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Formulae are derived, on the basis of the primary electron hypothesis, which describe the

behavior of counters exposed to the large air showers. In particular, expressions for the variation

of counting rate with area of the counters, number of counters, and altitude are given, and

seem to agree fairly well with experiment, except for the latter at very high altitudes.

I. INTRODUCTION

HERE are at present at least two separate
mechanisms which have been suggested

for the development of the large air showers.

The first of these regards the showers as gener-

ated by the ordinary cascade process from ex-

tremely energetic primary electrons (tacitly as-

suming that the ordinary formulae of electro-
dynamics are valid at such high energies). Here
one has a definite picture whose consequences
can be worked out in detail. One usually assumes

that primary electrons impinge upon the top of
the atmosphere with an energy spectrum pro-
portional to Bo "dE0, P is adjusted to fit the
experiments and usually chosen to be about 2.8.
The second mechanism describes the showers as
produced by the high energy tail of a primary
proton spectrum, and one can choose one of a
number of diR'erent means of converting a frac-
tion of the primary energy into the soft compo-
nent (either through the decay of heavy mesons

into lighter ones with emission of soft radiation,
or other possibilities). Clearly a great deal of
flexibility in detail is possible here, so that it does
not seem profitable at present to work out the
details of any particular version until one knows
somewhat more precisely whether there are any
real dif6culties with the primary electron hy-

pothesis, and, if so, where they are. One might
mention, however, one feature which has to do
with the penetration of the primaries that is

common to all theories that ascribe the air
showers to primary protons. Experiments on the
penetrating showers, which are probably char-
acteristic of the primary events, both at sea level

and at high altitudes have suggested that the
primaries have a mean free path of about 125
g/cm' in air. Since this distance is roughly equal
to three shower units, one might expect that this
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comparatively high penetrating power woul. d
manifest itself in the altitude variation of the
properties of a shower deep in the atmosphere.
In particular, the asymptotic altitude variation
should be characteristic of this distance rather
than the distance of one shower unit which
describes the decay of individual cascade showers
after they have passed their maxima. For these
reasons we have decided to make a study of the
behavior of the showers near sea level, using the
primary electron hypothesis and the cascade
theory, to see whether any obvious difhculties
are yet apparent and to indicate in which direc-
tions experiments might profitably be performed.

In making this study, we have had in mind in

particular counter experiments, in which one
studies the variation of the counting rate with
either the altitude, the number of counters in

coincidence, their area, or possibly the zenith

angle of the shower axis. We will not consider
variations in the geometry of the counter ar-
rangement, since we wi11 always assume that all
the counters involved are concentrated at a
point. We wi11 discuss this condition in more
detail later. For example, experiments have been
performed by Hilberry, ' and by Kraybill and
Ovrebo, ' in which the altitude was varied, and

by Cocconi, Loverdo, and Tongiorgi, in which

both number of counters and area were varied.
In the latter case the information was combined
to calculate a density spectrum.

II. GENERAL ASSUMPTIO NS

We will use the radial distribution of the
shower electrons given by Moliere, 4 and will

' N. Hilberry, Phys. Rev. 60, 1 (1941).
~ H. Kraybill and P. Ovrebo, Phys. Rev. 72, 3SI (1947).' G. Cocconi, A. Loverdo, and V. Tongiorgi, Phys. Rev.

70, 846 (1946).
4 Edited by %. Heisenberg, Vortrage Aber Koseuscke

Straklueg (Berlin, Germany, 1943).
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assume, with him, that the radial distribution
does not vary appreciably in the vicinity of the
shower maximum. Then the scattering in a
shower is measured by a distance ri which is
equal to R/k where R is the value of r& at sea
level, about 60 meters, and Ig the fraction of the
atmosphere above the point of observation
(assuming an isothermal atmosphere). If the
distance from the shower axis measured in units
of this characteristic distance is called p, then the
particle density d is given by (n/2~/)(w(p)/p),
with e the number of particles in the shower,
and m(p) a function which is plotted by Moliere,
and which goes to 3.25 as p goes to zero. It is
more useful for us to express p in terms of d and
this has been done empirically, yielding, as an
approximate expression good to within about 10
percent for p ~& 1, or (pn/2srPd) ~& 10

