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Resonance Reactions Involving Dirac-Type Incident Particles

G. GOERTZEL

Oak Ridge NaIiona/ Laboratory, Oak Ridge, Tennessee
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An investigation has been made to determine whether the results of Wigner and Eisenbud
can be extended to include the scattering of a particle which obeys a Dirac-type wave equation.
lt is found that no additional difficulties arise as a result of the use of Dirac particles, and
that the treatment of Nigner and Fisenbud can be carried through step by step with relatively
minor changes.

In order to carry out this program, however, it was necessary to determine the appropriate
relativistic boundary conditions to be satisfied by the external and internal wave functions
at the boundary of the internal region. It is hoped that a comparison of the relativistic and
non-relativistic boundary conditions will lead to a clearer understanding of the boundary
conditions in the non-relativistic problem.

HE present discussion attempts to show
how the treatment of resonance reactions

given by VA'gner and Eisenbud' may be extended
to include the scattering cross section (elastic
and inelastic) of a neutron obeying a Dirac-type
wave function incident on a nucleus of zero spin.
The development and notation used in this
discussion mill closely parallel that of reference 1,
xvhich mi11 be referred to as A.

As in A, functions F,(r„Q,)P,(i„) are defined
such that in the external region the most general
solutions of the quantum-mechanical equations
with a definite energy are linear combinations of
these functions. The I', is a solution of a Dirac-
type leave equation where' 3I is the relative
mass of the neutron and nucleus.

[~~rL!sljrn]r =as [Usljm] = r&ns

may be defined.
The Eqs. (2) do not completely specify the

four-component wave functions 'U and S. This
may be done by using the additional condition

%here 6 is a parameter at our disposal. 8 Blay
depend on e„l, and j but not on the energy,
and n„ is the radial component of e.'

The R matrix is defined in a manner similar
to that of A: (compare A (13)).
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0 slim ~st jm +Q + l Uss!s'!'sm.

{ce p+PMc'+F. }F,(r„n,) =0,

dsP!"'[(1+P)/2](1 isa, )X),&—„——0. (4)

(1) R is a real matrix. Now one considers those
solutions Xq; of the quantum-mechanical equa-

p = —zhV',
tions in the internal region which satisfy bound-

& and 'U type wave functions similar to A (9) but ary conditions similar to the 'U, !~.That is,

tisfying (1) and the boundary conditions

S sg~+s)jygdS= 1& (2a)

In A the next step is to apply Green's theorem
to the X~„and q, ~„. For the present work the
following relation is equivalent to Green's
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where 6' and y are, respectively, the polar and azimuthal
angles.
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theorem Xj+Q j.m

J
d V[%'*II' (H—%)~yj =i

~
d5%'dacha„y, (5)

where S is the bounding surface of the volume
V and H is the operator iche V' added to any
function of the space and spin coordinates. cr„ is
the component of I along the outward normal to
S. An application of (5) to s, t~ and X~~ yields,
since the Xq~ and 'U, i~ on the surface r =c, are
orthogonal to the S,i~,

It is convenient to use the 0, matrix

( cos8 single 'f~y

(single'" —cos8 )

and note that

(12)

—ch dSX),j *'U,gj„,
T =Os

V~ is the spherical harmonic normalized to
unity.

Incident and emergent waves are then defined= (F. Eg) d—IXg;„*p, i...= —(d~) 1y~;i, (6).as

'I he last relation defines the energy-independent
real quantities y. One may also write for the
internal region

Ps ljm 2X A s IjXXXjun rt

whence (6) gives

A „;x (c&)*'[yx.&~/——(Ex—E)j.

(7)

1 e'~"
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Since y, ~~ must be continuous at the surfare
r =a, one has further, on 5,

where
Xt jm.

If both sides are multiplied by 'U, ~ j and
grated over the surface S one obtains

k.=P,/II„e, =P,c'/(E, +3Ic')
(9)

One then may further define the quantities A,
B, and co by specifying the asymptotic behavior
of the S's and 'U's in terms of the I's and 8's.

i(c/2) &[A,(;I,(, A, (,*E,()~], — (14a)
+~ ['y ~ "r *' '/(E E)j (10) + . ( /2)1@3 . .*I . ++ . @ . j (1

This is the present result for the R matrix and
is identical in form, despite the different wave
equation used, with A (23).

The relation between the R matrix and the
collision matrix may now be determined. To do
this it is necessary to specify the form of the
wave functions in the external region. Define

Since S,~~ and 'U, ~~ both satisfy (1),

dS U s)jpg s&r1,

$s)jets

is a constant for any surface S including the
origin, and this constant is seen to be equal to
—1 for the surface r =u, (from (2)). Hence,

~

[9+m)/2i j'
([(j-m)/2jj:

' A derivation of (5) is given in the Appendix.

