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CoHision and Saturation Broadening in Microwave Spectra*

HARTLAND S. SNYDER AND PAUL I. RICHARDS

Brookhcven ¹tional Laboratory, Upton, Long Island, Xnv York

{Received January 30, 1948)

A theory of spectral line shape is presented for the case of a low pressure gas where only
two energy levels {or several pairs of independent levels) are active in producing absorption.
In Section I, an approximate set of di6'erential equations is derived; these are solved in Section
II. The method of approximation is shown to be consistent in Section III, and the final results
are obtained in Section IV. A definite broadening of the lines in addition to that due to mo-
lecular collision is predicted as saturation is approached. The incident power needed for a
given effect is proportional to the square of the pressure, and the maximum attenuation
factor multiplied by the square of the half-width should be independent of incident power.

INTRODUCTION

''N spectroscopic work, it is generally appre-
~ ~ ciated that, owing to the limited population
of states, a given amount of material can absorb
no more than a certain maximum power inde-
pendent of the electromagnetic power incident
on the sample. Recent work in the microwave
region has made it possible to reach values of
incident Qux sufficiently high to exhibit satura-
tion eR'ects. There has been some discrepancy' '
as to whether this saturation is accompanied by
a broadening of the resonance absorption over
and above that due to molecular collision alone.
We shall present below a theory of spectral line
shape which, it will be seen, definitely predicts
additional broadening due specifically to satura-
tion.

This theory is based. on the following assump-
tions. The phenomena involved have three im-
portant characteristic times: the duration of a
molecular collision T, the period of the incident
radiation 1/a&, and the mean time between col-
lisions r. (a) It will be assumed that T(&1/co(&r.
(b) Only two energy levels are active in producing
absorption. (c) Molecular collision restores a
Boltzmann population.

Assumption (b) can be slightly relaxed to the
extent that no energy level shall make a transi-
tion to more than one other level. In this latter
case, the absorptions produced by the inde-

pendent pairs of active levels can safely be added
to give the total eRect of the several lines. The
results, however, must be expected to hold only
in the near vicinity of a single line or group of
independent lines.

Assumption (c) essentially states that the
eR'ects of molecular collision are to be inde-
pendent of the presence of the electromagnetic
field. A collision is to be regarded as a "violent"
event compared to the action of the 6eld.

Assumption (a) implies that the pressure must
be low. In particular, the collision diameter must
be negligible compared to the mean free path.

SECTION I

For any assemblage of quantum-mechanical
systems, the density matrix, p, satis6es the fol-
lowing differential equation (superior dots indi-
cate differentiation with respect to time).

ih p = LH, p j.
In our problem, the Hamiltonian matrix H is
given by

H =HO+ V sinspt, (2)

where the 6eld-free Hamiltonian IIO and the
parameter V are independent of t. Choosing a
representation in which Ho is diagonal and letting

p„„=e—' "'c„„;co„„=(Z„'—Z ')/h,

we obtain from (1):* Research done at the Brookhaven National Laboratory
under the auspices of the Atomic Energy Commission.' C. H. Townes, Phys. Rev. VO, 665 (1946).

~W. V. Smith and R. L. Carter, Phys. Rev. 2'2, 638
{f947},

3 T. A. Pond and W. F. Cannon, Phys. Rev. F2, 1121
(1947).

1

ihC„=sincot P,(V„,e*" &'c, c., &, e*"' ')—

In accordance with the "two-level" assumption
(b) above, we shall retain in these equations
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ihD = 2 sin(pf L Vple
'

»'c12 —c» V»et~ t2t],

phc12 sinttt~{ Vlpe D+C12( Vll V22) ]
ihc21 ———sin(pt L Vple'"»'D+c21( Vll —V22) ].

(4)

In view of assumption (a) above, we shall
neglect rapidly varying terms inasmuch as their
effects might be expected to be practically self-
cancelling over the comparatively long time
periods between collisions. We shall see in
Section I II that this approximation can be shown
to be consistent. Writing since' in complex form
and retaining only slowly varying parts, we
obtain finally

D = —(1/h) L Vlpclle'"+ Vplclpe '"], (Sa)

cl2 (1/2——h) U12De'",

c21 ——(1/2h) U»De-*",

(5b)

(Sc)

where we have chosen the following conventions:

cong = —G02I )0; 8 = 07yg —N.

SECTION II

Equations (5) can be solved rigorously. Dif-
ferentiation of (Sa) and substitution from
(Sb, c) gives:

D= —(1/h') { V»~2D

—('l l&/h) { V12cple V21c12e ].
Again difFerentiating, substituting from (5b, c)
and finally using (5a), we obtain

D= —{(}Vipl/h)2+b2}D

The general integral of this equation is

D = t2 cosQ(t —T)+P, (7)
where

Q'=({ U»I/h)'+~'

and (2, p, T are (real) constants. If the last col-

only the terms involving c», c», c», c». If
several independent pairs of levels are active,
we obtain corresponding sets of equations for
each pair; these sets can be independently
treated by the method used below. With the
definition

