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cipitate was washed with 1 percent oxalic acid
solution, dried, and ignited at 800-1000°C. The
product weighed 74 mg and consisted of CaO
and practically the entire quantity (2 mg) of
Scs03. The calcium was added as a carrier to
assure complete recovery of the radioactive
scandium.

By this procedure it was intended to obtain
scandium free of radioactive phosphorus, cal-
cium, and iron.

APPENDIX II: CHEMICAL PROCEDURE FOR
TITANIUM

Chemically pure TiO, was irradiated by
neutrons in the pile. The titanium dioxide was
fused in platinum with ten times its weight of
sodium carbonate. The melt was then boiled
with water and filtered. The insoluble residue of
titania was well washed with boiling water, and
the filtrate and washings were rejected. This
procedure should have removed phosphorus and
part of any scandium impurity. The partly
purified titania was then fused in platinum with
potassium acid sulfate, and the melt was dis-
solved in cold 6 N — H.SO,. Orthotitanic acid was
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precipitated, at room temperature, with dilute
ammonium hydroxide. The precipitate was dis-
solved in concentrated HCl and the solution
diluted to 2N. One volume of saturated oxalic
acid solution was added to three volumes of the
warm solution. After standing four hours, a
trace of precipitate, which may have been cal-
cium or scandium oxalate, was filtered out.

The filtrate was again made ammoniacal, and
the orthotitanic acid precipitate was filtered out,
washed, and dissolved in HCI. After dilution to
2N, sufficient tartaric acid was added to prevent
precipitation of titanium. The solution was
neutralized with ammonia, made about 0.3V in
H,SO,, and saturated with H,S. Ammonia was
added in decided excess, and the solution was
again saturated with H,S. The precipitate, prob-
ably iron and platinum sulfides, was filtered out.
The filtrate, made strongly acid with H,SOy,
was boiled to expel H.S, diluted, and cooled. The
titanium was precipitated with a 4 percent
solution of cupferron added in excess, and the
precipitate was ignited to TiO,. The procedure
outlined gave a sample of TiO, free of phosphorus,
scandium, calcium, and iron.

PHYSICAL REVIEW VOLUME 73, NUMBER 2 JANUARY 15, 19438
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The previous investigation of the dispersion of long waves in the atmosphere has been
extended to shorter periods of the order of one minute. Both the phase velocity and group
velocity have been determined. The results are applied to the interpretation of the pressure
wave produced by the Great Siberian Meteor and to the pressure oscillations recorded by

microbarographs in England.

1. INTRODUCTION AND SUMMARY

F()R the purpose of interpreting the observed
features of the pressure wave produced by
the explosion of the Great Siberian Meteor in
1908,! the previous investigation by the author?

* This work was carried out while the writer served as
consultant to project N6-ori-139, task order # 1, sponsored
by the O.N.R.

1F. J. W. Whipple, Q. J. Roy. Meteor. Soc. 56, 287 (1930).

2 C. L. Pekeris, Proc. Roy. Soc. A171, 434 (1939); this
paper will be referred to as 1.

of the dispersion of long waves in the atmosphere
(Krakatoa wave, period of one hour) has been
extended to shorter periods of the order of a
minute. Two model atmospheres have been
treated, one (@) having a finite height in which
the temperature gradient is constant and equal
to 7/11 of the adiabatic, and another (5) in which
the same temperature gradient prevails in the
troposphere, but a constant temperature is
assumed above 10.3 km. The variation of phase
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velocity with period in model ¢ was studied by
Solberg,® while G. I. Taylor* first gave the
limiting value of the phase velocity at long waves
for the more realistic model 4. In this study both
the phase velocity and group velocity have been
determined. It is found (see Fig. 1) that in
model a there exists, in addition to the oscillation
studied by Solberg (I), a second type of oscilla-
tion (II) which is limited to periods less than the
free period of the atmosphere for purely vertical
oscillation (3.5 minutes). In this type II of oscil-
lation the group velocity passes through a
maximum, equal to 0.64 of the value of the
sound velocity at the ground, at a period of
about 2.5 minutes. No type II oscillation was
found in model . However, it turns out that in
b the free oscillation of type I exists only for
periods greater than 2 minutes. Shorter periods
are not propagated freely without horizontal
attenuation, essentially because they leak out
vertically to space.

