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On the Theory of Ferromagnetic Resonance Absorption
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The theory of ferromagnetic resonance absorption previously developed is extended to
include the effect of the shape of the specimen and, in the case of a single crystal, the effect
of crystal orientation. The resonance condition may be written ~e=yH, ff, where H, ff is equal
to (BH)& for a plane surface, H+2rrM for a long circular cylinder, and H for a sphere; the
latter two values apply only to the situation in which the eddy current skin depth is large in
comparison with the radius of the specimen. ln the case of an uniaxial crystal with the axis
parallel to the static magnetic field, the value of H to be used in the resonance conditions is
increased by 2X/3f, where X is the anisotropy constant. The case of a cubic crystal is also
considered. A detailed discussion of macroscopic eddy current eEects is given, and it is shown
that the usual eddy current losses do not introduce damping terms into the expression for the
permeability, when properly interpreted.

I. INTRODUCTION

FERROMAGNETIC resonance absorption is
the analog of paramagnetic and nuclear

resonance absorption. The ferromagnetic effect
was found originally by GriSths, ' and further
confirmation has been reported by Yager and
Bozorth. ' A theory of the resonance effect has
been proposed by the present author. '

In a typical experimental arrangement the
ferromagnetic specimen is in the form of a thin
sheet or foil, which is employed as one wall of a
rectangular cavity terminating a wave guide fed

by a microwave generator. The ferromagnetic
side of the cavity is chosen so that the magnetic
vector of the microwave 6eld is constant in
direction in the plane of the wall. A static mag-
netic field is applied (by means of an electro-
magnet) also in the p1ane of the wall but per-
pendicular to the microwave magnetic 6eld. It is
found experimentally that the energy loss in the
cavity goes through a maximum as the strength
of the static magnetic field is increased. For
example, Yager and Bozorth found a sharp
resonance peak in a Supermalloy specimen for a
field strength near 5000 oersted when using a
frequency near 24,000 Mc/sec. The measured Q
of their cavity dropped sharply from a value of
several thousand on either side of resonance to a
value of several hundred at resonance.

' J. H. E. Griffiths, Nature 158, 670 (1946).
sW. A. Yager and R. M. Bozorth, Phys. Rev. 12, 80

(1947).' C. Kittel, Phys. Rev. 7'1, 270 (1947).

The principal result of the theory' is that the
resonance condition for a plane surface should
be given by

~a = y(&~) ',

instead of the Larmor condition a&0
——yH; here ~0

is the frequency at resonance; y is the magneto-
mechanical ratio for an electron spin; H is the
strength of the static magnetic field, and I3 is
the magnetic induction in the specimen.

The considerations set forth below elucidate
and extend certain aspects of the original theory.
The discussion generally follows macroscopic and
classical lines, analogous to the Bloch' treatment
of the nuclear induction experiment. In a paper
which is to appear in The I'hysica/ Reminds, Van
Vleck has shown that a quantum-mechanical
treatment of ferromagnetic resonance leads to
the identical resonance condition as the classical
theory.

II. DEPENDENCE OF RESONANCE CONDITION
ON THE SHAPE OF THE SPECIMEN

The equation ~0 ——y(BH) & was derived specifi-
cally for a plane surface. The derivation of the
resonance condition is intimately related to the
nature of the demagnetizing field, and it is
reasonable to expect that the equation will de-
pend on the shape of the specimen. It turns out,
for example, that the resonance condition in a
small sphere of ferromagnetic material is given
by the Larmor equation coo=aH, .

' F. Bloch, Phys. Rev. 'VO, 460 (1946),
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density J are related by

M=yJ,

where y is the magneto-mechanical ratio and is
equal to e/rnc for electron spins; numerically,
y/2m=2. 80 megacycles/oersted. The equation of
motion referred to unit volume of material is
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FIG. 1. Summary of data on ferromagnetic resonance in
plane specimens: comparison of eGecuve g values using
both H and (BH)& as the etlective magnetic field in the
resonance condition. For an electron spin g =2.00.

