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A dynamical system is called locajizable if its wave functions can be expressed in terms of
variables, each referring to physical conditions at only one point in space-time. These variables
may be at points on any three-dimensional space-like surface in space-time.

A general investigation is made of how the wave function varies when the surface is varied
in any way. The variation of the wave function is given by equations of the Schrodinger type
involving certain operators H"(e} which play the role of Hamiltonians. The commutation rela-
tions for these operators are obtained (Eqs. (50},{51)).The theory works entirely with relativistic
concepts and it provides the general pattern which any relativistic quantum theory must con-
form to, provided the dynamical, system is localizable.

I. INTRODUCTION

LOCALIZED dynamical variable is a quan-
d

~ ~

~

tity which describes physical conditions at
one point in space-time. Examples are 6eld
quantities and derivatives of 6eld quantities to
any order, also the position of a point particle
at a particular time and the spin variable of a
point particle at a particular time. Examples of
dynamical variables that are not localized are
the momentum of a point particle at a particular
time in quantum theory and the spin variables
of a body of 6nite size at a particular time, in
classical or quantum theory.

A dynamical system in quantum theory will

be de6ned as localisaMe if a representation for
the wave functions can be set up in which all the
dynamical variables are localized. Thus the sys-
tem composed of a number of point particles
interacting with fields is localizable. The repre-
sentation will be called a localized representation.

To 6x a state of motion of a dynamical system
one usually specifies the wave function at a
particular time. If the dynamical system is
localizable and the representation is a localized
one, each point in the domain of the wave func-
tion will refer to a set of points in space-time at
this time. The set may be an infinite one and may
be all points at this time. The wave function thus
refers to points on a flat three-dimensional sur-
face in space-time. The state of motion is then
determined by physical information which refers
to points on this flat three-dimensional surface.

From the general requirement of relativity
that physical conditions at one point cannot
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influence the conditions at another point outside
the light cone of the original point, one would
expect the state of motion to be determinable
also by physical information referring to points
on any curved three-dimensional surface ex-
tending to infinity, provided this surface is every-
where space-like, i.e., the direction of the line
joining any two points of it lies outside the
light cone. Thus we should expect to be able to
set up a wave function involving localized
dynamical variables referring to points on any
three-dimensional space-like surface S. This we
should expect as a general characteristic of a
localizable dynamical system.

The important question now presents itself.
Are atomic systems in fact localizable dynamical
systems in the above sense? This cannot be
answered at the present time. It might very well
be that states of atomic systems can be fixed
only by wave functions on flat surfaces in space-
time, owing to the atomic world containing some
features which are not describable in terms of
localized dynamical variables. It is true that all
atomic models in present use that are relativistic
are also localizable. But these models all lead to
serious dif6culties in their development. Many
people think that the diAiculties are directly
caused by the models' being localizable and are
trying to construct new theories in terms of
quantities that are not accurately localizable.
Heisenberg' s' theory of the S-matrix is a general
investigation on these lines.

It seems to be a very dif6cult and awkward

~ Ql. Heisenberg, Zeits. f. Physik 120, 513, 6'tp'3 (1943).
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problem to set up a non-localizable dynamical
system which shall be relativistic, and no work
on this subject has yet progressed very far. In
view of these difhculties I do not think the
localizable models should be abandoned at the
present time.

In most of the work that has been done on
localizable dynamical systems people have con-
fined their attention to wave functions and
dynamical variables on flat surfaces in space-
time, which form instants of time in some Lor-
entz frame. The work is thus not in relativistic
form. In order to show that the theory is rela-
tivistic it wouM be necessary to study how the
wave functions and dynamical variables trans-
form when one changes the direction of the flat
surfaces in space-time, and to show that all
physical results are independent of this direction.
This was done by Heisenberg and Pauli' for the
case of electrons interacting with the electro-
magnetic fidd. But for most theories of particles
in interaction (e.g. , the various meson theories)
it has not been done, and one does not know if
these theories are relativistic.

In the following work I have investigated
localizable dynamical systems on the most gen-
eral lines, working only with relativistic ideas.
This work provides a test for whether any theory
of particles in interaction is relativistic and gives
the conditions which must be satisfied for new
theories.

