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Analysis of the thermoelectric, thermomagnetic, and galvanomagnetic efFects by means of
the reciprocal relations of Onsager leads to a simple and intuitive interpretation of the thermo-
electric efFects, provides a valid derivation of the Kelvin relations, and answers the long standing
question as to the existence of relations among the efFects in a magnetic field. It is shown that
there exist two independent relations among the eight commonly defined coefFicients in a
magnetic field—one of these relations having been previously given by Bridgman. The nature
of the second relation is discussed. Also, certain general observations on the applicabihty of
the Onsager relations to steady-state processes are discussed.

INTRODUCTION

" 'N 1854 Lord Kelvin' proposed a "quasi-
thermodynamic" method of analysis of the

thermoelectric efkcts, leading to the we11-known

Kelvin relations. Although Kelvin himself care-
fully pointed out that his method was not com-

pletely justi6able, experiment confirmed the
validity of the results obtained. The method was

subsequently applied to the theory of electrolytic
cells by Helmholtz' and to the Soret eBect by
Eastman, ' and was extended to the galvano- and
thermomagnetic efkcts by Bridgman, ' in each
case yielding important and correct relations.
In 1931Qnsager' revived the problem and proved
a general and powerful set of reciprocal relations
treating the symmetry in the mutual interference
of two or more irreversible processes occurring
simultaneously in a system. On the basis of these
relations Onsager has specifically discussed diHu-

sion processes' and the flow of heat in anisotropic

* This work was sponsored jointly by the OfFice of Naval
Research and the Army Signal, Corps, under ONR Contract
NSori-78, T.O.1, and is abstracted from part of a thesis
entitled Oe the Theory of Irreeersihk Processes, submitted
to the Department of Physics of the Massachusetts Insti-
tute of Technology. Another portion of the work is being
extended.

I wish to take this opportunity to thank Professor L.
Tisza, the director of the thesis, for extensive discussions
and for many helpful suggestions.

' Lord Kelvin (Sir W. Thomson) Collected, Papers I (Uni-
versity Press, Cambridge, 1882), pp. 232-291.' H. v. Helm) Ok, VVi». Abh. 1, 840 (1877).

E. D. Eastman, J. Am. Chem. Soc. 48, 1482 (1926);
50, 283 (1928); 50, 292 (1928}.'P. W. Bridgman, Thermodynamics of Ekctrical P'he-
eonsene ie 3Atah (The Macmillan Company, New York,
1934}.' L. Onsager, Phys. Rev. N, 405 (1931);38„2265 (1931).

"L. Onsager, Ann. N. Y. Acad, Sci. XI VI, 241 (1945).
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crystals, ' and has pointed out that the whole
class of results obtained by the quasi-thermo-
dynamic method of Kelvin follows from the
reciprocal relations. However, a treatment on
tkis basis of the very important thermoelectric,
thermomagnetic, and galvanomagnetic eAects
has not been given in the literature. **' "Such a
treatment leads to a simple and intuitive inter-
pretation of the thermoelectric e8'ects in terms
of an entropy flow per particle, provides a valid
derivation of the Kehin relations, and settles
the long standing question as to the existence of
relations among the efkcts in a magnetic 6eld.
It is shown that there are two independent
relations among the eight commonly defined
coeScients in a magnetic field —one of these
relations having been previously given by
Bridgman.

**However, Meixner (See reference 7.) has given both a
detailed kinetic treatment of these e6ects, and some dis-
cussion of the results in the light of the Onsager relations.
The efFects have also been treated by the free-electron
theory in a classic paper by Sommerfeld and Frank, {See
reference 8.) and have recently been treated by Gurevich
(See reference 9.) on the basis of an interaction between
the electrons and phonons in the lattice. A thesis by
DeGroot (See reference 10.) on the Soret e6'ect, has very
recently been brought to the author's attention. A part of
the formalism of the present paper involving heat and
entropy current densities appears also in Deoroot's work.

~ J. Meixner, Ann. d. Physik (5) 35, 701 (1939);36, 105
(1939};39, 333 (1941); 40, 165 {1941);41, 409 {1942};
Zeits. f. physik. Chemic M3, 235 (1943}.

'A. Sommerfeld and N. H. Frank, Rev. Mod. Phys. 3,
1 (1931).