~ J. L. Snoek, ¹mDeeekpmeets ie Ferromageetk Ma-
terials (Elsevier, Amsterdam, 1947), p. 97; Philips Tech-
nical Review 8, 353 (1946).

We stuN hrnit the discussion to shaPes for which

the detnagnetising factors hans a rigorous meaning
We must accordingly discuss only objects which
are uniformly magnetized at the frequencies
under consideration. It is therefore necessary
that certain dimensions of the specimens be sma, ll

in comparison with the eddy current skin depth.
A plane surface is in a sense an exception to this
requirement.

The skin depth in the ferromagnetic metals at
microwave frequencies is of the order of 10—~ to
10 4 cm, so that only very fine particles will

satisfy the size requirement. However, the new

ferromagnetic semi-conductor materials offer un-

usual possibilities for working with specimens of
a convenient size. For example, Snoek» gives
the resistivity of "Ferroxcube 4," which is a
Ni-Zn ferrite, as 10' ohm-cm, or about 10"
higher than the resistivity of iron. The skin
depth is 3 cm at ) =1 cm and p, =100. One
should be able to work at microwave frequencies
with a single shaped specimen of such material
with dimensions of the order of 0.1 to 1 cm.

The magnetization M and angular momentum

dJ/dt =M XI,
since the expression on the right is the torque
acting on a unit volume. This equation may be
written

dM/dt=yM XH.

We now consider the resonance condition for a
general ellipsoid with principal axes parallel to
the x, y, s axes of the coordinate system. The
demagnetizing factors are N„N„, ¹ The static
magnetic field is H„ the r-f field* is H,. The
effective values of the magnetic field components
inside the material are:

(5a)

(5b)

(Sc)

The values H ', H„', H, ' should be used when
substituting for H in Eq. (4). The component
equations of Eq. (4) become

dM,/dt =y[H.+(N„N,)M,jM„;—
dM„/dt =y[M~. (N, —N—,)M,M,

—MjXj (6b)

dM, /dt=0. (6c)

Xo
xs=

1 —(co ais)s

*This convention for the labeling of static and r-f fields
will be followed throughout the present paper. It may be
noted that the gneiss exchange field does not enter into the
problem, since the exchange Geld is parallel to Iand hence
its vector product with I is identically zero. Any aniso-
tropic term in t;he Lorentz local field is lumped in with the
crystalline anisotropy energy, which is treated below. In
the quantum-mechanical treatment the Weiss field does
not enter because the operator Z~;~ commutes with the
exchange interaction term in the Hamiltonian, as Van
Vleck has shown.

On solving these equations with time depend-
ence expDeit j, the susceptibility x,(=M, /H, ) is
found to be
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where
M,

H, +(N. N—.)M.

(c) Infinit Circular Cylinder (N, =N„=2n;
N, =O)

~pp =y(H, +2+M,). (12)

It is seen that, except for the special cases of a
plane and a sphere, Eq. (7) predicts the existence

of a finite resonarice freguericy even for sero static
field. It should however be emphasized at this
point that the ferromagnetic resonance eR'ect

may onIy be conspicuous when the entire speci-
men is magnetized to saturation as a single
domain; otherwise the inhomogeneous magnet-
ization may lead to high damping by eddy
currents. It will commonly be necessary to apply
at least a small static field in order to insure
approximate saturation.

It is clear from the behavior in the general
case just considered that the demagnetizing
fields afkct the resonance condition by changing
the magnetic field energy associated with a given
direction of the magnetization vector.

Some numerical comparisons are given below
iii order to show the importance of the shape
effect. The material considered is iron, for which
llew, =1700; for electron spins y/2m=2. 80 Mc/
oersted.

Zxaniple A H= 1000 oersted.
Plane: fp 13,300 Mc/s——ec.
Sphere: fp = 2,800 Mc/sec.
Cylinder: fp

——32,800 Mc/sec.

H—0.