A steady-state solution is obtained for the
oscillation of atmosphere b when excited by a
point source situated at the ground, in which the
vertical velocity w varies with time like e¥®, It is
found that at large distances from the source the
resulting pressure oscillation at the ground has a
relative maximum at a period of about 4 minutes,
tending to zero both at very long periods and at
the cut-off period (see curve A, Fig. 2). When this
steady-state solution is used to determine the
oscillation excited by an #mpulsive point source,
in which the spectrum of w is uniform, the higher
dispersion at the shorter periods results in an
excitation which starts from zero at the cut-off
period and increases in a monotone fashion
towards the longer periods.

On the other hand, if the pulse is such that the
pressure variation at the source has a uniform
spectrum, the excitation is a maximum at a
period equal to Brunt’s period for the vertical
oscillation of a particle near the ground, i.e., 9.5
minutes. These results are applied to the inter-
pretation of the pressure wave produced by the
Great Siberian Meteor and to pressure oscilla-
tions recorded by microbarographs in England.

* H. Solberg, Astrophys. Norvegica 2, 123 (1936).

¢ G. 1. Taylor, Proc. Roy. Soc. A126 728 (1929); H
Lamb, Hydrodynamics (Cambridge Umverslty Press, Ted-
dmgton, England, 1932), p. 541.
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2. THEORY OF ATMOSPHERIC OSCILLATIONS

The theory of atmospheric oscillations dates
back to Laplace,® but Lamb® was the first to
develop it without making restrictive assump-
tions about the physical processes involved. Since
we shall be interested in periods ranging from a
minute to about an hour, we may neglect the
stabilizing effects arising from the earth’s rota-
tion which become significant only at periods of
the order of a day.” We shall, therefore, confine
the discussion to the oscillations of a horizontally
stratified atmosphere resting on a flat ground
when disturbed from static equilibrium. If the
positive direction of the 2z axis be taken down-
wards, the pressure distribution in the equilib-
rium state is given by

(dpo/dz) =gpo, po=Rp.T, 1

pofe) = pol) exp[—<g/R> [ @)

o @)
po(2) = po(20) (To/ T) exp[-<g/R> [ (dz/:m].
Upon this equilibrium state we superimpose

small oscillations which are governed by the
equations of motion and continuity :

u ap av ap ow ap
po—=——, por—=——, po—=——=gp, (3)
at dx 8t 8y ot 9z
dp dpo ou Jdv OJw
—tw—=—px, x=—+—+—, (@)
at 9z dx dy oz’

p and p denoting perturbations from equi-
librium values. The adiabatic energy equation,

Dt 2 po/pe=yRTe  (5)
=c c?=vpo/po=vRT,
Dt Dt B0/ b0 ’

yields the fifth equation for the determination
of the five variables (%, v, w, p, p):

ap
gt--l-gpow = —vpox. (6)

s Laplaoe, Mém ue Céleste, vare 4, Chap. 5 (1845).
Lamb, rodynamics (Cam nd%e University
Press, Teddin ton, England, 1932), p. S Proc. Roy.
Soc. A84, 552 (1910); Proc. Lond. Math. Soc. 7 122 (1909)
71n the case of long riod oscillations G. I. Taylor has
shown that the effect o the earth’s rotation can be taken
into account in the manner used in the theory of oceanic
tides. Proc. Roy. Soc. A156, 378 (1936).
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Eliminating p and p, we get

0% 9 0% 9
——=—(ctx+gw), —=—(*x+gw), (7)
o ox oy

dw 9 dc?
—~=—(62x+gW)+[(7—1)g——]x- ®)
a2 9z dz

Let the dependence on time and on 7(= (x2+5?)})
be given by a factor e®tJo(kr), then the above
equations yield

A+ (@ +vg)x+[o?—kH(Q/0*) Ix =0,
@=gé+d—(v—Dg, (9)

dw=o’c*x+(gva* —gk’c)x, o=g%k*—d*, (10)
6p =1apol ge*x+ (vg2—o%?)x], or
p=(ipo/0)(gw+c*x), (11)

where the dots denote differentiation with
respect to z.