'L. Gurevich, J. Phys. U.S.S.R. 9, 477 (1945); 10, 67,
174 (1946).' S. R. DeGroot, Thesis, Eindhoven 1945; I'Eeet Soret
{N. V. Noord-Hollandsche Uitgevers Moatschappij, Am-
sterdam, 1945).
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I. ONSAGER'8 RECIPROCAL RELATIONS

The reciprocal relations of Onsager express a
certain symmetry in the mutual interference of
two or more irreversible processes occurring
simu)taneously in a system. They follow from
thermodynamic reasoning, plus the additional
fact that, except in the presence of a magnetic or
Coriolis force field, the laws of dynamics are
symmetric with respect to future and past. The
content of the relations may be briefly stated as
follows:

Consider a set of irreversible processes, ex-
pressible as the rates of change of a set of
measurable parameters, a;, of the system. We
shall assume these parameters to be even functions
of the momenta of the particles composing the
system. **~"Assume also that the macroscopic
laws which govern the processes (such as Ohm's

law of electric conduction, Fick's law of diffusion,
etc, ) can be expressed in the linear forms

The problem involved in the application of
Onsager's relations to any particular set of
processes is, of course, the identification of the
proper "forces" y;. To do this directly from the de-
fining equations (Eq. (2)) requires the knowledge
of the caloric equation of state (i.e., of the
entropy as a function of the variables n,). It is,
however, possible to avoid this by considering
the rate of production of entropy rather than
the entropy itself. We have, by a first-order
Taylor expansion,

whence the rate of production of entropy associ-
ated with the irreversible process is

(6)

This equation provides a more convenient
method for identifying the variables y; tha~
does Eq. (2).

where
y;—= 8S/8n;. (2)

IL APPLICATION TO THERMOELECTRIC
PROCESSES

In equilibrium the entropy S is a maximum and
the y; are therefore zero. Thus the y; are meas-
ures of the deviation from the equilibrium state.
The I.'s, or "kinetic coefFicients, " are functions
of the state of the system, depending upon such
variables as composition, temperature, and the
values of applied magnetic or Coriolis force
fields. If the I;; were to be zero for all i/j, each
"current" bn;/bt would depend only on its own

driving "force" y;, and the various processes
could be considered as independent. Thus the
quantity L;; is a measure of the interference of
the jth process on the course of the ith, Onsager's
theorem now states that

I.;;(H) =L„;(—H),

where H is the applied magnetic (or Coriolis)
field. If no magnetic field is applied, Eq. (3)
degenerates into the simple symmetry relation

***Casimir (See reference 11.) has shown that this is
not a necessary restriction, and Onsager's theorem can be
formulated in other cases. However, most common thermo-
dynamic parameters (such as energy, volume, or number
of particles) remain invariant if the directions of motion
of all the particles are reversed, and for simplicity of state-
ment we confine ourselves to this case.

~ H. B.G. Casimir, Rev. Mod. Phys. I'I, 343 (i945).

By utilizing a procedure which might be called
the "method of local equilibrium" we may apply
the Onsager relations to steady-state processes,
such as the thermoelectric processes.

The thermoelectric eA'ects may be viewed as
the result of the mutual interference of heat fIow

and electric current Row in a system, and we
must now define appropriate current density
vectors. The number of particles, the total
internal energy, and the entropy of a system are
definable thermodynamic variables. We define
a particle current density J, an energy current
density W, and an entropy current density S,
so that the divergence of each of these current
densities is the rate of change per unit volume of
the corresponding thermodynamic variable, and
so that the current densities vanish in a vacuum. $
In accordance with the familiar thermodynamic
definition of heat, we are led to define a heat
current density by

Q =—TS.

A steady-state process is characterized by the

t The condition that the currents vanish in a vacuum is
necessary in order to remove the arbitrariness inherent in
the definition in terms of a divergence. For a discussion of
this matter see Casimir (reference 1.1).
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conditions or, using Eq. (13) to eliminate W in favor of Q,
V W=o,

V J=O,
(8)

(9)
1.

8=V—Q ——Vii J.
T T

(16)

OI

TS=W —iiJ, (12)

Q =W —iiJ. (13)

Equation (13) identifies the heat current as the
difference between the total energy current and
the electrochemical potential energy current, and
this agrees with our intuitive notion of heat as a
kinetic energy current. Taking the divergence of
Eq. (13) and recalling the conditions of a steady
state (Eqs. (8) and (9)), we find

where 8 is the rate of production of entropy per
unit volume.