Plane: fp ——0.
Sphere: fp
Cylinder: fp 30,000 Mc——/sec.

and the resoriance frequency is given by

ar p y}[——H,+(N„N,)—M,7
X[H,+(N, —N, )M,]I**. (9)

We shall consider some special cases of Eq. (9):
(a.) Plane (N. =N, =O; N„=4m)

(10)

(b) Sphere (N, =N„=N, =4v/3)

Figure j. is based on the published data on
ferromagnetic resonance in plane specimens. The
scale of ordinates is the eR'ective g value as
calculated from the observed frequency and mag-
netic field at resonance. The solid points are the
g-values as calculated assuming the ordinary
Larmor resonance condition with JE,

'

as the
effective field. The hollow points are calculated
for the same observations but using (BH)I as
the effective field; it is seen that this assumption
leads to g values very much closer to the value
g=2.00 which obtains for an electron spin. The
values remain slightly high, however; no satis-
factory explanation of the residual deviation has
been put forward.

Figure 2 compares the theoretical resonance
conditions for a plane surface and for a small
sphere. The value of the saturation magnetiza-
tion is taken as for a representative ferrite,
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FLc. 2. Comparison of theoretical resonance conditions
for a p1ane surface and for a small sphere (diameter small
in comparison with eddy current skin depth).

III. EFFECT OF CRYSTALLINE ANISOTROPY
ENERGY ON THE RESONANCE

CONDITION

The energy of ferromagnetic crystals depends
in part on the magnetization direction relative
to the crystal axes; this part of the energy is
called the anisotropy energy. In an uniaxial
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crystal such as cobalt, the major term in the
anisotropy energy may be written

f=E~' sin'8, (13)

where f refers to unit volume of material; 8 is
the angle between the magnetization and the
principal axis of the crystal; Ej' is the first
order anisotropy constant. Similarly in a cubic
crystal

f=Kg(aPag'+o. m'aa +aPag'), (14)

where 0.~, 0.~, n3 are the direction cosines of the
magnetization relative to the cube edges.

The anisotropy energy will in general eRect an
alteration in the resonance condition. In a single
crystal one expects to find that the value of the
magnetic 6eld required for resonance at a. 6xed
frequency mill depend on the direction of the
crystal axes relative to the shape axes of the
specimen. In a polycrystalline specimen the reso-
nance in general will be broader than in a single
crystal of the same material, since the distribu-
tion in direction of the crystal axes causes a
distribution in field strengths for resonance.

It is convenient to consider the eRect of the
anisotropy energy in terms of an equivalent mag-
netic field. ~ The equivalent 6eM H' is de6ned
such that the torque exerted on the specimen by
such a 6eld is equal to the torque exerted by the
anisotropy energy: that is,

8f/88=M. XH (15)

where 8 is a rotation about an axis parallel to the
direction of M, XH'. The vector 8' is not com-

pletely determined by Eg. (15), since either the

magnitude or the direction are still arbitrary. It is
often appropriate to take H' parallel to the x or y
axes of the specimen~* and to express its magni-
tude in terms of an egectise demagnetising factor
¹ de6ned by

The resonance condition is then determined by
adding X,', N„' to the usual demagnetizing
factors in Eq. (9), giving

y I [H——.+(N„+N„'—N, )M,j
X[H.+(N +N' —N,)M.jI &, (17)

as the general condition for resonance in an
ellipsoidal single crystal when the static mag-
netic 6eld H, is along one of the principal axes
of the ellipsoid.

It remains now to determine the values of the
eR'ective demagnetizing factors X ' and N„' for
representative experimental situations.