p= (Pn/2sr~'d) exp[ —1.1(Pn/2wrgd)'" j, (1)

where P =m(0) =3.25.
We will also need an expression for the number

of particles in a shower as a function of the
initiating energy and the distance in shower
units from the point of origin of the shower.
We take, as a basis for this, Heisenberg' s'
approximate expression and simplify it slightly,
giving

n = (1/4/&) exp [2 (yl) & —l),

where l is the distance in shower units from the
point of origin of the shower, and y=ln(EO/e),
where e, the critical energy for air, is about 10
ev. In terms of y, the primary spectrum will be
proportional to e 3'(" '&dy, and we will make no
attempt to conserve constant factors in this
work, since we are primarily interested in density
spectra and altitude variations.

We will also assume everywhere that all the
counters involved are at the same point, and will
discuss the range of vahdity of this assumption
later.

y+dy, and an angle with the vertical between 0
and 8+d8 is proportional to e-&&"-»dysin8d8
and each of these has to travel through a distance
l=lp/cost to reach the point of observation.
Thus the number with l between l and l+dl is
e &&"-»d—yladl/P Th. ese showers have a number of
particles given by Eq. (2) above, and distance
from the shower axis within which the density is
larger than 5 is given by

p ~& (Pnh'/21rR'6) exp[ —(nPnh'/2~R'5) 'I~]y (3)

where a=(1.1)' "=1.32, and 1/y=0. 35. Thus
the actual area involved is s(pR/k)I which is
proportional to

f(n, lo, 5) = (n'h'/5')

Xexp[ 2(aPnk'/2+R'~) ""1 (4)

and our problem is simply to integrate this over
all energies and zenith angles. This is most
easily done if one first makes a Mellin transfor-
mation on f, with respect to n, obtaining

g(e) = f(n)n' 'dn

~ (k'/rV) (2s R'6/2&apk')'I'(yo) (5)

with I' the usual F-function. As is well known,
this can be inverted by means of the contour
integration

t'
f(n, lo, 5) =(1/2~i) g(0)n' da,

where the contour C is taken parallel to the
imaginary axis to the right of the singularity of
the F-function at 0=0. We will not invert this
until later. We must now evaluate the following
expression for the integral density spectrum:

N(lo, 6) ~ (1/2si)(h'/5') "de(S~R'6/2&nPh')

IIL CALCULATIONS

We are now ready to calculate 6rst the density
spectra of the showers at a point of observation
lo shower units below the top of the atmosphere.
The number of primary electrons striking the
atmosphere with an "energy" between y and

X I'(y&r) (dl/P &"&) exp[(a —2)l] dy
cJ gp ~0

X-p[-y( -»+2(2-.)(yl)&j. (n

where we have used Heisenberg's expression for
n(y, l) and the fact that k=lp/25, since there are



about 25 shower units in the atmosphere, The
last integral can be performed either by setting

y =x', and then setting the lower limit for x equal
to —~, or by the saddle point method; it is
assumed in either case that (R(2 —o) &0, which
restricts the contour to the strip 0($(a) (2.
The result is proportional to

(2 —o )lI exp L(2 —a)'1/(X —1)],

integral is approximately given by

(2 —a) (3—I~ —o)
lp

"~"exp-- ~o

(&
—1)

L(5 —a)/2]+ L(2 —a) (Ii+ a —3)/(1~ —1)]10

YVe have, then, Finally

where it is assumed that l»1. We must now N(l, g) ~ (I/2sq)(l, l/g~) era(490R2g) 1(&a)
integrate C

Oo (2 —a) '
(dl/li' —&i') exp I — ——(2 —o)

~ lp &' I" exp
(2 —o) (3—X—o)

lp

~ QO

dll ('-') l' exp
(2 —o) (3—li —o)l

f~- I& (5-ol
(Ii+a 3)la+—( ) ( ), (8)

