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The ratio o(y,p)/o(y, e) can now be calculated
from Eq. (19) of the paper of Weisskopf and
Ewing9
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The integrands give the relative numbers of
protons and neutrons that are emitted with
energy s (in Mev), where the maximum energy
eo is the diA'erence between the y-ray energy
and the binding energy of a nucleon. For the
energy range under consideration, the sticking
probabilities, g„and g„, are taken to be unity,
and the cross section for neutron capture, S„(e),
is taken to be the nuclear area. The proton
capture cross section, S~(e), can be found from

Fig. 1 of reference 2. The dependence of ~~ and
the residual nuclear level densities on the oddness
or evenness of Z and A will be ignored here.

The relative energy distributions computed in
this way for the emitted protons and neutrons
are shown in Fig. 1 for Z =30 (a =0.30 Mev) and
in Fig. 2 for Z =50 (a =0.17 Mev); it is assumed
that &0=9 Mev. The cross-section ratios can be
found from the areas under the curves:
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0 (y, n) 0.020, Z = 50.

These values are in good agreement with the
experimental results, ' but indicate a somewhat
more marked dependence of cross-section ratio
on Z than is observed. This suggests that the
statistical model is inadequate for the smaller
group of Z values covered by the experiments,
especially since rather large Auctuations are
observed there. Experiments on the energy dis-
tributions of protons and neutrons emitted by
the same compound nucleus would be helpful in
clarifying the nature of the processes that take
place.
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lt is of interest to consider the dynamic stability of atomic or molecular systems which
contain a positron, e.g. , e CI . This paper examines what information about this stability
can be obtained without elaborate calculations, (a) from experimental data descriptive of
hydrides and of the hydrogen molecule or molecular ion, and (b) from existing calculations
of the energy of light polyelectrons. The procedure (a) suftices to guarantee stability only
when the positron is replaced by a positive meson which has a mass of the order of twenty-
electron masses or more. The second procedure allows a certain lowering of these approximate
minimum mass values, in a special case to a few electron masses. The various numerical results
are obtained very easily. They indicate that negative atomic ions can have a positive positron
aftinity.

I. INTRODUCTION

ECENTLY Wheeler' envisaged the existence
of short-lived atomic or molecular systems

which contain a positron, e.g. , e+Cl-. At present,
even the question of the dynamic stability of
such systems remains unanswered.

*Frank B. Jewett Fellow, 194'l-48.
' J. A. %'heeler, Ann. N. Y. Read. Sci. 48, 219 {1946).

In a quantitative investigation of this sta-
bility the approximate methods of atomic or
molecular theory do not seem well adapted. In
the 6rst place, the electric charge of the positron
has the opposite sign of that of an atomic elec-
tron. Secondly, the adiabatic approximation,
which is justi6ed in the case of ordinary mole-
cules (Born-Oppenheimer), cannot be expected
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to remain valid when the mass of one "nucleus"
has been reduced to that of an electron. (If this
approximation be valid for a "di-atomic mole-
cule, " irrespective of the mass of one "nucleus, "
and, provided we can consider the zero point
energy inversely proportional to the square root
of the reduced mass of the "nuclei, " one easily
finds that the mass of the hydrogen nucleus (e.g. ,
in HCI) can be reduced to the order of a few
electron masses before dissociation occurs. )

The simplest system of the kind under con-
sideration is e+H, which results when one proton
is replaced by a positron in the moIecular
hydrogen ion, H~+. Clearly, the same system can
be obtained by adding a positron to a hydrogen
atom. It is we11 known that a negative electron
can combine with a hydrogen atom to form the
stable negative atomic ion H, or e H. Classi-
cally, one would then expect that e+H would be
unstable. That this argument is not valid can be
illustrated by the fact that the bi-electron, e+e—,

can form a stable tri-electron when an electron
of6 Iker sign is added. On the other hand, e+H

results from the stable tri-electron e2+e when

the mass of one of the positive particles is in-

creased. Again, however, increasing the mass of
one particIe, keeping the charges unchanged,
does not necessarily mean that a more stable
system results. Thus, when in H one of the
electrons is replaced by a negative meson (of
mass 200m), the second electron will no longer
be bound. ' Hence, we conclude that qualitative
arguments can hardly be applied to the problem
in question.

It is the purpose of this note to examine what
information about the dynamic stability of
systems containing a light positive particle can
readily be obtained from experimental data de-

scriptive of ordinary molecules and from existing
calculations of the energy of light polyelectrons.
In an investigation of this stability the Schroe-
dinger equation can be assumed to be valid, that
is, we can neglect the 6nite probability of
annihilation and we can apply non-relativistic
quantum mechanics (cf. Wheeler, reference 1).
Since the results one obtains in this way are not
conclusive when the particle in question is a
positron, we shall not attempt to discuss the

' E. Fermi end E. Teller, Phys. Rev. 'D, 399 (1947}.

~arious questions which arise in connection with
the formation of such systems.

