>—3/2 Ae 0.17 046 067 076 0.70 036 0.08 1.03 3.01 5.51 8.00 13.00
®, 002 017 042 062 058 016 001 134 11.34 37.89 80.07 211.38

5/2«<——3/2 Ae 3.28 390 4.58 530 640 831 1025 14.18 22.11 32.08 42.06 62.04
©, 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

—5/2«— 3/2 Ae 275 237 224 237 3.00 458 640 1025 18.14 28.09 3807 58.00
©, 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20. 20.00 20.00 20.00

*** Part of this calculation was performed previously for another purpose by L. J. F. Broer, Physica 9, 547 (1942).
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TasLE I11I. Frequencies Ae for transitions in case of KCr(SO,)s-12H,0; H, Parallel [001].*

—x—

Transition a 2 3 4 6 1.0 2.0 5.0 10,0 15.0
3/2«— 1/2 .30 .57 .80 99 1.29 191 3.56 8.70 17.34 25.99
3/2«—>—1/2 1.03 1.13 1.31 1.56 2.17 3.52 6.95 17.33 34.65 51.96

—3/2«—> 3/2 1.33 1.70 2.11 2.54 3.47 5.42 10.51 26.03 51.98 77.96
—1/2+— 1/2 73 .55 .50 57 .88 1.61 3.39 8.63 17.31 25.97
—3/2«— 1/2 1.03 1.13 1.31 1.56 2.17 3.52 6.95 17.33 34.65 51.96
—3/2«—>—1/2 .30 57 .80 99 1.29 191 3.56 8.70 17.34 25.99
* Table is labeled in terms of dimensionless quantities e =E /8 and x =guBH /5+4/3, where § is as shown in Fig. 5.
second-order terms, we find with J=3/2 perturbed by an interaction
Virig=D(x3+y2—252), (15) H=VesigtHuae
= Vuig+gus(H-J). (16)

where the z axis is here taken as the body
diagonal. This potential has more than trigonal
(i.e., it has axial) symmetry as a result of our
dropping higher terms. Just because of this
apparent axial symmetry, however, a magnetic
field placed in the [001]crystallographic direction
will look the same to each component simple
cubic array. That is, the properties of the states
as functions of the field should depend only on the
strength of the field and the angle between the
field direction and the trigonal axis. We therefore
need consider only one of the component arrays,
say the one with trigonal axis in the [111]
direction.

We now have to solve the problem of an atom

Taking the direction of quantization to be along
the [111] direction, and choosing the x and y
axes such that the component of H perpendicular
to the z axis lies equally between them, we have
H
H'J=%(J,+Ju+fz) (17)

Husg=a(i(1 =) T4 +3(1+) T+ 7.,
where

(18)
a=gupH/3%.

The level scheme in the absence of Hpsg, is as
shown in Fig. 5. Here the levels are labeled by
their weak field quantum numbers. Introducing
now Hpe,, wWe get as our secular equation :

2 1 1 —3
2 2 2 2
1—3
% % +%x —€ —2—‘3%36 0 0
144 _
% —-—2——3*x —3i+3x—e (1—2)x 0 =0, (19)
-1 0 (1+4+19)x —1-1x—e| 1(1—12)3%
1412
-3 0 0 —3ix 1—3x—e¢
2
where e=E/$, x=a/é. Expanding gives where we have labeled the energies with their
—1(1+15%?) e+ (1+81x2—622) =0, (20) appropriate strong field quantum numbers. To
. find the selection and intensity rules it is neces-
the roots of which are sary to find the wave functions (M) belonging to
e(3) =3(14+15x246x(1+4x)h}, ¢(M) and also the matrix elements of J,, J,. It
€(3) =3(14+15x2—6x(1+4x)h}, @1) should be remembered that these are J, and J,

e(—3) = —3(14+15x2— 6x(1+4x2)})},
e(—3) = —3(1+15x*+6x(1 +4x2)})3,

relative to the system of quantization used in
this problem. For an r-f field along the [001 }axis,
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for example, we will not have only J, elements
present. The wave functions and the corre-
sponding matric elements are to be found in
Appendix C.