II. THE GENUG, IZED SCHRODINGER AND
HEISENBERG EQUATIONS

Let S denote any three-dimensional space-like
surface extending to infinity. We suppose a state
of our dynamical system can be 6xed by a wave
function P(g) involving variables g which are all
localized on S. The variables g may consist of
certain discrete variables, denoting positions of
particles on S and their spins, if they have any,
and may also consist of three-fold infinities of
variables, denoting held quantities on S. If any
three-fold infinities occur, then P is to be under-
stood as a functional. The wave function must
be capable of being normalized, according to an

'VV. Heisenberg and W. Pauh, Zeits. f. Physik 50, 1
(&929).

equation which we may write schematically

If the variables g contain a three-fold inhnity, we
must make a transformation which reduces them
to an enumerable set (e.g. , a transformation to
particle variables) in order to be able to give a
meaning to the integration in (1).

The surface S plays the role of the time in the
non-relativistic theory. We have, so to speak,
very many time variables in the present theory,
namely all those variables needed to fix S. We
must study how the wave function changes when
S is changed in any way, subject to the condition
that it remains space-like.

Take two surfaces S, say S& and S2, and let the
wave functions on these two surfaces be fi(gi)
and $2(g&), respectively. We have to use different
variables gi and g2 in the two wave functions be-
cause they denote diferent sets of dynamical
variables, localized in S& and S2, respectively.
From the principle of superposition of quantum
mechanics, each of the functions Pi and Pg de-
termins the other according to a linear law, so
the two functions are connected by an equation
of the form

A(gm) =&4i(gi).

where R is a linear operator that can operate on
a function of the gi variables and turns it into a
function of the g& variables. R depends only on
the dynamical system concerned and the two
surfaces Si and S2, and must be unitary in order
to preserve the normalization of the wave
function.

If the operators R connecting any two sur-
faces are known, then a wave function fi(gi) on
a particular surface Si determines a w'ave func-
tion P(g) on an arbitrary space-like surface S.
This wave function may be looked upon as a
function f(gS) of two sets of variables, the
variables needed to fix 5 and the variables g,
the latter variables being themselves dependent
on S. This function f(gS) which depends on S
forms the analogue of the time-dependent wave
function of non-relativistic quantum theory.

Let us consider a linear operator Xi that can
operate on a wave function Pi(gi) on the surface
Si and turns it into another function of the
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variables q~, which can be looked upon as another
wave function on the surface Si, For example,
Xi may be an algebraic function of the variables

q~ and of the operators of differentiation with
respect to the q~'s. Such a linear operator corre-
sponds to a dynamical variable on the surface
Sj,. Of course, it need not be a localized dy-
namical variable, as it may involve q& variables
localized at di6'erent points.

Suppose the linear operator X~ changes the
wave function Pi(gi) on Si into the wave func-
tion xi(gi) on Si. The wave function Pi(gi) on Si
will determine an S-dependent wave function

P(gS) and, similarly, xi(gi) will determine an
S-dependent wave function x(gS). We can now
look upon Xi as a linear operator which changes
the S-dependent wave function f(gS) into the
S-dependent wave function x(gS). Although Xi
refers to a particular S, namely S&, it can in
this way operate on wave functions which do
not refer to any particular S, but are functions
of a general S.

This way of looking upon dynamical variables
on particular surfaces enables us to add and
multiply dynamical variables on diferent sur-
faces. For example, the dynamical variable X&
on the surface S~ and the dynamical variable Vg

on the surface S~ can both be looked upon as
linear operators operating on S-dependent wave
functions P(gS) to give other similar wave func-
tions, and so their sum X~+ Y~ and their prod-
ucts X~ Y~, V~X~ have an immediate interpreta-
tion as similar linear operators. The dynamical
variables on diR'erent surfaces all form an
algebra.

In order to study the coasequences of the linear
connection (2) between wave functions on dif-
ferent surfaces, let us take Sj and S~ to diR'er

only by an infinitesimal of order e. The surface
S2 is thus the result of applying any deformation
of order s to Si. Equation (2) now gives

where A is a linear operator connected with the
previous R by

R =1—zeA.