In order to bring out the contrast with the
laws of propagation of acoustic vibrations
(e— ), where the motion is irrotational and is

derivable from a velocity potential o,

V= _V¢r p=p0(a‘p/at)v
Vo= (1/c?)d%e/3t2, (12)
we write in (7) and (8)
gw—+ctx=—08%/d?, u=—0¢/dx,
v=—0¢/dy, p=pidp/dt, (13)
and find that
w=—(d¢/32)+A4,
A=[&—(v—1)gl(c*e+ge)/Q, (14)
Qe+ (yo'g QP —a*2Q) ¢
+[ —_ Q4k2g2+Qéa.4+.Yo.4g2Q2
—atQt— '@t e/g =0, (15)

The motion is now rotational, as evidenced by
the A term in (14). This arises from the fact that,
whereas when an air particle is displaced hori-
zontally it is restrained only by elastic forces,
when it is displaced vertically an additional force
stemming from the vertical stable stratification
comes into play. When a particle is displaced
adiabatically upwards, its temperature drops in
dry air at the rate of about 10° per km., the
so-called dry-adiabatic lapse rate. On the other
hand, the normal temperature gradient in the
atmosphere is only about 0.6 of the adiabatic.
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Hence the particle is cooler than the surrounding
air at the new elevation, and is therefore pulled
down to its original position by a force which is
initially proportional to the displacement. The
period of free vertical oscillation of an individual
air particle was shown by Brunt® to be deter-
mined from

o’ct=(y—1)g’—g&; Q=0. (16)

Only when the actual temperature gradient is
equal to the adiabatic is the right-hand side of
(16) equal to zero, and only then do the atmos-
pheric oscillations become strictly isotropic. In
the acoustic limit (d¢/3z)~(27/\)ep, whereas

Ao (/ct) —g(v—1)/c]
~o(1/T)(@dT/dz)~¢ 1077 cm™.

A is then of the order of 10~* smaller than (d¢/9z).
To the same degree of approximation Egs. (9)
and (15) then reduce to the acoustic wave Eq.
(12). On the other hand, at periods of several
minutes, in which we shall be interested in this
study, the motion deviates radically from acous-
tic isotropy, especially near Brunt's resonant
period, where Q in (9) and (15) passes through
zero.

For future reference we shall point out here
that Eq. (9) can be reduced by the substitution

20 /o2 RT,
u= f (—)dZ, Ho = ,
c? g

H

ct 1 de2 (y—1)c?
a=[ ST ] an
604 'YH()G'2 du 72H020'2
to
x=exp(u/2Ho)¥(u),

a%y 1 a%c?
T | T
du? 4H®  co*

3. FREE OSCILLATIONS OF AN ATMOSPHERE
WITH CONSTANT TEMPERATURE

In addition to the anisotropic effects men-
tioned above, arising from the vertical stability,
the atmosphere has free modes of oscillation that
are analogous to Rayleigh waves. The nature of
these can best be illustrated in the simple case
of an atmosphere in which the temperature is
uniform at all heights. In the case of a liquid

8 D. Brunt, Q. J. Roy. Meteor. Soc. 53, 30 (1927).
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half-space of constant sound velocity, say an
ocean of infinite depth, the field produced by a
point source situated at some depth can be repre-
sented by two spherical waves emanating from
the source and from its image (negative) in the
surface. When the half space is rigid, Rayleigh?
has shown that the source excites, in addition,
a free surface wave whose energy decreases ex-
ponentially with depth, and which spreads out
cylindrically. Two types of surface waves of this
nature can be propagated in the atmosphere.
These, of course, have not the same physical
origin as Rayleigh’s waves, since the rigidity of
the air is zero.

It will be convenient in this section to take the
positive z axis upwards. Equations (9) and (10)
reduce in our case to

X —vex+[o* =K+ k(v —1)g*/a* Ix =0,
(€ — o)yw =0+ (k' —gyo?)x = 0.