II. APPLICATION OF MOLECULAR %AVE
FUNCTIONS

We shall understand by "system 3f" an
ordinary molecular system which contains at
least one hydrogen nucleus (mass M), and by
"system p" the corresponding "molecule" in
which a particle of mass p, plays the role of a light
isotope of hydrogen. We shall proceed to deter-
mine approximate minimum values of p, which
are consistent with dynamic stability for system
y in various cases.

In the following it will be understood that we
are dealing exclusively with the ground states of
the two systems under consideration.

The respective wave equations differ merely
in the multiplicative constant of one of the
kinetic energy terms. When the part of the
Hamiltonians which is common for system 3II
and system y is denoted by H', the two equations
can be written

and

We will now let fsss approximate f„ in the
sense of the variational method. Assuming nor-
malized /is, we obtain

where

According to the last equation, T is the mean
kinetic energy of the proton in system M. This
quantity can be obtained rather accurately from
the zero-point energy of that molecule. The
lowest vibrational level corresponds closely to
that of a harmonic oscillator, that is, one-half of
the zero-point energy represents the kinetic
energy of the nuclear vibra, tionq,
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TABI,E I. Approximate lower limit values f'or the mass p of a positive particle which can replace a hydrogen nucleus in
a molecule (system M).

System 3E

C,miniIIluIIl) in llnlts of 51

Hg+ HBe' HC'~ HF1' HNa» HCII' HK» HCa"

40 38 32 22 33 21

The total energy E~ is known only for the
lightest hydrides, but since it is only the dif
ference E„E~th—at enters the left-hand side of
(4), the dissociation energy Dii is all that we

need know in order to be able to apply the
inequality.

The last statement becomes evident when we

write
B~= —R~h+E„p —D~, (6)

p(M+m)8 = —— Rygk+Z„g —D„.
M(p+m)

ln (6) the term —RHk is the energy of the
hydrogen atom, and E„2 the energy of the
partner atom, which consists of all but two of
the n particles which form system zV.

The reason why we need consider only the type
of dissociation indica. ted in (7) is that the first
term in this equation will have a value between
—6.77 ev (p=m) and —13.53 ev (p = M), while

no atom is known to have an electron afhnity
which exceeds a few electron volts. '

It should be understood, however, that in

writing down Eqs. (6) and (7) we are assuming
that system M is a neutral molecule. VÃhen

system 3f is a molecular ion the equations will be
somewhat di8'erent,

The exact wave function f~ is not known

explicitly for any molecule. The preceding outline
shows, however, that our ignorance as to the
form of the function used in the variational cal-
culation is remedied by available spectroscopic
data. When we combine the inequahty (4) with

the proper experimental data, we readily 6nd
minimum values of p, consistent with stability
(D„)0). Some of the results one finds in this
way are given in Table I.**

Sma11 minimum values are favored by low zero-
point energy (hydrides of group I in the periodic

' Cf. H. S. %'. Massey, ¹getiw Its (Cambridge Uni-
versity Press, Teddington, England) 1938).

~*The experimental data have been taken from the
book by G. Herzberg, Mobmlar Spectre end Nolecekr
Structure (Prentice-Hall, Inc. , New York, 1939).

table) and by large dissociation energy. Since the
latter energy is not known to a high degree of
accuracy for all hydrides, the values of p, given
in Table I may need slight corrections. Such cor-
rections can be of but little signi6cance in the
present approximation, however.

According to the variational character of the
treatment which has been outlined above, the
various systems p, will be dynamically stable
when p, has a value exceeding the minimum value,
e.g. , when the positive particle is a cosmic-ray
meson. Furthermore, the possibility is not ex-
cluded that the correct lower limits are such as to
include a positron.

However, the values given in TableI are still
so high that the adiabatic approximation may be
essentially valid.

III. MODIFICATION OF Q IN ACCORD WITH THE
VXIUAL THEOREM

%e shall now proceed to modify the unknown

Pv in such a way that we obtain a function which
will be a better approximation for P„, at least as
far as the energy is concerned. This is possible

by what amounts to an application of the virial
theorem. f

In the way familiar from variational calcula-
tions of binding energies, we introduce a param-
eter k by writing

f~ =fiick(r, ) = y(kr, ), i =1, 2, , N. (g)

Furthermore, we shall use the following abbrevi-
ations:

v~'dr;.
r

T„ i= —Q — P~ Vi'/~dr,
—~2m;~

and we denote by V the corresponding matrix
element representing the total potential energy.
An apostrophe will be used to indicate that

f Cf. V. Fock, Zeits. f. Physik 63, 885 (1930}.
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whence

M
E„N'&k'i T'+—T„' i+tV'.

I p,

We minimize the right-hand side of (11) with

respect to the parameter k. This minimization
actually means that we modify fir, given by (8),
in such a way that we obtain an approximate P»
which will be in accord with the virial theorem.

The result can be written as

p3E
&»( —(V')'/4N'~ —T'+T. i' ). (12)

Ep )

(Strictly, we should keep the possibility open
that (12) be an equality, since the modification
of fir leads to the correct P» in the case where the
system 3f is the hydrogen atom. This case, how-

ever, does not concern us at present. )
We can omit the apostrophes in (12). The

omission is equivalent to a multiplication by k'

of both numerator and denominator in the right-
hand side expression.