The left-hand side of Eq. (3) is the sum of a
function of the q~'s and a function of the q~'s

and does not have any meaning as a single quan-

tity. (E.g. , it would have no meaning to say
that the left-hand side of (3) vanishes. ) For the
purpose of developing the theory it is necessary
to set up a connection between the domain of
the function fi(gi) and that of the function Pi(gn)
so that two such functions can be added to pro-
duce another similar function. Given a function
of the q&'s, we must be able to give a meaning to
the same function of the q2's.

The most obvious way of doing this is by in-
troducing a general set of curvilinear coordinates
u~, u2, u3 on S~, and a neighboring set of curvi-
linear coordinates, with the same names u~, ug,

us, on S~. This sets up a one-one correspondence
between points on Sj. and points on S2, and also
between directions in S~ at points on S~ and di-
rections in S2 at points on S~. Given a wave
function on Si for which certain particles are at
certain points with certain u-values and have
certain spins, we now define the same function
on S~ as having the same particles at the points
on S~ with the same u-values, and having spins
in the corresponding directions referred to the
new system of coordinates. If the wave function
on Sj. involves field variables, the same function
on S2 must involve in the same way the corre-
sponding field variables with the same u-values.

In this way functions of the q&'s can be identi-
fied with functions of the q~'s, so that we can
omit the suf6xes and write them both as func-
tions of the q's. The operator A becomes an
operator that can be represented by a square
matrix, which changes a function into another
function of the same kind. The condition that R
is unitary requires A to be Hermitian.

The method of identifying functions that we
have introduced requires all the variables q
occurring in the wave function fi(g) on Si to be
defined with respect to the coordinate system u
introduced on S~. If the coordinate system is
altered, the q's get altered in their meaning and
so the wave function for a particular state gets
altered. Equation (3) gives the law of change
of the wave function P&(g) for any small change in
the surface S& or in the coordinate system on it.

It becomes convenient at this stage to use the
symbol S to denote a parametrized surface, i.e. ,
a surface with a system of coordinates u~, u2, ul
on it. A state of motion of a dynamical system is
now fixed by a wave function P&(q) on any
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parametrized surface Sr. It is the parametrized
surface that really plays the role of the time in

the non-relativistic theory —not the surface
without the coordinate system.

We may take a small deformation of S» which

does not change the surface but only changes
the system of coordinates u on it. Such a de-
formation will cause the wave function P~(g) to
change in a rather trivial way. Thus the operator
A for such a deformation will be a trivial one
and mill not contain any terms corresponding to
interaction between the various particles of the
dynamical system. The operators A for de-
formations which change the surface will be the
important ones and mill include interaction
terms.

A parametrized surface 5» is fixed by specifying
the four coordinates x„ in space-time (p =0, 1, 2,
3) of any point on the surface as functions of the
parameters n„(r =1, 2, 3), i.e., it is fixed by the
four functions

x.=x„(n).

A small deformation of S» is fixed by specifying
the variation bx„ in the coordinates of a point
with any given parameters u,

bx„= bx„(u) .
We may resolve the displacement bx„ into a

part lying in the surface 5» and a part normal to
the surface S». The first part corresponds to a
variation in the parameters u on the surface,
say the variation, bu, =en, . The second part is
a displacement, of magnitude ea say, in the di-
rection of the unit normal n„at each point u
of the surface 5», n„being defined by

n„(8x~/Bu, ) =0, n„n~ =1, no) 0. (6)

The total displacement bx„ is thus

5x„=(Bx„/Bu„)ea„+n„ea„(7).
The deformation of 5» may be fixed by speci-

fying ea, and ea as functions of the u's. There are
two advantages in using this specification in-
stead of that provided by (5). Firstly, one may
continually apply small deformations with a„a
any differentiable functions of the u's to a space-
like parametrized surface S» and it almays re-
mains space-like. Secondly, the ea„, eu„specifica-
tion allows one immediately to separate out those
deformations for which only the coordinate sys-

tern u is changed, corresponding to a trivial
change in the wave function.