(11a)
so that one may also write

Ba)A =1—iC, (16)
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TABLE I.
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where C is a real diagonal matrix. Now

(j)
0 ele'ee +el jee+ 2 Rel. e' v U el jm

gl ll

= (c/2) & Q I (iA+RBco*),c...c.I;).;
s'l'

+( iA+—RBco)c,, c E,.c.,„I.
Hence, a solution of the quantum-mechanical

equation in which only one incident beam occurs
may be written

(c/2)'I. ce +(c!2)'2 [(RB~*+iA) '
gill

X(RB~—iA*)],c,E, , ~,

so that the collision matrix becomes

Uec, e c
= —[(RB(u*+sA) '( RB(o cA*)—), c„,.c. ,

=[a(1 iBRB iC—) '—
X (1+iBRB+iC)co],c, c . (17)

The wave function for a collision experiment
is obtained in the usual manner in terms of the
U. In fact, a plane wave representing a particle
of type s moving along the s axis, with j,=-'„ is
given by

+., 1= (v'~/k. ) 2 [I(l+1)'E.. c, I+„,
0

+V'i E.. c. c-L1—(—)'l (l+1)'I; c, c+:, .
+pl I, & c;;I], (18)

so that a continuable solution with the same
incident waves as (18) is given by

(l+))4',
, ;+(Qer/k, ) Q f(l+1)&[(—)'Uec, e c

l, g', l'
(~—g)—8,c,.g.)E, , ,+;, ;+v'l[( —) 'U, c, , &

b,c, c)E„. c.c c &;I—. (19)

Expressions for the various differential cross
sections may be obtained from (19).

The values of B, co, C as calculated for j=~~
are given in Table I. Note that they contain the
energy independent, but otherwise arbitrary,
parameters 8 and b'.

The results as given in Table I appear rela-
tively complicated. Nonetheless, for j=~~, /=1,
the choice 8'=0 gives results no more complex
than the non-relativistic formalism. For j=-,',
l =0, the complication is not so easily removed.
However, one must, of course, be able to reduce
the present result to the non-relativistic for low

energy particles.
The low energy form of the present results is

discussed below. For j=2, l= j., b'=0

B . c, := —(~./c)'
4 g es

g, 1, s

C,, c. ;———(1/k, a,) .

These results agree with those found in reference
1 for /= j., except for the B. However, the sign
of 8 is immaterial and in the low energy limit

B,, 1
—[-', (k/3fc)]&k, '*,

which, except for a diR'erence in normalization,
agrees also with reference 1.

For j=2, 1=0, one writes

—0 = —,
' (k/Mc) /cc,

and neglects [~~(k/Sic) k,)' with respect to unity,
to 6nd, with X,=k~„
B.. 0.:= —[2(&/~c))'k. '*[(1+&'x.')/(1+ ~') ]'

, o1exp i (X, a—rc tan—b'X,),

C,, p, )=84X,.

In addition, one will usually have k~, & j. , 6'&&1,
so that

B,, o, 1= [-,'(k/11') g&k-
co,, p, ~=exp —iX,

~ Xgs



which differs from reference 1 primarily in the
non-zero C.

The formal discussion given by Kigner and
Fisenbud' for the generalized one-level formula
may be taken over in toto. We list here for
convenience, in the limit where [$(k/Mc)k, j'- is

neglected in respect to uniti, the partial widths
and energy shifts.

h k. 1+iVx,',
I X, 8, 0, ~8 +)t, 80'

Mc 1+5'y, " 1+8'
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APPENDIX: DERIVATION OF EQ. (5)

If H=icke V+Q and + and y are four-
component wave functions regular on the in-
terior and surface of a volume V, and if Q is an

operator such that +*(Qp) = (Q+)*p, then

dr(+*JIp (II% )—*p)

80)g5X8I$, 80
2

~8X8+X, 8, 1, $

I )t, g, 1, )
31c 1+y '

dr(%'*ickn Vp —(icka. V%')*qr)

=
~l drtck[4 c V p+ (Q' ~ V4)

=ick t d7V (+*ay)

I am greatly indebted to Mr. E. P. signer
for suggesting this problem and for many helpful
discussions. I also wish to thank Dr. AI, E.
Rose for many valuable discussions. This docu-
ment is based on work performed under Contract

where a„ is the component of e along the outward
normal to s.