IA e may now employ the IllethcKi of loci, l

equilibrium to evaluate V S. Let the actual
system be approximated by a collection of small
volume elements, each of which is in local
equilibrium, and each of which has a distinct
value of the temperature T and of the electro-
chemical potential p, . We shall discuss the
validity of this approximation in Section III.
'Ihen, since each element is in equilibrium, we

may apply to it the usual thermodynamic rela-
tions connecting the entropy, internal energy,
and number of particles. Assuming no thermal
expansion or other mechanical efI'ects in the
system (i.e., neglecting terms such as PS V), we
may therefore write for the nth element

T„h5„=5 U„—ii„bX„, (11)

where S is the entropy, U is the total internal
energy, and X is the number of particles. In
accordance with our definitions of the current
density vectors we thus obtain

which states that the production of entropy is
due to two causes: the first term is the production
of entropy due to the How of heat from high to
low temperature, and the second term is the
increase in entropy due to the degradation of
electrochemical potential energy into heat.

Ke are now able to identify the proper
"forces" for the application of Onsager's re-
ciprocal relations. By comparing Eqs. (15) or
(16) with Eq. (6), we find that if we take —J
and W as currents, the proper forces are V(ii/T)
and V'(1/T), whereas if we take —J and Q as
currents, the proper forces are (1/T)Vii and
V(1/T). Accordingly, we may write the macro-
scopic laws governing the processes in the form

1 1—J =L ii—Vii+1 i2V—,
'1 T

1 1
Q = I-2i—Vi +L 22V—,

T T'

(18)

and in the absence of an applied magnetic field,
Onsager's theorem states that

It is perhaps well to comment here on the
nature of the electrochemical potential p, . Ke
may consider p, to be composed of two parts, a
chemical portion p, , and an electrical portion p,

The interpretation of thisequation is best brought
out by using Eq. (14) to write

1 1

5=V— Q+---V Q,
T 1'

V'Q= Vii' J (14) 8 =Pc+Pc (2O)

which states that the rate of increase in heat
current is equal to the rate of decrease in the
potential energy current.

The rate of production of entropy, 8, follows
from Eq. (12) and the conditions for a steady
state, Eqs. (8), (9), and (10):

8=V S=V—.W —V—J (15)
T T

If the charge on a particle is e, then p, is simply
ey, where y is the ordinary electrostatic po-
tential. The chemical potential p, , is a function
af the temperature and of the particle concen-
tration. In an electrical conductor p, , plays a
minor role, and we fix our attention primarily on
the e.m. f. (1/e)Vp, . However, if we were to
consider the diftusion of uncharged particles,
Vp. would play the part of the driving force.
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IG. JUSTIFICATION OF THE APPLICATION TO
STEADY-STATE PROCESSES

The derivation of the Onsager relations strictly
refers only to a specific type of transient irre-

versible process, and the application of the
relations to steady-state processes involves an

approximation, the nature and validity of which

we shall now examine.
The type of transient process to which the

reciprocal relations primarily refer is that which

occurs immediately followinl the lifting of a set
of restraints, with respect to which the system
is originally in equilibrium. The restriction to
this type of process appears implicitly in the
derivation given by Onsager in the nature of the
averages taken over the statistical ensemble.
However, many processes of interest are not of
this transient nature, but occur in a steady state.

In Section II we have considered a method of
application of the Onsager relations to steady-
state processes, and we have seen that the
approximation involved lies in the assumption
that, for the purpose of calculating the entropy
current, the system can be considered as the
limiting case of many small sections, each in

local equilibrium. In the language of statistical
mechanics this is equivalent to the assumption
that for the calculation of the entropy current
the distribution function may be taken to be in

the equilibrium form but with 1 and p, as
functions of position. Actually, it is well known

that the distribution function can be expressed
as a function of this form plus a small deviation
term. ' It is, of course, the smallness of this
deviation term which is responsible for the
excellence of the approximation made.

It will be recognized that the calculation of S
on the basis of the local-equilibrium distribution
function is very similar to the procedure usually

adopted in the application of Boltzmann's kinetic
equation. This equation may be written as an
equality between certain "How terms" and
certain "collision terms. " In the calculation of
the flow terms one may use the local-equilibrium
value of the distribution function, but since the
collision terms vanish in this approximation, it
is necessary to include the deviation term in their
calculation. Similarly, in our case, 8 may be
calculated on the basis of the local-equilibrium
value of the distribution function, although a

direct statistical calculation of 8, which would
vanish in this approximation, would require the
inclusion of the deviation term.