With the method of specifying deformations
by the displacements ea„ea we are able, when
we are given any deformation applied to a
particular 5, to give a meaning to the same

deformation applied to any other S. We can then
introduce a deformation operator e8 say, con-
nected with this deformation. This deformation
operator has the property that, if F(5&) is any
function of 5», i.e. , any functional of the func-
tions x„(u) that specify 5&, the same function
F(S2) of the deformed S~ will be given by

F(52) —F(Sg) = is ttF(S—g)

to the first order in e. If F(S) and 8 are treated
as non-commutative quantities in an algebra,
this equation must be replaced by

F(52) —F(5~) = is{—sF(Sq) —F(Sq) SI. (9)

With the help of this notation, Eq. (3) becomes

Cp&(q) =Aug(Q).

If we let P(gS) be the wave function on an arbi-
trary S, we get

&4 (aS) =AN(vS), (10)

in which 8 is an operator which operates on the
5 variables and A is an operator which operates
on the g variables. This equation is like the ordi-
nary Schrodinger equation of non-relativistic
quantum theory,

8
iM(vt) =It '~4(at)

8$

with (t instead of i8/Bt and A instead of It 'H
There is, however, the important difference that
non-relativistic quantum theory has just one
Schrodinger equation (11), while the present
theory has a very large number, one for each
kind of deformation that can be applied to a
parametrized surface 5. The present theory may
be compared more closely with the many-time
theory of electrons in interaction with the elec-
tromagnetic field, which theory has many wave
equations of the form (11),one for each electron.
There is still the difference, though, that in this
many-time theory all the operators i8/Bt com-
mute with each other, while in the present theory
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the various operators 8 corresponding to dif-
ferent kinds of deformation do not in general
commute.

A dynamical variable in the present theory
corresponds to a linear operator which can oper-
ate on the variables q in the wave function and
is independent of the variables that fix 5.
linear operator which does depend on the vari-
ables that 6x 5 is a more general thing, which
is analogous to a function of dynamical variables
involving the time explicitly in non-relativistic
quantum theory.

The identification of functions of the variables

q» on S» vrith functions of the variables g2 on 52
enables us to identify linear operators which
operate on wave functions on 5» with linear
operators which operate on wave functions on 5~.
This means that a dynamical variable on 5» can
be identified with a dynamical variable on 52.
Using language borrowed from non-relativistic
quantum theory we may say that, if we have
any dynamical variable "at the time 5»" we can
give a meaning to the same dynamical variable
at the time Sg.

VVe had previously a way of adding, and thus
subtracting, dynamical variables at different
times 5» and 52 by considering them as operators
operating on the 5-dependent wave function,
(this process being independent of the para-
metrization). Let us use this to evaluate the dif-
ference between a dynamical variable at the
time 5» and the same dynamical variable at the
time 52.

Take a dynamical variable X and let X» be
its value at the time 5» and X~ its value at the
time S~. X~ changes the wave function f on S~
to another wave function, which we may denote
by Xf, on S~. From (2), X~ must have the same
eA'ect on the S-dependent wave function as that
operator which changes Rf on Sm to RXP on Sa,
which is the same as changing RP on Sm to RX~f
on Sg. Thus

we may write this result

X,—X,= e&X„A]. (13)

It is the analogue of Heisenberg's equation of
motion of non-relativistic quantum theory. It is
of similar form to (9), except for a change of sign.

If we take a general quantity $~ on S~, depend-
ing on dynamical variables on 5» and also on the
variables that fix S», then on passing from 5» to
S~, g~ will undergo changes due to two causes,
a change given by (13) arising from its involving
dynamical variables and a change given by (9)
arising from its explicit dependence on S. Thus
the total change in b will be

$2 —
$g = e[$g, A —8,j.

This corresponds to the equation

d$/dt =
L $, Hj+ (B$/Bt)

(14)

in non-relativistic quantum mechanics for a
quantity P which is a function of dynamical
variables and is also an explicit function of the
time.