(19)
(20)

We also have for the distribution of normal
density with height

po(2) = po(0) exp(—2/Ho),

Ho=(RTo/g) = (c/12). (21)

Assuming
x =4 -exp(\z+1iof —ikx), (22)
we get from (19)

vg

A=——y,
2¢?
gt o® gk (y—1)7
LR Ly
4¢t 2 a¥c?

where p is to be taken positive. The choice of the
negative sign in front of u was made in order to
assure that the kinetic energy of wave motion
integrated over a column of the atmosphere is
finite. The kinetic energy density, which is pro-
portional to po(2)x?, varies then like exp(— 2uz).
In the other solution with the positive sign in
front of u, this quantity is proportional to
exp(2uz). Now a free oscillation is possible if w
vanishes at the ground, or from (20)
vg gk

RN
9 Lord Rayleigh, Sci. Pap. 2, 441 (1900); H. Lamb, Phil.

Trans. Roy. Soc. A203, 1 (1904); C. L. Pekeris, Proc. Nat.
Acad. Sci. 26, 433 (1940).

(24)
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Substituting in (23), we obtain a relation between
o and k which determines the speed of propaga-
tion V(=o/k) of the free waves and the group
velocity U(=do/dk) as functions of the fre-
quency o. This relation has two roots corre-
sponding to two possible types of free oscillation :

I. k=q/c, V=U=¢, u=g2—%)/2c,
A=(y—1)g/c*, (29)
II. k=d/g, V=(g/a), U=3V,
o g vg o?
p=———y A=s———. (26)
g 2 2 g

While oscillation I can exist at all frequencies, in
oscillation II only frequencies above a critical
value can be propagated :

II. o®>ol=ng%/2c% k>1/2H,,

U<c/(2v)1

When Eq. (27) is violated, no root of (23) and
(24) belonging to class II exists which yields an
integrable wave energy in an atmospheric column.
As o¢—0. the energy content per atmospheric
column grows indefinitely, so that it becomes
increasingly difficult to excite the oscillation
near o,.

In the next section, when dealing with an
atmosphere having a constant temperature in
the stratosphere, we shall also find a cut-off
frequency conditioned by the vanishing of u.
Then, however, frequencies less than the cut-off
frequency are disallowed.

It should be noted that because the dependence
on z is represented by a single exponential term,
the condition of the vanishing of w at the ground
makes it vanish at all heights. In an atmosphere
of constant temperature the free oscillations
manifest themselves only by horizontal motion %
and by a pressure oscillation p,

(27)

u=(itkc*/a®)x, p=(ipsc*/c¥)x, w=0. (28)
Had we assumed a factor
Hoy®(kr)—(2/nkr)} exp(—ikr+ir/4), (29)

instead of exp(—zkx) in (22), the displacement
would have been in the r-direction, and the am-
plitude would have decreased like r—%.
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4. FREE OSCILLATIONS OF AN ATMOSPHERE
HAVING A CONSTANT TEMPERATURE GRA-
DIENT IN THE TROPOSPHERE AND A CON-
STANT TEMPERATURE IN THE STRATO-
SPHERE (MODEL b)

With the z axis pointing downwards, let in the
troposphere

I'=Bz, m=—1+4(g/RB), t=vgz/(m+1). (30)
Write
r=0%/gk, x=2kz,
(m+1)7
2a=[—-2—m+
Y
1 % (7—1)(m+1)]’ 31)
T Y7
then Eq. (9) reduces to
d%*x dx x m
st D+ (et a0, ()
whose solution is
x =€ *2[ A F1(x) +Bx~1""Fy(x) ],
Fi=F(—a, m+2,x);
Fy=F(—a—1—m, —m, x), (33)
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provided m is not an integer. The condition of
the vanishing of w at the ground (x=x,) yields

B xo"tm[F1(x0) — N F1(x0) ]

A {[N+(1+m)/xo]Fa(x0) — Fa(xo) }“1

1 1 (m+1)
N= *( 1 +-—) ——. (34)
2 T Xo
In the stratosphere (x <x:)
c*=vygx1/2k(m+1), x=De, (35)
A (m+1) %2
—=— { 1 —[ 14
2k 2x, (m+1)2

