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times the experimental value of I'(I), which is
certainly very plausible. At these short times, the
calculated values depend very sensitively on the
values of the disintegration energies and life-
times of the primary 6ssion products. The agree-
ment with experiment at these times thus lends
some support to the assumptions which governed
the choice of the initial energies and lifetimes
which were (1) that the parabolic mass formula
holds for nuclei quite far removed from the
region of stability and (2) that the chance of
finding a given charge on the primary 6ssion
product is given by Eq. (5).

The authors are very much indebted to Mrs.
N. Dismuke and Mrs. G. Haines for help in cal-
culating values for the theoretical curves, and to
Mrs. A. T. Monk who gave much appreciated
assistance with an earlier report on which the
present one is based. They are greatly indebted
also to members of the Chemistry Divisions of
both Argonne and Clinton Laboratories for many
helpful discussions and clarification of experi-
mental data. This article is based on work per-
formed under Contract No. %-35-058-eng-71 for
the Manhattan Project and the Atomic Energy
Commission at Clinton Laboratories.
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In the present note the eigenfunctions of the problem have been transformed into a form
suitable for numerical calculations.

I. THE INTEGRAL EQUATION FOR THE PROBLEM

HE non-relativistic one-electron problem
for a Coulomb field has been treated in the

momentum representation very exhaustively and
from several points of view. ' As far as I know
the corresponding relativistic problem for a
Dirac electron has, however, not yet been dis-
cussed. In the present note we will, therefore,
deal with this problem.

In this section we deduce the integra) equation
for our problem. For this purpose we use the
operator~

+ao

T. . . I' I' I'
d~ydz, -wa&u~„+r». . . (1)

k&J ~

($, s, i= moment um components)

which transforms the space coordinate repre-

H Weylf Zeits. f. Physik 48, 1 (1928); E. Podolsky and
I.. Pauling, Phys, Rev. 84, 109 (1929); E. A. Hylleraas,
Zeits. f. Physik 'I4, 216 (1932); W. Elsasser, Zeits. f.
Physik 81, 332 {1931);V. Fock, Zeits. f. Physi 98, 145
(1936).' Cf. W. Pauh, Heedbuck der Pkysf'k xxlV', 22T (1933),
second edition.

sentation
u(x, y, z) = (ap, uf, uf, N4)

of the Dirac wave function into the momentum
representation

TN(x, y, z) =v((, vy, i) = (vz, zp, el, v4).

Making use of the well-known formula'

u 1 I t' ~((', s', i')
T———

(5' 5)'+(n' ~)—'+(f' i)'—
Xd $'d g'd i'

~ We can get it using the Fourier integral theorem and
the integral relation given by Weyl, see reference 1, p. 41.
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Since vie also have

T[ ih—(a/8x) u7 = fe,

the application of (1) to the Dirac differential

equation

Z8
Hu= F.+ +P—Fp

where

(F(2y+n'+ 1))' 1

I'(2y+1)(n'!)& (4X(%+1+1))&

(2PO) ~ F n'+y
x]

&I. ) '

+co
Ze'+-

a ~ ~ &

(&', .', i')
(&' &)*+(s-' .)*+(1'-i)'-

Xd A~'di'=0 (2)

( 8 8 8't
ic—k( ag +—ag +—ag —

I
u=0

Bx 8y Bs)

yields the integral equation

M+Wo+e(a~&+ 2~+a81-) js(&, S, f)

and F(a, P, p) means the conAuent hypergeo-
metric function. 4

To calculate v(&, g, 1) we introduce into T,
instead of the Cartesian space and momentum
coordinates x, y, s and P, g, t', the polar coor-
dinates r, 0, C and p, 0, s, respectively, and
replace r by r = (h/2po) p and p by p =go~, where

pa ——(Zo/c) (1—e') &. Applying the procedure used

by Podolsky and Pauling' for a non-relativistic
hydrogen atom we obtain

This is a system of four linear integral equations ~"(P) ~& ~(0~ @)

for the four functions v1, v2, va, v4. ~'h~ (po 't
= Y ~ h — &d .