Finally, we may mention that the kinetic law~

governing the processes are themselves linear
only in a similar approximation, " so that the
reciprocal relations for steady-state processes are
as valid as Ohm's law, Fick's law, etc.

Dt'. THERMOELECTRIC EFFECTS

We consider now a system in which a particle
(or electric) current and a heat current flow

parallel to the x axis, there being no applied
magnetic field. Then, by Eqs. (18) and (19),

(23)

where we introduce the notation

(24)

Similarly, the electric conductivity is defined
as the electric current density (eJ) per unit
potential gradient P(1/e)Viij in an isothermal
system. lt is easily seen that (1/e) Vii is actually
the e.m. f., for in a homogeneous isothermal
system Vp, =o and Vp=Vy, . Thus

1
0 =——eJ —Vii for V'T =0,

e

"H. B. Callen, Thesis, M.I.T., 1947.

(25)

1

Q=I-ii ~u+I i2 I1 T

The kinetic coefFicients (the I's) are properties
of the medium considered, and are closely related
to such familiar properties as the electric and
heat conductivities. We shall see that the knowl-

edge of the set of quantities I», I», and I» is
equivalent to the knowledge of the electric and
heat conductivities and of the thermoelectric
power of the medium.

The heat conductivity is defined as the heat
current density per unit temperature gradient„
for zero particle current.

i~=— Q/VT for —J=0,
whence we find from the kinetic equations,
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whence
0 = e'Lgg/T. (26)

A I
N~ 4 WI

Ln preparation for our application of the
kinetic equations to practical experiments, we

now note that the variables which can most
easily be controlled independently by the experi-
menter are the particle (or electric) current
density and the temperature gradient. We there-
fore find it convenient to express 8 in terms of
these variables. We thus obtain

L]2 D
S = — Jy- v—. (27)

~~11 ~~11

According to this equation a current Homing in

a conductor of a given temperature distribution
carries with it an entropy per particle of

L~2/TL—n, This entropy How is, of course, in

addition to the entropy How (D/TL~~)V'(1/T),
which is independent of the particle current.
The entropy How per particle —L~m/TLn will

prove to be such a useful quantity in the de-

scription of the thermoelectric effects that we
introduce for it the special symbol 5J.

Fi(;. 1.

ductors A and 8, and consider a current J to be
Howing. Then the total energy How will be
discontinuous across the junction, and the energy
difference appears as "Peltier heat" at the
junction. (See Fig. 1.) We have W= Q+pJ, and
since both y and J are continuous across the
junction it follows that the discontinuity in W
is equal to the discontinuity in Q.

W~ —Ws= Q~ —Qa

Because of the isothermal condition the kinetic
equations give, in either conductor,

Q=TSz J,
whence

Qs —Qg= T (Sps S") J. —(31)

The Peltier coeScient IIg~ is defined as the
heat which must be supplied to the junction
when unit electric current passes from conductor
A to conductor B.Thus,

5~= ————

TL 11

Qa-Q~
(S 8 SA)

e e
(32)

We shall see that (1/e)S& is equal to the thermo-
electric power of the medium, so that, like ~ and

0, it has direct physical significance as a property
of the substance. The quantities a, cr, and SJ
have been expressed in terms of the kinetic
coefficients, and conversely we have

'I'

I 11

The Peltier coefficient has the dimensions of an
electromotive force, and is sometimes referred to
as the Peltier e.m. f. This terminology must,
however, be viewed as a mere figure of speech,
for the potential p, is actually continuous at the
junction.

We may regard the Peltier heat as supplying
the discontinuity in the entropy How per particle
at the junction. For by Eq. (31)

T2
1.12 ————g5~,

e'

T3
I.22 =—05~'+ T-](.

2

(29) Ss —Sg=(S~ —Sg") J (33)

so that a "Peltier entropy, " is equal to (1/T).
Peltier heat must be supplied at the junction.

b—The Thomson EBect

%e now consider the various thermoelectric
effects in turn.

a—The Peltier E8'ect

The Peltier effect refers to the evolution of
heat accompanying the How of an electric current
across an isothermal junction of two materials.
Consider an isothermal junction of two con-

The Thomson effect refers to the evolution of
heat as an electric current traverses a tempera-
ture gradient in a material. Because it is the
only one of the three thermoelectric effects which

deals with a single material, it is sometimes
called the "homogeneous thermoelectric e8ect."