2x17 2(v—1)x?
— - ]} (36)
y(m+1) yr(m+1)

At the tropopause (x=x;) we must have con-
tinuity of the perturbation pressure p and of w.
From (10) and (11) it follows that both x and x
must be continuous, and therefore also x/x.
Equating x/x obtained from (33) and (35), we
arrive at a relation which determines o (k) :

’ __Fl(xl) +(B/A)xr [ Fa(x1) — (1++m) Fa(x1) /1] 1

[Fi(x1) +(B/A)xr™ ™ Fa(x1) ]

+(m+1){1_[14

2x1

Here (B/A) is determined from (34) and
(x1/%0) = (Ts/T0), (38)

where T, denotes the temperature in the stratos-
phere, and T, the temperature at the ground.
For a given value of « one computes 7 from (31)
and then finds such a value of x, (and with it of
x1) that (37) is satisfied. Having obtained x, as
a function of «, the frequency o and associated
phase velocity V and group velocity U can be
determined from

[ g7%0 ]‘ v (21(m+1))*
= ZHo(m-'-l) ’ Co— YXo '
U (2m+2)i d(7x0)}

o dxo

(39)

Co Y

2

x12 2x1T

=0.

2(y— l)xl]*]

} — — 37
(m+1)2 y(m+1) yr(m+1)

It should be noted that for a given «, Eq. (31)
yields two values of 7:

Y(2+2a+m) [v(2+2a+m)?
T 2(mt1) [ 4(m+1)°
¥
(m+1)
='y(2 +2a+m) _[72(2 +2a+m)?
2(m+1) 4(m+1)?
v
(m+1)

+

i
+1—7] ’ (40)

3

both of which are relevant to the dispersion rela-
tion. The limiting values for long wave-lengths
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(Lamb, Taylor, Pekeris) arise from 7, At
moderate wave-lengths, 7; is replaced on this
branch by r; after a value of « is passed at which
the radical in (41) vanishes. In model ¢ atmos-
phere, however, there is, in addition, another
branch of ¢(k) which arises entirely from 7.

In the model @ atmosphere in which the tropos-
pheric temperature gradient is assumed to extend
also into the stratosphere (x;=0), the solution
(33) for x cannot contain the B term. Hence it
follows from (34) that the frequency relation is
given by

1 1
Fl(xo) —[—(1+—) -

2 T
One branch of the solution of (42) was studied
by Solberg® for several integral values of m
(temperature gradients). We have evaluated

this branch for the case m=4.5, 8=(7/11)Baa,
and the resulting phase velocity V and group

(m+1)
Xo

10 20 30 40 5060 80 l00

U in atmospheres @ (I+1I) and b (III). co=sound velocity

%round. In model a, 8= (7/11)Ba4, m=4.5, To=288°K, Hy=8.43 km. In model b, B=(7/11)B.q in troposphere,

velocity U are shown as functions of the period
P by the curves I in Fig. 1. There exists another
type of oscillation, labelled I7 in Fig. 1, which
can exist only at periods less than 3.5 minutes.
The latter is the free period of the atmosphere
for purely vertical oscillation (k=0), a general
formula for which was given by Lamb® for a
model a atmosphere. In the limit of long wave-
lengths (k—0), the motion in oscillation I is
mainly horizontal (w~~kx), while in I the oscil-
lation of individual particles is mainly in the
vertical direction as in stellar pulsation. In the
case of an atmosphere of constant temperature,
discussed in the previous section, (V/c,) and
(U/co) of branch I are both equal to 1 for all
periods, while in branch I7 they increase propor-
tionately to the period from zero at P=0, and
then terminate at the critical period.

The dispersion curves for model b, as obtained
from (37), are shown by curves III in Fig. 1.
These terminate at a period of two minutes. For
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shorter periods the radical in (36) and (37)
becomes imaginary and free waves do not exist.
We note that at P=2, V is about 2 percent
above c1, the sound velocity in the stratosphere,
while U is about 2 percent less than ¢;. The
limiting value of U and V for long periods is 4
percent above ¢, and 8.5 percent below ¢o. It is
clear that the cut-off period arises from the fact
that in contrast to atmosphere a, the temperature
in the stratosphere of atmosphere b is too high to
allow the propagation (trapping) of slow-speed,
short-period waves. It is therefore probable that
other model atmospheres having a finite tem-
perature minimum in the stratosphere would also
exhibit a short period cut-off.