(a) Uniaxial crystal; H, along axis

8f/88 = 2E~' sin8 cos8 =M, XH'
=N;M, M ~N 'M, 2 sin8, (18)

so that, for angles near 8=0,

N, '= (2K''/M ') .

similarly,
N„' = (2Eg'/M. '). (19b)

The resonance condition for a plane specimen is

1
t 2K, '& f 2E,'l 1»

coo
——y

1
H, +4rrM, + 11 H, + 1

. (20)
M. ( M',

This equation predicts a 6nite limiting frequency
as H—4; in practice a small biasing field will

usually be required in order to eliminate domain
boundary eRects. The possibility of resonance in
the "anisotropy field" was first considered by
Landau and Lifshitz, e for the special case of
uniaxial crystals. Their treatment neglects the
eRects of demagnetizing fields and the eddy
current damping associated with the movement
of domain boundaries.

(b) Cubic crysta/; H„H, along [100jdirections.

and
(16a) In a (100) plane Eq. (14) for the anisotropy

energy reduces to
(16b) f= (Kq/4) sin~28, (21)

~ In general the torque vector resultirig from the ani-
sotropy energy is to be treated directly as an additional
torque in the equations of motion. The artifice of the
eHective field or eR'ective demagnetizing factors is apph-
cable to planes and directions of high symmetry, and is a
convenience in that it often avoids solving the equations
of motion over again for each situation.

~~%'hen ¹'~E„' it may be convenient to consider H'
as parallel to the s axis; see, for example, Eq. (20).

where 8 is the angle between the magnetization
and a $100$ axis. We have

8f/88 =K~ sin 28 cos28 =N; M,2 sin 8; (22)

L. Landau and E. Lifshitz, Physik. Zeits. Sowjetunion
8, 153 {1935);see also J. L. Snoek, Nature 1M, 90 (1947).
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so that for angles near 8 =0,

s1m i lavl y,

Ears' ——(2Kt/Mst)

A'„= (2K,/M. ').

(23a)

(23b)

The results for this orientation are similar to
those worked out above for cobalt. The numerical
value of the effective field in the s-direction is
2Kt/M, 7000 oersted in Co and 500 oersted
in Fe, at room temperature.

(c) Cubic rrysta/; EE„H, atong [Elo] direction s.
Let a=8 —sr/4; then

8f/8s = Kt sin2s c—os2s =X,'M, ' sins, (24)

so that for angles near ~ =0,
A', ' = —(2Kt/M, '); (25a)

the negative sign should be noted. To determine
N„' we write the anisotropy energy as

f'0
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so that
f=Et(,' sin' 28+ n-ss),

Fit-. 3. Comparison of theoretical resonance condition for
(26) L100$ and L110j directions in an Fe-Sl single crystal with

a (001) plane surface.

K,'=2Kt cos 48/M. ', (27a)

A'„'= (2Kt+ stKs sin' 28)/M ' (27b)

where 8 is the angle between the s-axis and the
[100]direction; here we have taken account of

7 F. Bitter, Entroduction to ferromagnetism (Mcoraw-Hill
Book Company, Inc. , New York, 1937), p. 195.

—Bf/88s = 2Kt cos8s stn8s = Et/s~Mg cos8s, (27)

giving, for angles near 8s ——sr/2,

Etr„' = (2Kt/M, ') . (25b)

The difference in sign between X' and X„'
may be confirmed by considering the general
shape of the anisotropy energy surface. An
instructive photograph of a model of the surface
is given by Bitter. ~

A comparison of cases (b) and (c) shows that
the magnetic field required for resonance with a
(100) crystal face is expected to be greater when

H, is in the [110]direction than when H, is in

the [100]direction. The difference AH, is of the
order of 4Kt/M, for H, (&4 Ms. . The theoretical
resonance conditions for [100] and [110]direc-
tions are compared in Fig. 3.

The general expression for the resonance con-
dition in the (001) plane is given by Eq. (17) with

the second-order term X2a&'n22na' in the ani-
sotropy energy.

The discussion has supposed that the static
magnetic field H, is sufficiently large so that the
static magnetization is in the direction of II,. If
this condition is not satisfied, we may under
certain conditions still obtain resonance, but in
the calculations it is then necessary to use as H,
the projection of the static field on the direction
of the static magnetization; also, 8 should be
taken as the angle between the magnetization
and the [100]direction.