Similarly, we can write

Eir = —V'/4N(T+ T i). (13)

Again we assume N = 1. Furthermore, ac-
cording to the virial theorem we can substitute
2E~ for V. From the preceding relations we then
obtain the inequality

~M pT
&z

(14)

This inequality requires for its applicability
the value of the total energy E~ and not merely
the dissociation energy D~, as was the case when
we apphed (4). Zis is not known with accuracy
for heavier hydrides. However, even when system
3f is HLi, and more so for heavier hydrides, the
two inequalities (14) and (4) are approximately
equivalent.

matrix elements are given in terms of rp(ri)
rather than /jr(ri), as in (9).

Corresponding to (3) we have

M
E,„N&—T+T„g+V,

UVhen system M is either H&+ or H& one easily
finds that the relation (14) guarantees stability
for system p, provided the mass p, is greater than
about 20-electron masses, as compared to roughly
24-electron masses which was the minimum value
resulting from inequality (4) in these cases.

IV. APPLICATION OF APPROXIMATE POLYELEC-
TRONIC WAVE FUNCTIONS

We shall once more consider the two special
cases in which system M is either H& or Hm+.

When system M is H~+ then system p, consists
of a hydrogen atom plus the positive particle of
mass p,. This system can be obtained from the
positive tri-electron e2+e—when in the latter we

replace one positron by a proton and the other
positron by the particle p, .

The wave equation for the tri-electron and for
the corresponding system p can be written

Vx'+ Vs'+ V3'

(1 1 1i
+2i + (+Zi ~i=0 (15)

Kr 1 r2 r 12 J
and

tm m
V12+ Vge+ V32

i~

+2( + I+&» 'f» =0 (16)
Er, r, ri2&

respectively. In both equations, 1 and 2 refer to
the two positive particles and 3 refers to the
negative electron. The unit of length is the atomic
unit of length, a~, and we have used R„Ig as
energy unit.

The similarity of the two Eqs. (15) and (16)
permits a simple application of Hylleraas' cal-
culations of the energy of the tri-electron4 to the
problem of the dynamic stability of our system p.

Consider a function q which is symmetric in

r~ and r~ and which does not depend upon the
third distance (rim) between the particles. Since
in this case

)t (~is )'&r = (&iv )'&r = 2 (~ir )'-~r (1'I)
J

' E. A. Hy11eraas, Phys. Rev. 'Fl, 491 (1947).
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we readily obtain the following inequality

4E)'

m tn—+—+2
M p,

(18)

When this value of E~' is inserted into (18),
one now 6nds that system p, will be stable
provided p&18m. Thus, we have obtained a
slightly lower value for p, , above which stability
is guaranteed, as compared to the values 24 m
and 20 m of the preceding sections.

Next, let us consider the case in which system
M is the neutral hydrogen molecule, H~. System
p can then also be obtained from the quadri-
electron, e&+@2, by replacement of the two
positrons by one proton and by the particle p, ,

respectively.
The existing calculations of the energy of the

quadri-electron have been made by using vari-
ational functions which do not contain the two
distances between identical particles and which
are symmetric with respect to exchange of elec-
trons, exchange of positrons, and exchange of the
two electrons against the two positrons.

Assuming this kind of function, and by a
procedure similar to the one above, we arrive at
an inequality which di8ers from (18) merely in
that E&' has been replaced by the approximate
energy E,' of the quadri-electron.

If we take the value —1.00858„h for E,',

In (18) E,' is the approximate energy of the
tri-electron which results from a variational cal-
culation by means of the function q. In Hyl-
leraas' calculations p contains parameters which
ape given the values which minimize Et,. It
follows from (18) that these values are at the
same time the best values we can give the param-
eters when p is taken to approximate the wave
function of system p, .

Hylleraas obtained the approximate value
E~'= —

~ X1.02762Rk when y had the form

q = e &'(1+c2tm+c4t4+c~t');

s = r I+r2, I = r2 —rg.

which results from a variational function having
the character of a linear combination of some-
what generalized "atomic" functions, ' we 6nd
that the system p, under consideration will be
stable for p greater than about 5 m.

A linear combination of "atomic" and "ionic"
functions' yielded a slightly lower value for 8,'.
The corresponding minimum value of the mass p, ,
consistent with dynamic stability, is found to be
roughly 4.5 m.

V. CONCLUSION

The successive lower limit values which we
have obtained in the particular case when system
M is the hydrogen molecule, namely, 24-, 20-,
and 4.5-electronic masses, show that the choice
of variational function is essential for the result.
However, not even the function which gave the
lowest value, 4.5 m, can be considered to be a
very good approximation for the system p, when
p, is small compared to the mass of a proton. The
symmetry properties mentioned above are not
proper in this case. Furthermore, the function
does not contain the total number of variables.

For these reasons it seems likely that this
system p, will be stable even for p=m. Further-
more, the values given in Table I then indicate
that at least in some cases we can replace the
hydrogen nucleus in a hydride molecule by a
positron and obtain a dynamically stable system,
of the kind envisaged by %heeler.
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