5. EXCITATION OF THE FREE OSCILLATION OF
ATMOSPHERE b BY A POINT SOURCE SITU-
ATED AT THE GROUND IN WHICH w HAS A
UNIFORM SPECTRUM

The fact that the cut-off period of model b
occurs when the radical in (37) vanishes, shows
that at the cut-off the wave energy in the free
oscillation per column of the atmosphere is
infinite. This suggests a vanishing normalization
factor, i.e., a difficulty in exciting periods near
the cut-off. In order to investigate this point
quantitatively, with a view of application to the
pressure wave produced by the North Siberian

Meteor, we shall determine first the relative

amplitudes of the pressure oscillation excited by

a point source situated at the ground, in which w

varies with time like e**. Such an investigation

was carried out by the writer for long periods in
connection with the interpretation of the

Krakatoa wave.? There, a w-point source sug-

gested itself by the nature of the volcanic erup-

tion, and the problem was to determine the
relative excitation of two modes at the same fre-
quency. In this case of the question of relative
excitation of various periods in the same mode,
the nature of the point source is important. One
obtains a different answer if the comparison is
made on the basis of a uniform spectrum of the

pressure oscillation at the point source, i.e., a

p-source.

Referring to Egs. (9) and (10), we seek a solu-
tion of the form

x(z, 7, t) =e""‘fﬁ A(k,0)K(z, 0, k)
0

X Jo(kr)kdk, (43)
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where, by (9),

K+ (& +ve)K+[0*—k(Q/a?)JK =0. (44)

The function A(k, o) has to be chosen so as to
satisfy the boundary conditions at the ground
and at the point source. Since the point source is
at the ground, w must be zero except at the
source where we shall assume it to become
integrably infinite. Such a discontinuous function
can be represented by the discontinuous integral

w(0, 7, ) =ei"‘f Jo(kr)kdk. (45)
0

With the aid of (10) one obtains
x(z,7,0) = ¢! f To(kP)K (2, o, k) kdk/ W (k, o), (46)
0

Wk, o) =[1/(g%k*—q*) |
[oc*x+(gvo* —gk®c?) x Jemo.  (47)

At points outside of the source, where w is
zero, we get from (11)

(0, 7, £) = (ipoce?/ o) et f Tokr)
0

XK(0, g, k)kdk/W(k, g). (48)

The integral in (48) can be evaluated by the
residue method at the zeros of W, which yield
the various modes of free oscillation. The con-
tribution from the first mode can be shown to be
given at large ranges » by

| i
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F1G. 2. Relative excitation of atmpsphere b by a w-point
source situated at the ground. 4 =steady-state solution;
B =solution for an impulsive point source (including effect
of dispersion).

10 H. Lamb, Phil. Trans. Roy. Soc. A203, 1 (1904); C. L.
Pekeris, J. Acous. Soc. Am. 18, 295 (1946); see also refer-
ence 2.
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poco® f2k1\ ¥ . 3r
20,7, 5)— (-—-) exp(wt—iklr-l—t—‘—l—)

20 \ mr

K(Of kly d)
—. (49)
(0 W/ok)

Using the notation of (30) and (31) and putting

. 144 27 [ldxl(m—}—l) 1]
-Coz'K_(1—1'2)|_x dx[ Xo 2T

» (50)

z=20

we find that

p(0, 7, t) =Ar—t exp(iat —tkir +137/4)