Note addedin proof: The predicted dependence
of the resonance condition on angle in the (001)
plane in ion has been verihed approximately by
Kip and Arnold (to be published) and by Yager
(to be published). Kip and Arnold have also
observed at 3 cm wave-length two resonance
peaks for angles near [110]. Qualitatively it
seems that this observation may be explained
by the fact that the resonance condition may
sometimes have two roots if the static field II.
is of the same order of magnitude as Kt/M„so
that the angle between the static 6eld and mag-
netization may be appreciable. The quantitative
treatment of the condition for the appearance of
the second peak is dificult to carry through in
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detail because of uncertainty" as to the actual
domain structure of the crystal in the relevant
range of field strength.

One may treat magnetostrictive energy due to
strains on the same basis as the anisotropy
energy, so that one would expect the resonance
condition to depend on the state of strain of the
material.

IV. FERROMAGNETIC RESONANCE IN THE
PRESENCE OF MACROSCOPIC EDDY

CURRENTS —PLANE SURFACE

The usual measurements and computations
involved in deducing values of the efkctive
permeability pg as a function of the static field

H, are listed below. In the experiments it is
found that pz as determined in this way shows a
well-defined maximum for values of 8 some-
where near the value predicted by Eq. (I).

(a) The cavity Q as a function of H, is de-
termined by means of standing wave
ratio measurements' in a slotted section
of wave guide connecting the r-f power
supply to the resonant cavity.

(b) From the measured Q's and the known

geometry of the cavity one can calcu-
late' (at least approximately) the value
of the "loss factor" (pn p) & for each of the
walls of the cavity separately.

(c) Taking p from d.c. measurements, we are
able to calculate pg vs. H, as desired.

Mention should be made of the connection
between the complex permeability p, =p, ~

—jp2
with which the theory commonly deals and the
efkctive permeability pg which emerges from the
interpretation, as above, of the results of a
resistive type of measurement, such as a cavity
Q measurement. "The resistioe loss from the skin

~' A. von Engel and M. S. Wills, Proc. Roy. Soc. A188,
464 (1947).

8 See, for example, 3. C. Slater, Rev. Mod. Phys. 18, 441
(1946).

OActually the observed Q's do not usually agree very
closely with the values calculated for cases where the
permeability p, is unity and the resistivity p is taken from
d.c. measurements. The resulting uncertainty in p,g {in
cases where this is not unity) does not a6'ect appreciably
the deduced values of the resonance frequency and the
half-width of the resonance. It seems reasonable to require
that gag approach unity as II approaches in6nity, and this
requirement can be invoked as a partial check on the
normalization of p.g.

'o For a more detailed discussion of this point, see C.
Kittel, Phys. Rev. Vo, 281 {1946).

eHect is determined by the imaginary part of the
complex wave number k=k~ —jkg, which de-
scribes the spatial variation of the magnetic
field within a conducting surface according to an
equation of the form II, e &~&=e-~»e &'~». From
the diA'erential equation for eddy currents one
finds

k ( jp) & =—j (p2+j pi) & = (pc'—jets&)—, (28)
V2

where the term on the extreme right may be
viewed as defining the real quantities p, l. and pg.
This definition is consistent with the charac-
teristic properties of pg and pL, .

From Eq. (28) we find the well-known result

ps = (pP+ p2') '+p2,

pc, = (pP+ pa')' p2—
(29a)

(29b)

which is a consequence of Maxwell's equations
for curlE and curia; here p is the resistivity.

If p. is real, pg ——p, L, ——p.
By a Q measurement only ps is determined;

p, l, is the effective permeability for an inductive
measurement and may be determined from the
shift in resonance frequency of the cavity —this
is a far more dificult determination than an
ordinary Q measurement.

The above discussion enables one to interpret
the results of theoretical derivations for uni-
formly magnetized specimens —uniform with re-
spect to both static and r-f components of
magnetization —in terms of the experimental
situation, which in normal ferromagnetic con-
ductors involves the non-uniform r-f magnet-
ization associated with eddy currents.