2 ) E2 —oJ

which is convergent for 3—X&~ 6I(o) &~2. In this
region both factors in the integrand are de-
creasing, and one has contributions only from
values of 1 near /p. This is equivalent to the
statement that most of the showers recorded will

be vertical, and follows from the fact that we are
dealing with counters that are close together
deep in the atmosphere. In this region, again
using the method of steepest descents, the

where we have used again Ii =la/25.
%'e may now consider an experiment in which

an N-fold set of coincidence counters, each of
area A, is used to record shower counts at a
depth /p. Since the probability of recording a
count is (1—e "~)~, we must integrate this over
the di6'erential density spectrum at the point of
observation. In the integral spectrum (8)
enters only as 6 ', so that the counting rate is
given by

I
&'(lo) ~ lo'

2~i ~,

(2 —a) (3—X —o)lo
(2 )(4a90R—')'I'(pa) l, '""' exp ———

X —1

)X-Iq t 5-oq
(I +.—»l, +I

2 ) &2 —g)

dg. ge —R(I e Ak)rr {9)—

where the fatter integra! is pmportiona! to

A'-" db b -"(1—e-')"

integra!

{2/N)" (NA /2) '- I'(N —2+ rr)

X[1+[(N—1+o ) (N 2+o)/3N]—
+ f(N 1+a) (N+ a) (N—2+a)/6N']—

= (2/N) &(NA/2) ~-.r(N —2+a) S(N, o),

which is convergent for X~& 2. Now, since
(R(o) (2 always, and usually (1, the contribu-
tions to this integral come from near the origin,
and it is sufficient to replace (1 —e ') by
be '"LI+(b2/12)+(b'/48) ] giving us for the yielding, finally,

1 (2 ) -~ t- (2 —a)lo i"i'ada p XA y'-'
C(l.)- I'(pa) I'(N —2+o)

2nri &N) "o(IN+a —3)lo+L(li —1)/2]L(5 —a)/(2 —a)] E980R'2

XexpL(2 —o)(3—g —a)la/X 1]S(N, o). (10)—
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FrG. i. Variation of counting rate with altitude for
A =200 cm', and X=2.8 and 2.9. Experimental points are
those of Hilberry and are normalized so that the sea level
point lies on the curve for X 2.8.

FrG. 2. Variation of counting rate with altitude for
A = 100 cm', and X=2.8 and 3.0. Experimental points are
those of Kraybill and Ovrebo and are normalized so that
the sea level point lies on the curve for ) =2.8.

We will see that there will, in general, be a expfp'lp(X —1)], hence proportional to
saddle on the real axis at =pp(Xp, l„A, X). The

(1 +[(y 1/2]L Qf ( )+y (p7 2+ )])width of the saddle will be principally determined

by the two I'-functions, and by the term in so that we have hnally

(2 —«)lp«' '»I'(pop)I'(X —2+«)S(N, «) expL —(2 —«)(X+« —3)lp/(lI, —1)]
&'( ) (2/&)"—

I f~ —001 X—1
(~+«—3)fp+—I

=
( 4+ —(~V'(~«)+4'(& —2+«)]

2 E2 —00) 2

X(NA/980&')' " (11)

where sr~ is obtained from

v4 (v~p) +0(&—2+«)+ [2«~p/(& —1)]
—L(5 —1)/(X —1)]lp+In(980R'/EA/p&) =0, (12)

with the aid of a table of P-functions, such as are
given by Jahnke and Emde. ' Here f(s) is the
logarithmic derivative of the I'-function, and
P'(s) is its derivative, and the P(X—2+op) can
usually be neglected in (12).