X[(r)¥R/3xT. (51)
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The quantity [(7)*dR/dx]™, giving the rela-
tive excitation of the various frequencies in the
pressure oscillation by a w-point source, is shown
for atmosphere b by curve 4 of Fig. 2. As ex-
pected, it vanishes at the cut-off frequency. This
curve applies only to the steady-state solution.
For an impulsive excitation, such as the ex-
plosion of the Great Siberian Meteor was, one
must take into account the additional weakening
of the amplitude with increasing range because
of the stretching of the wave by dispersion. This
dispersive stretching introduces an additional
factor [7(d*k/de?) ]~ into (51). It arises from the
evaluation of a o-integral over (49) at the point
of stationary phase of the exponential term.
This factor, which is inversely proportional to
the square root of the slope of the (U/co) curve
IIT in Fig. 1, favors the short periods over the
long ones. As a result, a relative excitation of
atmosphere b by an impulsive w-point source, as
shown by curve B in Fig. 2, is obtained. While
this curve would fit the Krakatoa wave, for
which the w-source is, moreover, a plausible
excitation, the records of the Siberian Meteor
wave shown in Fig. 3 suggest a preference for a
period of from 5 to 8 minutes.

6. EXCITATION OF THE FREE OSCILLATION OF
ATMOSPHERE b BY A POINT SOURCE SITU-
ATED AT THE GROUND IN WHICH THE PRES-
SURE VARIATION HAS A UNIFORM SPECTRUM

In the impulsive excitation curve B of Fig. 2
the comparison was made on the basis of a uni-
form spectrum in w. It was, moreover, assumed
that at the source the spacial distribution of »
was represented by the discontinuous integral
in (45). While it is of interest to analyze the field
produced by a point source of well-defined char-
acteristics, and w in (45) isa function which meets
the required boundary condition at the ground,
we must examine more closely the nature of the
field in the immediate vicinity of a point source
which radiates in a medium governed by the
rather complex Egs. (9) and (10), or (15).
Because of the anisotropy resulting from the
vertical stability of the atmosphere, we should
not expect that the emitted wave will have even
initially a spherical wave front. The deviation
from initial spherical symmetry should be small
at acoustic frequencies, but could become appre-
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ciable near Brunt’s resonant frequency. Now the
integral in (45) has the following origin. In the
solution of the acoustic wave equation

Vip=(1/c*)(8%/3t?),

where ¢? may be a function of z, in the form

(52)

o5 7, 1) = giot f Fz, o0, B) Jo(kr)dk,  (53)
0

F+[(0%/c®) —k2]F=0, (54)

the conditions at a point source situated at 2=z,
are determined from the behavior of F at large
wave numbers k. The asymptotic behavior of F
for large k and small values of (z—z;) is
exp[ —k|z—2z:1|], so that near the source

0

. f expl —k|z—21| 1To(kr)dk
“ et /[(s—m) +72 T (55)

It follows from (S55) that at 2=23,

o~ dot e
—_—— =w+—'w”"=e“"f Jo(kr)kdk. (56)
az dz 0

where + and — refer to z>3, and 2<z, re-

spectively. This function is equal to the limit
assumed by 2¢%*(z—2,)/R, as 2—321, namely, zero
everywhere except at r=0, where it becomes
infinite like 2e%t/(z—2;). The specification of a
point-source solution of (52) by (56), which is
attributable to Lamb,! gives the right result in
the case of constant ¢ and in the case of c=az,
for which an explicit solution of the form (55)
has been derived."

In the free oscillations of the atmosphere, the
asymptotic solution of (9), or of (15), for large %
and small (z—2)) is

A expl:—-(k/a)fz de], 2> 21;
21 (57)

21
A exp[——(k/a)f de], 2<21.
Hence, if we are considering a point source situ-

ated at z=gz; in which the pressure p varies like
ei*, we have for the boundary condition at the

1 C, L. Pekeris, see reference 10.
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source

iP_j_iii—:Z(Q/o’)fw Jo(kr)kdk, z=z1. (58)
d 0

0z 2

We shall now obtain the complete solution for a
p-point source situated at z=gz;, and, after
allowing 2;—32, (the ground), shall compute the
relative excitation function for various periods.
For the region above the source, let

x=x1=CN, Bp1=C@g2N+wN), z<z, (59)
B=(k*g*— ")/ (ipo0), (60)

where N is the solution of (9) which gives an
integrable wave energy per atmospheric column.
In the region between the source and the ground
let

x=x2=AM+BN,

Bpa=A (g M +wM)+B(ge®N +wN),
20>2> 3.

w=(yg'— o),

(61)