III. THE COMMUTATION RELATIONS

We shall suppose space-time is flat, as is
usual in quantum theory. Embedded in this flat
space we have a curved three-dimensional space-
like surface 5, parametrized by u», u&, u3. The
square of an element of length in this surface is
given by

—dx„dx& = —(Bx„/Bu,) ( xB&/ B)udugu, =y"'dugu, ,

where

p" = —(Bx„/Bu,) (Bx&/Bu, )

Thus y"' determines the metric on the surface.
The geometrical properties of the surface (e.g. ,

its curvature) are not completely determined by
the y"'. Certain other quantities

to the first order in ~. Introducing the commuta-
tor notation

XY—YX=iLX, Y$,

X»R =RXg. (12) 0"' = (Bn~/Bu„) (Bx„/Bu,)

If Sq difkrs from 8» by an infinitesimal, we
get, using (4),

Xg —Xg = —ie(XgA —AX))

n&(B'x„/—Bu,Bu ) = 0'" (16)

are needed as well. The 0"' are not independent
of the y"', but are connected with them by cer-



AUANTUM THEORY OF LOCAL IZABLE D YNAM ICAL SYSTEAIS 1097

tain relations due to Gauss, Mainardi, and
Codazzi. '

When 5 is deformed, the y's and 0's get
changed. This means that the y's and 0's do not
commute with the deformation operators like 0,.
We shall proceed to work out the more im-

portant commutation relations.
Take certain de6nite values for the parameters

n, fixing a point x„(N) on the surface S. The de-
formation operator e changes x„(u) by the
amount

ax„=.[e, x„]
from (9). Equating this to the right-hand side of
(7), we get

The equation

leads to

01

Thus

[e, v'"v„,] 0

v '"[e, v ..]+[e, v'"]v- =o

Q~tu ga
Le, v-] = —v.n- a.+v'"-

BQ„BQ„

[e, v.*]=v ~v'"[e v ]
= —v.n-[e, v'"] (21)

Using (19), this gives

OX'[e, x„]= a„+n„a„.
BQr

(17) ~av
+~vu 20tua

BQt

Let us differentiate this equation with respect to
Q,. The operator 8 is not a6'ected by the dif'-

f'erentiation, since it has nothing to do with the
values of Q chosen above. The result is thus

BXts 8 Xp 8' Ba„Bnp Bag
e, = ——a+ + a+n„. (18)

BQe BQ„BQe BQr BQ, BQe BQ,

Hence, from (15),

~Pre BG„Ba,
av &us prt +20reart

BQv BQ„BQt

with the help of

~Pue
+ +tu 0

BQ„BQ,

(22)

l3X~ BXp

I e v"]= —e
Qr ~Qe-

BX~ l9 Xp OX' Bag iIIjnpg ~ag
at+ + a+n„

BQ„BQtBQ, BQt BQ, BQ, 8Q,

8'x„8x„Bat Bn„Ba„8x&
t+ + a +n„

BQtBQr BQt BQr BQ„BQr BQ.

Ke must now obtain the commutation rela-
tion of 8, with n„. We get this by applying 8, to
Eqs. (6) which define n„. This gives

BX" BX"
[e, n„] = n„e-,

~Qs - ~Qs-

(1=1,2, 3)

Ba& Ba&
at+y"' -- -+y" —20"'a

BQt OQe BQr
(19) anil

Bn„&x" Ba„
a

OQ„BQ„OQ,

[e, n„]n"=0.

Let y be the determinant formed by the y"', These four equations are sufficient to determine
and let v„be the co-factor of the element v the four quantities [e, n„] and give
in this determinant, divided by y. Then

Le v]=Le, v"]v-v

Bv (Bag
a, +2vI —a, a„ I.

aQ, &aQt "i
' See L. P. Eisenhart, Riemannian Geometry

University Press, 1926), p. 146.

(20)

(Oxford

l9np BXg Impart

[e,, n„]= a,+v,.
BQr BZl„BQ,

(23)

as is easily verified.
Let us now introduce another small deforma-

tion operator e which displaces each point
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x„(u) on the surface S by the amount

Thus)

Bxp
5by+upcbg.