In order to calculate the relative intensities of
the different lines we must know the direction of
the r-f field. If, for example, the r-f field is
directed along the [001] axis, then the relative
intensities are given by calculating the matrix
elements of J,+J,+.J,=T. A simple calculation
shows

[(M|T| M) [2=%|(M]| T | M) |?
3| (M| T | M) [24 | (M| T | M) |
+Im(M| T4 | M) (M| 1| M)
+Re((M| T4 | M')(M|T,| M")*
+(M| T | M)(M| T | M)
+Im((M|J| M) (M| J.| M')*
+M| T | M)(M| T M), (22)
All of the intensity factors for this case are very
small. This is partly the consequence of taking
the r-f field parallel to the static field. A plot of
the eigenvalues as a function of x is given in

Fig. 6; and the associated frequencies are tabu-
lated in Table III.

IV. CONCLUSION

It is seen from the above treatment, which is
based on the usual simplified model, that the
microwave-absorption spectrum of paramagnetic
crystals is expected to be a rather complicated
function of the external static magnetic field. We
wish to emphasize again that the influence of
exchange coupling between paramagnetic ions
has been entirely neglected. This coupling in
many salts may submerge the effects we have
considered, and may result in a simpler spectrum.
Indeed, it may well be that an effect of this sort
occurs in the measurements of Zavoisky and of
Cummerow and Halliday, most of which were
made on magnetically concentrated salts. The
type of situation which we have treated is most
likely to be realized in salts which are magnetically
very dilute. One should also note the importance
of using single crystals with the static and r-f
magnetic fields along crystal axes of high
symmetry.
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APPENDIX A

Character Table—Trigonal Double Group (after Jahn!t)

E R 2¢y 26, 3Gy 3Gy
I 1 1 1 1 1 1
T, 1 1 1 1 -1 -1
Is 2 2 -1 -1 0 0
Ty 2 -2 -2 2 0 0
T's 2 -2 1 —1 0 0

Note—Ty is used to denote two conjugate-complex one-
dimensional representations.

Character Table—Rhombic Double Group (after Bethe?)

E R 2C, 2C, 2Cs

I 1 1 1 1 1

T, 1 1 -1 1 -1

Ts 1 1 -1 -1 1

T, 1 1 1 -1 -1

Ts 2 -2 0 0 0
APPENDIX B

Center of Gravity Sum Rule for
Crystalline Fields

Consider an unperturbed system which has a definite
angular momentum J. It undergoes a perturbation re-
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sulting from an external non-singular electric field satis-
fying Laplace’s equation. We shall show that center of
gravity of the 2J+1 components of the originally degener-
ate energy level is not shifted to the first order, except by
the amount of the Madelung potential.

Let the eigenfunctions of the perturbed system be
¥i (#=1; -+, 2J7+41). Then the center of gravity of the
levels will be given by

1 .
W_ﬁﬂ %‘ Jll'-' Vyidr,

where V is the perturbing potential. However, this is simply
the trace of V in the representation y¥; and is invariant
under choice of representation. We could, therefore, just as
well use the eigenfunctions yu (M=—1J, ---, +J) of the
unperturbed system. That is,

1
W‘—‘m 5 f\hu" Viudr

. "
Now E Yu*Pu is rotationally invariant, since the ya form

the basis vectors of a (2J41)-dimensional irreducible
representation of the rotation group, and in this “repre-
sentation space’ the sum indicated is just a scalar product.
Now by the assumption that V satisfies Laplace’s equation
(which is rotationally invariant), we see that V must
transform as one component of some representation of the
rotation group. Since the only invariant solutions of
Laplace’s equation are a constant (which shifts all levels
equally by the Madelung potential and just amounts to a
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change of the energy zero point) and 1/r (which is singular),
we can say that the representation to which V belongs does
not contain the identity representation. Therefore, ac-
cording to the usual group theoretical argument the
integral in W vanishes, and the required result has been
established, A weaker form of this theorem has been given
previously by Kynch.!?

APPENDIX C

This appendix contains the wave functions and matrix
element for K Cralum in an [001 ] static magnetic field. The
wave functions are given by

V(M) = [®32+auPrs+bu®_12+ca®_32]/
[1+]anr |2+ | bar |2+ | car | 2T

where
ay= - 4,
bu= ——i(3§/2)_(1+,')_(_.__%_t*2’;—‘ﬂau’
M= _W_ﬁ!
M T G- (M)

The matrix elements of J; and J, are now

| M) = 3+3(aar*ar —ba*bu) — §cu*ou
CA+Taa ]2+ [br |2+ cu|?)
X (14| aar |24 bar |2+ | €ar [ 2T
3day+2am*bur+30u*eu
[+ an|2+[ba |2+ ca[?)
X (14 |ane |24 barr |2+ | cacr | T

(M| T,

(M’ T, | M)=

17 G. J. Kynch, Trans. Faraday Soc. 33, 1402 (1937).