D c22 C11 p22 p11)

these equations become:

c~2 = ie'"
2h I

-&e—i(&(t to) —+ei(&(t tp) —P-—+~, (9)
2(Q+b) f)2(Q —8)

where y is an integration constant. Applying the
first condition in (8),

y =ie""{( t8/)b—(ltcth'/{ V&2{ ) }.
A final relation on the integration constants is

obtained as follows. Substitute (9) on the right
of (Sa) and (7) on the left. After some algebraic
reduction, it will then be found that, if the
resulting equation is to hold for all t, y must be
zero. This fact and the last of conditions (8)
enable us to evaluate (2 and p. The final result is

SECTION III

We are now in a position to show that the
approximation used in obtaining (5) is a con-
sistent one. More specifically, we shall show that
(7) and (9) plus small rapidly varying terms
form a good approximation to the solution of (4).

Make the ansats:

D=D('&+2; clp ——c12('&+c, (11)

where D('& and c»('& are given by (7, 9) and
where d and c are rapidly varying functions
which are smaller than D~'& and c»|' & by a
factor of the order of the frequency of variation.
Then d and ~ will be of the order of D&" and

Substitute (11) into (4) and use the fact that
D('& and c12(') are rigorous solutions of (5).
Neglecting terms of the order of d and c one
obtains the following results, which show that d

lision occurred at t=tp, our assumption that a
collision restores the Boltzmann population
requires the following boundary conditions on
the density matrix

C12 —0 Cplt

)

at t=0,

where D0 is the value appropriate to thermal
equilibrium. The first two conditions imply by
(Sa) that D =0 at t tp, th—is in turn implies that
T=tp in (7).

Writing (7) in complex form, substituting in
(5b), and integrating, we find:
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and c do indeed have the propert:ies assumed.

jPgg —g&(se1%+) & y $2$(0) +g s(tpi1%+) & I/ /gal
(0)

ihc=cip&" (Vii V—pp) sinppt —ie'&"»+"&'VipD&p&

These could have been used to increase the
accuracy of our solution (10).

SECTION IV

The change in the expectation value for the
energy of the system since the last collision is

given by

~+= (Pli+i+ tipp+p) to.

Using (3) and the fact that the diagonal sum of

p has the constant value unity, me may express
hE in terms of D. When (10) is used, the final

expression is found to be

AZ = (Dp&pip
~

Vip
~
'/2hQ') [1—cosQ(t —tp) j.

Since the pressure has been assumed to be lom,

the probability that a given molecule mill undergo
collision during any short time interval will be
proportional to the length of the interval and
independent of the history of the molecule. It
then follows that the probability that the last
collision occurred during the interval t —8 to
t 8 d8 is gi—ven—by e Pi'd8/r, where r is the
mean time between collisions. Setting to=t —8

above and integrating the product of these
expressions from 8=0 to 8= ~, we obtain the
average change in the expectation value for the
eneI gy.

Dp
~

Vip (
'&pipr'/2h

(tiE) =
1+v'[8'+(~ Vip~/h)']

When a collision next occurs, the expectation
value of the energy will return to its Boltzmann
value, while the excess mill be carried o6' as
thermal motion of the molecules. The mean rate
of collisions per unit volume is N/r where N is
the number of molecules per unit volume in the
two states considered. (Thus NDp is the thermal
equilibrium value for dX, the population dif-
ference of the two levels. ) The power absorbed

per unit volume is therefore X(t& E)/r.

For dipole radiation, V in (2) is equal' to the
dot product of the dipole moment and the electric
(or magnetic) field. Aasuming an incident plane
wave and alloming for the random spatial orien-
tation of the molecule,

f
Vip [' =

i ti ['8prG/3c,

where p is the dipole moment effective in the
transition and G is the average incident power
per unit area.

Making these substitutions and converting
from angular to actual frequency, the power 2'
absorbed by the gas per unit volume is given by

4p&GAN
i

t&
i
'v p/3hcr

P= (13)
(b v)'+ (1/2p& r)'+ (8p& G

i t& i
'/3h'c)

As mentioned earlier, if more than two levels
are active but if no level can make a transition
to more than one other level, then the absorp-
tions of the several pairs as given by (13) can be
added to give the total absorption.

Note that (13) reduces to the usual formula for
low G and gives the correct limiting absorption
ANhvp/2r for large G.

CONCLUSIONS

The formula (13) definitely predicts an addi-
tional broadening of the spectral line as G in-

creases. The functional form checks the experi-
mental results of Pond and Cannon' to mell

within experimental error. (It is easily shown

from (13) that, in their notation, np(hv)' should

be independent of incident power and propor-
tional to the square of the pressure. ) Since Pond
and Cannon give their results in arbitrary units,
a quantitative check cannot be made.

Because the term proportional to G in the
denominator of (13) merely adds to the square
of the usual line-breadth constant, the power
level at which any given saturation e8ect on line

shape occurs will be proportional to the square
of the pressure as noted earlier by Townes. '

Accordingly, the theory presented here pre-
dicts broadening due to saturation and agrees
with the experimental results available at this
time.

' P. I. Richards, Phys. Rev. F3, 254 (1948).