Because the argument may seem somewhat
devious, it is intended below to treat the rnatter
in a more direct way. In particular it will emerge
clearly that, when the results of an experiment
are properly interpreted, the usual eddy current
tosses do not as suck introduce damping terms into
tke expression for the permeability.

In addition to Eq. (4) we must consider the
relation between M and H given by the eddy
current equation:

t'dH dMi
|7'H = (4~/pc')

i
+4m

(dt d»



0 jco
—yM, yH,

(jp'+k') i4~p'

—vB
j(u =0.
0

(32)

The determinantal equation reduces to

POCOy
—03

ko= jpo-
cu' —a)o'

(33)

coo y(B,/H, )-—& (34)

iso =B./H, .
Now the ordinary eddy current equation for

permeability pg leads to

k'= —jiisP',

which is identical with Eq. (33) if we set

i =Os=(~o'i o
—~')/(~o' —~').

The susceptibility y is therefore

(36)

(37)

x.=xo/L1 —(~/~o)'j, (38)

with xo=M„g/H, and ooo=y(BjV,)i. This result
is identical with that derived in the earlier
paper, ' where eddy currents were not considered
explicitly; we may therefore conclude that the
macroscopic eddy current losses do not enter in
the expression for the susceptibility.

'1 It is assumed here that the specimen is a thin phne
sheet, so that we may neglect demagnetuing corrections to
the 6eM H,.

For a plane surface the components of H are
(H„—4orMo, H,). Here H is the r-f field; H, is
the static field P H„= —4sMo as a consequence
of the demagnetization factor NN =4~.

Neglecting products of small quantities, Eqs.
(4) and (30) reduce to the following, where we
have assumed solutions of the form H„M„M„

exp+(oot —ky) j:
j (AM yB,M—„=0, (31a)

j(oM„—y(M~. MH, ) =—0, (31b)

(jP'+k')H +j 4mP'M. =0. (31c)

Here p'=4orcu/pco. The set of three homogeneous
linear equations in the three unknown H, M„M„
has a non-trivial solution if the determinant

It is of interest to consider the form of the
orbit described by the magnetization vector.
Equation (31a) shows that M, and M, differ in
phase by s /2 and I M I / I M I

=TB /oo The orbit
is therefore an ellipse; at resonance the ratio of
the principal axes is (B,/H. ) &, with the long axis
parallel to the plane surface of the specimen and
the short axis normal to the surface.

V. CONCLUSION

The results of this paper predict several new
efITects which have not as yet been reported
experimentally. The resonance condition is ex-
pected to depend on the shape of the specimen,
and, in the case of a single crystal, also on the
orientation of the crystal. It may be possible to
test the predicted shape dependence using ferro-
magnetic semi-conducting materials, such as the
ferrites.

The considerations given here throw no light
on the anomalous g value of 2.17 reported by
Yager and Bozorth~ using a Supermalloy speci-
men, since the anisotropy and magnetostriction
of this material are very low. The quantum
mechanical treatment by Van Vleck also does
not account for this anomaly, since his treatment
leads to the usual resonance condition,

In connection with relaxation or damping
eHects, it may be remarked in passing that the
failure' of the relaxation term —X(M —xoa) pro-
posed previously' is not particularly alarming in
the absence of a detailed physical description
of the relaxation process. The basis for the above
term is purely formal, and the term could have
been written —VL(M/xo) —H], which will fit
the data of Yager and Bozorth in a satisfactory
manner.

I am indebted to Professor J. H. Van Vleck
for a discussion of the quantum-mechanical
treatment of the problem, and to W. A. Yager
for discussions of the efkct of various relaxation
terms. Part of the work reported here was done
at the Massachusetts Institute of Technology
during the tenure of a fellowship of the John
Simon Guggenheim Memorial Foundation. I wish
to thank Professor J. C. Slater and Professor
J. A. Stratton for their hospitality, and the
trustees of the Foundation for 6nancial support.