Consider a conductor carrying a heat current,
but no electric current. A temperature distribu-
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tion governed by the temperature dependence
of the kinetic coefFicients (the I.'s) will be set up.
Let the conductor now be placed in contact at
each point with a heat reservoir of the same
temperature as that point, so that there is no
heat interchange between conductor and reser-
voirs, Now, let an electric current pass through
the conductor. Then a heat interchange will take
place between conductor and reservoirs, this
heat consisting of two parts —the Joule heat
and the Thomson heat.

As the electric current passes along the con-
ductor any change in total energy Row must be
supplied by an energy interchange with the
reservoirs. Thus, we must compute V' W.

'7 W=~ (Q+~J) =7 Q+7( J, (34)

Since by Eq. (26) the electric conductivity is
o =e'(I, i,/T) we recognize the first term above
as the Joule heat. The second term therefore
gives the Thomson heat. The Thomson coeffi-
cient ~ is defined as the ratio of the Thomson
heat absorbed to the product VT eJ

Thomson heat T dS,

VTeJ e dT

lt will be noted that the form of this equation
suggests the analogy of v to a specific heat
L = T(dS/dT)], and, in fact, Thomson referred to
v as the "specific heat of electricity. "

The details of the entropy transfer between
conductor and reservoirs gives an interesting
insight into the Thomson efFect. Ke have

which may be expressed in terms of J and V(1/T)
by using Eqs. (7), (27), and (21):

D 1
S=S, J+-

T1 ll T
(27)

(Li1$ (D 1 )vw=-~i
i
J-v

i
v—

i

ELggJ (Li~ TJ

T TL12J' — J 7—. (35)
L 11 L11

However, the temperature distribution is that
which is determined by the steady state with no
electric current. Since V' W=o in the steady
state, Eq. (35) gives, with J=O,

whence, by Eq. (36), we obtain

D( 1q'
V S=VS, J+

~

v—
)

.
I.„E T)

However, the rate of production of entropy is

1 1
8= ——vp. J+v—Q,

T T

or, in terms of J and V'(1/T),

(Dv.W= —v
i

v—i=0.
&Li, T&

(36)
D

S= J2+
(

V—
I

Lii Li| ( TI
The term V L(D/Li&)V(1/T)] must therefore be
zero even when JWO, for it depends on the
temperature distribution only (it is apparent
that the kinetic coefficients depend only on T
and not on p since the zero of p, is arbitrary,
whereas the L, 's are uniquely defined). We thus
obtain

(Lim) T TLi2 1
VW= —Vi -~ J— Z — JV—,

~L11~ Lll Ll 1

and, writing

(Lie& d (Lim)
Vi i=

i
VT,

&L„i dT ( L„j

Thus, the reservoirs at each point provide an
input of entropy given by

1
V S—8= — I"-+V'S, J,

L11
(42)

c—The Seebeck Effect

which represents a Joule and a Thomson contri-
bution. The Joule contribution extracts the
entropy produced by the flow of current (Eq.
(41)), and the Thomson contribution injects
entropy to supply the How of entropy per
particle Sq (Eq. (40)).

T de
v W= — Jm+T VT J.I 11 dT

The Seebeck efFect refers to the production of

(38) an electromotive force in a thermocouple, under
conditions of zero electric current.
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Consider a thermocouple with junctions at
temperatures T~ and T, (T«) T~). Let a volt-
meter be inserted in the thermocouple at a point
at which the temperature is 1'. This voltmeter
is to be such that it allows no passage of elec-
tricity, but offers no resistance to the Row of
heat. Ke designate the two materials composing
the thermocouple by A and B. (See Fig. 2.)
With J= 0 we obtain from the kinetic equations,
for either conductor,

1—The Kelvin Relations

The Kelvin relations connect the three thermo-
electric coefficients. Recalling our values for
these coefficients:

Peltier coefficient:
T

lIAs ———(S,s —S~A), (32)

particle has a direct physical significance as a
measurable property of the material.