From the boundary condition of the vanishing
of w at the ground we get by (10) and (61),

(B/4) = — {[o**M +g(yo* —K*c) M/

[o*c*N +g(vo2— k) N} ,es,.  (62)

At the source we must have continuity of p, and
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Fi1G. 4. Frequency of occurrence of pressure oscillations
of well developed periods on microbarograms at English
stations (after N. K. Johnson, reference 13).
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we must satisfy (58):

pr=p2, P1—P2=2(Q/0)k,

which determine A4, B, and C. After letting
21—3% in these relations, we arrive at the desired
solution for a p-point source situated on the
ground :

(63)

—20ceit

p(zot 7, t) =

®  Jo(kr)kdk(ge*N +wN
f (kr)kdk(gc*N +wiN) (6
0

(02N +g(ya2—k2%)NT

where N and N are evaluated at 2. This integral
can now be evaluated in terms of normal modes
by the method of residues, and the result is a
steady-state excitation function of the form

p=Art exp(iot — ik +137/4)
XL(r)*Q(8R/3x) I,

which differs from (51) by the extra factor (1/Q).
The same factor attaches also to the impulsive
excitation function B of Fig. 2. Since Q vanishes
at Brunt’s period (9.5 minutes in atmosphere b),
it follows that the impulsive excitation function
for a p-point source vanishes at the cut-off
period of 2 m and is peaked at 9.5 m. The in-
tegral of the excitation function over a finite
spectral band width, including the Brunt period,
is of course finite.

(65)

7. APPLICATIONS TO THE PRESSURE WAVE PRO-
DUCED BY THE GREAT SIBERIAN METEOR
AND TO PRESSURE OSCILLATIONS RECORDED
ON MICROBAROGRAPHS IN ENGLAND

Figure 3 shows some original pressure records
of the Great Siberian Meteor wave of 1908 ob-
tained on microbarographs at several stations in
England, and, on the right, a composite drawing
of the principal features of these records made
by F. J. W. Whipple.! A first pressure rise, lasting
about 3 minutes, is followed by a rapid drop in
the next two minutes, and then by a succession
of four damped oscillations of about 2 minutes’
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period. The ratio of the velocities of the first
arrival (323 m/sec.) to that of the last of the
2-min. waves (308 m/sec.) agrees with the ratio
of the corresponding group velocities in atmos-
phere b shown in Fig. 1. With an assumed surface
temperature of 288°K, cy=341 m/sec., and the
group velocity at a period of 2 min. in atmos-
phere b is 293 m/sec. This is 5 percent less than
the observed value of 308 m/sec. The difference
could be due either to a lower value of the surface
temperature or to an actual stratospheric tem-
perature of about 240°K, as against the assumed
value of 220°K. The fact that no periods shorter
than 2 min. were recorded, suggests the cut-off
period shown in Fig. 1. The shocks recorded at
5h25™ and later are probably due to the various
rays (or normal modes) which travel through the
sound channel associated with a minimum sound
velocity in the stratosphere, in the manner ob-
served by Ewing and co-workers® in the oceanic
sound channel.

Figure 4 gives an analysis made by Johnson'
of the frequency of occurrence of oscillations of
well developed periods on microbarograms at
English stations. He interprets the peaks as being
associated with Brunt’s resonant period. This
view is supported by the excitation function for
a pressure point source given in (65). The lack
of periods less than 2 minutes is also manifest.
In this connection the following quotation from
Johnson's paper is of interest:

“In the second place we may notice that oscil-
lations with a period of two minutes (or even
less) are extremely obvious and very easily
detected in the records of any properly adjusted
microbarograph. The small number of oscilla-
tions of short period (say less than seven minutes)
shown in Fig. 1 cannot therefore be attributed to
difficulty of detection.”

There are a number of problems raised by this
investigation to which the writer hopes to
return.

2 M. Ewing e al., Bull. Geol. Soc. Am. 5, 930 (1946);
B. Gutenberg, Bull. Seis. Soc. Am. 36, 327 (1946); J.

Meteor. 3, 27 (1946).
B N. K. Johnson, Q. J. Roy. Meteor. Soc. 55, 20 (1929).