replaces only the variables 0, 4 of the spherical
harmonic by 8, s, while the radial function h(p)
goes over into a function H(e) of e.pl m+1 t

—&—
I

1'&+&, (0, C)iR(r),
I, 2i+3 )
t'i+m+2'l &

u, =(
2&+3

Fi+,, „+,(0, 4)iR(r),

(i+m+1):
u, =

I ) Yg, „(0,C)S(r),
21+1 )
I'l —m$ &

+i(0, C, ')~(r)
g2l+1)

h~ 1 (pe)
H(o) =i' &(~)4+) )

—
I
~'d u

4VZPp' (e)& ~ 0

(3) The factor i'(h&/4v2PO') causes that eigenfunc-
tions normalized in coordinate representation go
over in eigenfunctions normalized in momentum

representation.
The application of the operator T to (3) gives

us, therefore, the eigenfunctions in momentum
representation in the form'

Putting
2PO

v = ((1+1)'—a'~')',
h

G. THE EIGENFUNCTIONS IN MOMENTUM
REPRESENTATION

lee obtam a elution of (2) a l in the The aPPlication of T to a function of the form

operator T, Eq. (1), to the corresponding eigen- h(p) Y(, „(O, 4)
functions in space coordinate representation.
For j=i+) they are given by

N = ((n'+y)'+a'Z') &

(n'=radial quantum number) the functions R
and 5 are expressible in the form

R=A(1 a)&e »'p& 'In'F( ——(n' —-1),2y+1 p)

+(%+i+1)F(—n', 2y+1, p) I,
5=2(1+e)&e 'I'p" 'I n'F( —(n' —1), 2y—+1, p)

+yr+&+1)F(—n', 2~+1, p) },

' Cp. H. Bethe, Ha,ndbuck de~ Physik XXIV, 316, second
edition.

~ The fact that e(g, g, g) has the same form as u(x, y, s)
Eq. (3), can be proved also directly. The form (3) of
e(x, y, z) follows from the supposition that e is an eigen-
function of the operator corresponding to the s com-
ponent of the total angular momentum and the operator
P((me)+k), where m and e are the orbital and the spin
angular momenta. But both these operators are of the
same form in both our representations, because this
statement is true for the operator corresponding to the
orbital angular momentum m. Therefore, e(g, q, g), being
M eigenfunction of these operators, has the form of
u(x, y, s}.
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Using

f'l m—+1& &

z& -—
l

—
I &&+&,„(e, q)M(o),

2l+3 )
(1+m+2i ~

so=
l

—
I F(~g, „+g(8, y)M(o),

2l+3

~l+m+1i ~

so=
l

—

I
Y'i, „(&, o )iv(o),

2l+1

!l—my~
I

1'~. +i(~, o)&(o).
(2l+1)

Denoting by G& the function G in which J&+~
(k)

has been replaced by H&+g, we get

G = ~o(%+Go),

where, for instance,

1
Gg(v, P, I, l, o)=,' e- ~o'p' +&

(o)' ~ o

n& (po'!
XF(—v, l!, p)H~)l —Idp.(2

Since

G(v, P, b, l, o) = e-»'p'+&
(o)' & o

(po'!
x+(—,P, p)J+)l —Idp, (4)

~(—v, P, p)

V ( —p)"=.!ry) g (S)
o n!F(v —n+1) I'(P+n)

the functions M(o) and N(o} are given by 1'(s)e-"p'-'dp= for R(a) )0 and R(s) )0,

N(o) = —B(1+o) &

X I
—n'G(n' —1, 2y+1, y —1, l, o)

+(N+l+1)G(n', 2y+1, y —1, l, o) I,

r(n m+ S—+.2)(1+m)!
(—1)"

„on!F(v n+1)—I'(P+n)m!(m —l)!