(43)
Thomson coefficient:

1 d5g

e dr (39)

re

pg
—p,„'= — I 5g~d I',

(44) 1
Thermoelectric power: «As ———(S~ —S~"), (49)

e

(43) we immediately obtain the Kelvin relations

+AH = ~&AB~

ElimInating p~ and p2 from these equations,

T2

(Sg Sg")dT. — (4&)

dfgg
Vg Tg —T

dT

V. THERMOMAGNETIC AND GALVANOMAGNETIC
EFFECTS

But because there is no temperature difference
across the voltmeter, the voltage is simply

(T2
11 (S 8 S A)dT

e J~,
(48)

The thermoelectric power of the thermocouple,
~~g, is defined as the change in voltage per unit
change in temperature difference. The sign of e~~

is chosen as positive if the voltage increment is
such as to drive the current from A to 8 at the
hot junction. Then

If an external magnetic field is impressed upon
a system in which a heat current and electric
current simultaneously How, several new e8'ects

appear. These eAects have been discussed by
Bridgman' and by Sommerfeld and Frank, ' and
there has been some speculation as to the
existence of relations among the various effects.
The application of Onsager's method results in
the expression of all eR'ects in terms of a number
of independent kinetic coefficients, whence a11

relations among the effects may be obtained by
algebraic elimination. We thus find that among
the eight coefFicients discussed by Sommerfeld
and Frank there are two independent relations,
one of which has been previously obtained by
Bndgman.

The quantities (1/e)S~A and (1/s)S&s are
referred to as the thermoelectric powers of ma-
terials A and 8, so that the eatmpy Row per FIG. 2«
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1. 1
—J.= I-&i—~.p+I-i2~.—+I-i3—~yp+ I-i4~y—,

T T T" "T'

If we consider an isotropie system in which a and we clearly have

magnetic field is applied parallel to the Z axis
and in which the currents and gradients lie in

the X- Y plane, we have again the equations

p,S=—W ——J,
T T' (52)

1
Q*=1.21 &*12—+I-22~* +1-—23 &333—+1-24&;

T T T" "T'

Q —= TS =W —33J, (53) (57)

1 1
8=7—Q ——F31 J

T T

1 1

(54)
—Jy = —1-13—~*33—1-14|7*—+1-11—~y31+J-12&y—,

T T T" "T'

1

Q. = —&23—~.31
—&24~*—+1-21—~,33+1-22~ —,

T T T
' "T'and Eq. (54) may be written in component form:

1 1
8=7'.—Q, +7 —Q

T 'T

1 1

p y J g p y J
T T"

where, furthermore, J-~~, 1-~2, L2~, and L22 are
even functions of the magnetic field and where

55
Iia, I i4, I23, and I24 are odd functions of the
magnetic f1eid.

We may now impose the Onsager relation

L'2(H) =L2'( —&)This equation allows us to identify the four

proper currents and the four proper forces for
the application of Onsager's relations. In terms and thus obtain
of these variables the kinetic equations become

(58)

1—J.=L xi—~~p+L J.~~.—+L i3—~3p+L iF'y—)

T T T" "T'

1 1 1 1

Qy L'21 ~@33+122+ +y+23 + g+yI 24|7 y
T T T" '"T'

(56)

1 1 1 1—Jy =I gg
—7',p+ I.g2V'g —+I 33

—V'y p+L, 34V'„—,
T T T" "T'

1 ]
Qy L'41 ~*P+~~42~y +L33 7212+I 44VyT' 'T T" "T

Because of the isotropytf of the system, how-

ever, simple symmetry considerations require
certain relations among the kinetic coeScients,

tf In order that our equations shall hold it is not neces-
sary that the system be strictly isotropic, but only that
there be isotropy in the X'- Y plane and that the crystal
symmetry be such that the currents and forces are coplanar
(in the X-Fplane). It is of interest to note that physical
isotropy in the X'-F plane is guaranteed by the Onsager
relations if the crystallographic symmetry is such that the
Z axis is a three-, four-, or six-fold rotation axis (cf. On-
sager, reference 5).

1 1. 1
Jy =+11 +yI3++12+y +~~13 ~y33+~14~yT' 'T T" "T'

1 1 1 1
Q*=~12—~.33+L22&.—+I 13—&y33+&24&,—,T' *T T" "T'

(59)

1 1 1 1
Jy L21$ ~xp Lyl4~s +L21l ~y p+Ly12 7y

T 'T T" "T

1 1

Qy = ~14 ~yg +24~x ++12 +yg++22+y
T T T" "T

Thus there are just six independent kinetir.

coefficients. The coe%cients L~J., I j.2, and I~~
are even functions of the magnetic field, while

the coefEicients L ~g, L,~4, and L24 are odd functions
of the magnetic field.