BQ„

Bxp
[S,x„]= b, +n„b„

BQe
(24)

We shall now evaluate the commutator of 0',

and S.
Applying the operator CL to Eq. (24) and using

(18) and (23), we get

Bxp l

[a, [ca, x„]]= a, b, +[a, u„]b„
BQe-

a xy axe aap a'spy aa~t

!au„au.
'

au, au. au.
" "au. l

'

Bx„Ba„
b„.

BÃp
ar+Vrs

BQ„BQ„BQ,
Interchanging 8 and S here and subtracting,
we get

[[e, Gi], x„]-[e, [e, x„]]—[e, [e, x„]]
ax„ (aa, ab

aui (au, au,

(aa„ab„
yu„i b, a. i-

"(au, au, )
axe (aaw abg

+&,. i
b„a„—i. (25)

BQ„&BQ, BQ,

Ba„ Bb
b, — a, .

BQ, BQ,
(27)

The commutator of the two deformation opera-
tors e8, and c is another deformation operator,
e'[8, S]= e't' say, which according to (25) dis-
places each point x„(u) on the surface S by the
amount

Bxpg
t' cp+ug6 c~,

BQ,

where

aa, ab, (aa„ab„
c,= b, — a, +y i

b„a„i, (—26)
au, au, &au, au, j '

The deformation operator 6 is not of quite
the same nature as Q, and S since, while the dis-
placements a„b„are functions of the Q's only,
the c, are functions of the y„as well as being ex-
plicit functions of the Q's. The c„do not, in gen-
eral, commute with deformation operators, as
shown by Eq. (22). Thus, the set of deformation
operators of the type of 8 and 8 do not form a
Lie group. If we restrict ourselves to operators
0'„, which do not change the surface Si but
only its parametrization, so that a„=b„=0, then
from (26) c, is independent of the y's, so that 6
is another operator of the same nature. Thus, in
this restricted case the deformation operators do
form a Lie group. In the general case we can get
a Lie group by taking all the deformations in
which the displacements a„, a„are general func-
tions of the y's and 0's and their derivatives, as
well as being explicit functions of the Q's.

The deformation operator 0', must depend
linearly on the functions a, (u), a„(u) which fix
the displacement of each point x„(u) on the sur-
face S. Thus 0', must be connected with the func-
tions a„(u), a„(u) by an equation of the form.

8, = Jt (a,(u)II"(u) +a„(u)II"(u) )d'u,

(d'u =duidumdu~), (28)

where II"(u), II"(u) are operator functions of u.
The II's are the elementary deformation opera-
tors, in terms of which any deformation operator
can be linearly expressed.

We should expect an equation of the form
(28) to hold also for more general deformation
operators 8 for which the displacements a„, a„
are functions of the y's and 0's. The question
then arises as to the order in which the two fac-
tors a and II are to be put on the right-hand side
of (28), as these two factors no longer commute.
In order that one shall be able to apply these
more general deformation operators to functions
of S in accordance with formula (8), it is neces-
sary that the II's in (28) should always be to the
right of their coeScients a, as this will make
formula (8) follow from formula (9) together
with the condition that each operator II applied
to something independent of S produces zero.
It should be noticed that we get a consistent
scheme when we assume that the commutator of
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two of these more general operators 8,, with the
II's to the right of their coefficients, is another
such operator with the II's to the right of their
coefficients, since the extra terms in the com-
mutator arising from the II's not commuting
with the a's will all be linear functions of the
II's with their coeScients on the left. The II's,
together with the y's and 0's, then form an
algebra with self-consistent commutation re-
lations.

The commutation relations for the elementary
deformation operators II may easily be obtained
from our previous commutation relations in-
volving integrals of the II's. For example, sub-
stituting

8= Jt {a,(u')II"(u')+a„(u')II"(u') }d'u'

(with a„a„ independent of the y's and II's) in

(17) and equating coefficients of a,(u'), a„(u'),
we get

(8a, 8b„
Le, e]=~t {

b, —a,
EBQ, BQ,

8a„ Bb+y„b„y„,—a, }II"
8u~ 8us

p&a, Bb„
+{

&8u, 8u.