M(o) =+8(1—o)&

X { 'G( ' —1, 2/+1, y —1, l+1, ) weg«

+(X+i+1)G(n', 2y+i, y —1, l+1, o)}, , , (, ,) 2
) ( )(~)' . o

where

(F(2y+n'+ 1))&

F(2y+1) (n'!)& (X(%+1+1))& 4po&
But using

o—we+5+2

on+1 (1 oo)
(6)

i

�i+0
l

Our last task is to give the function G., (4), a ~l lr' +1' (n+~+ )

form suitable for numerical calculations. To get
an expression for J~~ app1icable for all r we use

the Hankel functions Hg+~ and Hg+g
(&) (&) F(n+ 8+2)

where

(&) (&)
J~+)(z) = —',(H~g(z) +H~+)(z)),

or

(1+m)!F(n m+6+2) (—o+ol "
m!(l —m)! I 2o )

(2'! 1 ', 1 (l+m)! (o l " 1
H (.)=I-I'--"- Z'—

(or) o m! (l —m)! (2) z"+&

(~)
and where for real z the function H~+~(z) is

(&)
equal to the conjugate complex value of Ho+~(z).

t' r(p) r(.+1)
Fl —v, 8+2 —m '

1 oo) 1'—(8+2 —m)

F(n —m+8+2) t' 2{—
,n!r(.—n+ a)r(P+n) & 1 oo)—
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we can write Gj. in the form

2 1
G1(v, p, 8, l, I)) =i {'+'& v!I'(p)—

(tr) & o

I'(n+ 8+2) ( 2 ) ++5+2

xg
„ I& n!I'( —v n+1}I'(P+n) i, 1 —io')

i+0 )
XFI l, l—+1, -(n+b+1),' 2~)

2 ' (l+n2)!I"(b —tn+2) i
i —"+'&

(tr) k ~ tn t(l )n) t 12~+

( 2 ) 2+2-m 2
ZI —., b+2 —m, P, I. (7)

&1 —io)
'

1 —io)

G2 is given by the conjugate complex value of 6&.
For the calculation of G1 we can use (6) or (7)

for all values of r. But the practical use of this
formula is very tedious, especially for small

values of cr, because we must use complex
numbers. For Ia I (1, however, we can obtain
for 6 a real expression. Using

.—I' -++V, , I

—Id,' &2i
I'(n+l+ &+3)

~(1+l)
(n+b+l+3 n+8+l+4

x&I , l+$, —0'
2

'
2

we get with regard to (5) the function G in the
form

vtI'(P)
G(v, It!, b, l, 0) = 2' 1+212

I'(i+ s2)

I'(n+l+b+3)
( 2)a

„ I& n!I'(v n+1) I—'(P+n)

(n+l+ 8+3 n+l+ 8+4
XF , l+s2 —122

2

we wished to obtain.
But this formula can also be further trans-

formed into a form which contains formally only
one summation. VA'th the help of well-known
relations we get

(n+l+ 8+3 n+l+b+4
F , l+ —',,

—0'
2

'
2

(n+'i') l+—1 n+ b —l+2
-+~+&, —

2 2

+l+1, —,'+l+1, 122 —
I

(n+b 1+—1& (n+b l+2—&

I'(1/2)

I'(l+ -', ) d I+1

X
(n+b+l+3& (n+b+l+4't d( —o')I+'

fn+b —1+j n+8 —3+2
xFI

2
'

2

I'(n+ b —l+1)I'(l+ -', ) d'+'
—( 1) l+122l+1

(2l) ~I'(n+ 8+i+3) d(o 2) '+'

X {(j itr) —{++II—l+1)+(1+i~)—{a+5—1+1)
I

Therefore, we have

G(v, p, b, l, o)
221+2 d l+1

= ( —1) '+' I'(8 —l+1)0'
(tr)& d(0')'+'

) 2 1+1 (—
x

I . I ~l -vb I+I, fl, -
&1+io) E 1+i{v)

( 2 )5—l+1 (+I . I Fl —»b l+1 P
&1 2o)— '1-iaj

A similar expression for G~ can be obtained
from (7), using

I'(V)
F( l, l+1, y, x)—= x'—2'(1 —x)2-I

I'(v+l) dx'

X (xt+&—'(1 —x) ' &+')