IV. RESULTS AND COMPAMSON WITH
EXPERIMENTS

There are now two ways in which the formulae
above can be used, of which the more accurate is,
of course, the more laborious. This is to solve
Eq. (12) for op for every experimental situation,
and then substitute into (11). One has to do

~E. Jahnke and F. Emde, Fenkhoeenlafeln (Leipzig,
Germany, 1933).In this book P{s) is what we call P(1+@).

this for each point on the curve that is
required. This has been done, for example, for
the altitude variation of a three counter coinci-
dence arrangement, for counter areas of 100 cm'
and 200 cm', respectively, and for two values of
X in each case. The results are shown in Figs. 1

and 2. In the former case the experimental points
are those of Kraybill and Ovrebo and in the
latter case, Hilberry. It is seen that the agree-
ment leaves something to be desired, especially
at high altitudes. The assumption of poin t

geometry breaks down there, but in the wrong
direction, as will be discussed later. At sea level
the counting rate e "'&, so that one cannot
draw any conclusions on the point mentioned in

Section I.
If one does not vary the parameters over too

large a range, one can obtain a good estimate
without much trouble. We notice that the results
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are, to a large extent, characterized by the value
of op. For example, if one differentiates Eq. (10)
with respect to lp, the result is multiplied by
(2 &r—)(3—X —p)/(X —1) plus some other terms
that are not large if one isn't near the top of the
atmosphere. This is a slowly varying factor and
mill not change the position of the saddle, so
that one has, to good approximation

d C(Io)/dfo = —[(2—po) (&+~o—3)/(& —I) ]C(Io)

27 cm
54

129
258
516
774

1032

TABE.E I.

1.66

1.63

2.23+0.18
2.45~0.25
1.65+0.05
1.48~0.06
1..70~0.04
1.63+0.03
1.66+0.0,~

[C(3)/C(4) J their, X ~2.8, 4 ~23.5 [C(3)/C(4)] ~p

( occoni, Loverdo, and Tongiorgi as shown ill

Table I if one chooses X=2.8. Small variations
~o)(~+~p )/(~ ) jfpj (13) of X do not essentially change this.

over not too large a range. This fits the curves
of Figs. 1 and 2 fairly well near sea level.

By a similar argument, one can find that the
variation with A is given by A' ".At tp=23 5)
around A =100 cm' and ) =2.8, one finds that
Op =0.54, so that the variation with area should
be A' "in good agreement with the experimental
results of Cocconi, Loverdo, and Tongiorgi. One
finds similar agreement with their work at
lp=18.5, after their correction for effects of the
mof. They have performed these analyses by
graphical integration and find the same results,
r.ombining the eRects of changes of A and X.

For the variation with N one finds, in the
sanle way,

C(¹)/C(¹)=2"' "'(¹"'/¹"')(¹/¹)'"
y [I'(¹—2+&ro)/I'(¹—2+ap) j

X[S(¹,o.p)/S(¹, pp)], (14)

or, in the special case when %~ =3, %~=4,

C(3) /C(4) = [8/3(1+ ~o) j(4/3)'"

X [S(3,~o)/S(4, po) ], (14')

which again seems to be in fair but not fully
sa t isb story agreement with the experiments of

V. SOME LIMITS OF VALIDITY

We wish now to estimate the effective radii of
the showers we are considering to find the
limitations of the assumption that the counters
are at one point. Since we will only be interested
in distances of the order of a few meters, it will

be sufhcient to consider the radial distribution
of shower electrons to be following a 1/r law.
Thus d Pnb'/2s R'p =Pnh/2orRr Since th. e densi-
ties we are counting are of order 1/A, the
important distances are r Pr&hA/2mR, where
g & gt(5—) —2 0)/(& —I)] &0 SO

r-(kA/20R)e«' " '"»'"—
For areas of the order of 100 cm' and X 2.8,
the coefficient of lp in the exponent is close to 1

at high altitudes, so r (i&A/20R)e'o. Now for
A =200 cm', k p, r e&o/10o meters, which be-
comes of order 1 meter at lp 11. At sea level
one finds r 2Q meters. Thus, below lp 11 one
can expect our formulae to be valid, and at
higher altitudes to be a sort of upper limit to the
counting rate (limiting curve as counter separa-
tion approaches zero). It is therefore of particular
interest that the experimental points in Fig, 2

tie above the theoretical curves.