We may now consider in turn the various
coekcients defined by Sommerfeld and Frank.
The definitions of the various e8ects are self-

explanatory, and we give the appropriate coef6-
cients in terms of the kinetic coe%cients, as
obtained by application of the kinetic Eqs. (59).



THER MOELECTRI C EFFECTS

a—The Isothermal Electric Conductivity d—The Adiabatic Heat Conductivity

Q,/—V,T,

J,= J„=Q„=O,
whence

The isothermal value of the electric conduc-
tivity is obtained if the system is constrained to

under the conditions
maintain a uniform temperature. Thus

(69)

(70)

under the conditions

whence

e2

(I.„'+I.g, ') .
~~11

b—The Adiabatic Electric Conductivity

(61)

(62)

L12 L I ~ L14

L) 2 L..2 614 I.24

~13 ~14 ~ 1l ~~12

~14 ~24 ~12 ~22

l

I
—L14

I-14

(71)

The adiabatic value of the electric conductivity
is obtained if the system is so arranged that no
transverse currents can Bow, although transverse
gradients are allowed to develop. Thus

e—The Isothermal Hall EBect

(Hall), =—-V',p FIr.l„.
under the conditions

(63) under the conditions

whence

(73)

whence

V,T=Q„=J„=O, (64) T
(Hall), = ——

e2II I.I12+I.I 32
(74)

Ill I 13 L14

&a I'13 ~11 ~12
TD

~ 14 L'12 Lr 22

c—The Isothermal Heat Conductivity

a, =——Q„/7', 7',

(65)

It should be noted that the adiabatic Ha11

coefficient, defined as the transverse e.m. f. per
unit electric current and per unit magnetic field,
cannot be obtained from our equations. For in

the adiabatic effect we do not have V'„T=O and
therefore (1/e)V„gee. tn. f. The adiabatic Hall
coefficient is, however, the more commonly
measured of the two Hall coefhcients.

f---The Isothermal Nernst EBect

under t:he conditions ( iX ernst), = ——V„p Hrl, T,
e

K

2+I 2

I-n I.w~

I~14 I 12 I 22

(68)

under the conditions

whence
~14'l4 ~12~13

(Nernst)& =-
eHT L,112+I 13'

(76)
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g—The EtHeNshausen Efect

(Ettingshausen) =—V„T/He J,
Under the conditions

(78)

relation, attributable to Bridgman, may be
easily verified to be

T. (Nernst); = x; (Ettingshausen). (84)

whence

(79)

TQ

(Ettingshausen) = (L11L14 L12L18)
eH

~ —Lg, I gg Lg2 . (80)

h—The Leduc-Righi Effect

(Leduc-Righi) =V„T/HV—,T
Under the conditions

J = J„=Q„=O,

Because the coefFicients of the various eRects
involve third or fourth powers of the kinetir.
coefFicients, it proves impractical to obtain the
second relation in an explicit algebraic form, but
the expressions for the coefficients of the eRects
may be considered to be a parametric statement
of this relation. We may see also, by considering
the field dependence of the coefficients, that this
second relation, unfortunately, is of less practical
significance than is Bridgman's relation (84).
We have seen that L,13, I.14, and I24 are odd
functions of the field, and I 11, I 12, and L2~ are
even functions. It follows that all the coefficients
of the various effects are even functions of the
magnetic field, which is also evident physically.
If, now, we consider only the field-independent
term in the coefficients of the eR'ects, we find the
relations

~11 I' la ~12

(Leduc-Right) =——L],3 L]j L$4
H

Kg =Ko )
,0 0

0's =0'o
p

.0 0 (86)
—J-14 L 12 L24,

I ll ~13 ~14

~ —Lg, I gg I pm . (83)

i—Relations Among the CoeEcients

We have eight coefficients expressed in terms
of six independent kinetic coefficients, and it is

apparent, therefore, that there exist two inde-

pendent relations among these coefFicients. One

T (Nernst) = x (Ettingshausen) ' (87)

and no others. Thus, even for small fields, the
Bridgman relation has an independent signifi-

cance, whereas the second relation degenerates
into the comparatively trivial Eqs. (85) and (86).
Since measurements are ordinarily made in the
range in which no distinction is made between
K; and K or o; and 0, we thus see that the
second relation introduces no practically signifi-

cant results for this small-field type of measure-
ment.