Substituting the expression given by (28) for 0',

and

{b„(u') Il"(u') +b„(u') ll"(u') }d'u'

for S and picking out coefficients of a„(u)b, (u'),
a, (u)b„(u'), a„(u)b„(u'), we get

88(u —u')
{II"(u), IP(u')] =— II"(u')

BQ,

85(u —u')
—II'(u) (35)

LII"(u'), x„(u)]=n„b(u —u'). (30) { II'(u), II"(u')] =—
LII'(u'), x„(u)7 = (8x„/8u, )b(u —u'), (29)

88(u —u')
II"(u),

BQ„
(36)

Similarly from (19) we get

Bp 88 (u —u')
[II'(u'), y"*(u)7 = 8(u —u') +y"'(u)

BQg BQ,

88(u —u')
{ II"(u), II"(u')] =—

X {y„(u)II"(u) +y„,(u') ll" (u') }. (37)

88(u —u')
+v "(u)

{ II"(u'), y"'(u)] = —20"'8(u —u'),

and from (20) we get

8+
LII'(zz'), y(u)] = 8(u —u')

BQg

In this way we obtain all the properties of the
II'.

Corresponding to the form (28) for 8„ the
(32) operator 2 of the Schrodinger Eq. (10) must also

be expressible linearly in terms of the functions
a„(u), a„(u), say

~ = J"{a„(u)P (u)+a„(u)P"(u) }dzu, (38)

88(u —u')+2m(u), (33)
aQ,

(34){
II"(u'), q(u) 7= —2&II,g(u —u'),

where P"(u) and P"(u) are operators operating
on the variables g of the wave function. They
are, of course, Hermitian. The Schrodinger Eq.
(10) for a wave function f now gives

Jt {a„II"+a„II"}d'uf = )f {a„P'+a„P"}d'uP. (39)and so on.
To get the commutator of two II's, we notice

that, from (26) and (27) and the rule that co- Since this wave equation must hold for an
efficients must always be put to the left of the arbitrary small deformation, corresponding to
operators II, arbitrary functions a„(u), a„(u), the wave func-



tion f must satisfy

II'(u) f=P'(u) P
11"(u)0 =P"(u)0

(40)

(41)

Equations (40) and (41) can be combined into
the single equation

{II (u) —P (u)}/=0 (a=1, 2, 3, n)

These are the wave equations expressed in terms
of the elementary operators II, P.

The operators P"(u) are the Hsmiltonians of
the present theory and Eq. (41) is the important
wave equation. There is one of these equations
for each point on the surface S. Equation (40)
merely states how the wave function is changed
by a change in the u coordinate system, and the
operators P"(u) are a kind of momentum opera-
tor, which is simple and can easily be worked
out for any given dynamical system.

Let us take as an example a dynamical system
composed of a number of particles without spin,
the mth particle having coordinates u . The
variables u may be taken as the g's in the wave
function, so that it reads P(u ). The change in
the parametrization caused by the displace-
ments ea, (u) results in the u coordinates of a
fixed point on the surface 5 being reduced by
ea, (u), so that the coordinates of a particle u,"
get changed to u, —ea, (u ). The operator which
simply causes this change in the variables in
the wave function is —e p„c„(u ) (a/au„"). How-
ever, this operator is not Hermitian. It must be
replaced by

a a—pe Q a,(u") + a„(u") . (42){" au„- au„-"

This operator not only changes the variable u
in the wave function in the required way, but
also multiplies the wave function by a suitable
factor, so that the normalization is preserved
under the change in parametrization. M~e can
now put

~
a„(u)P"(u)d'u

= —-', Q„u„(u") + u, (u"')
Bu„Bu„

from which it follows that

8 8
P"(u) = ——,

' g„a(u-u") + 8(u-u")
QQ Ql Qu fA

a 1 aa(u —u")—h(u —u") +- (43)
Bug 2 BQ„

From this equation and

{Ilt'(u') —P~(u') }/=0. (P= I, 2, 3, n)

we can infer

[II (u) —P (u), II~(u') —P~(u')]f =0. (44)

Now the commutation relations (35), (36), (37)
may be written

(y =1, 2, 3, n) (45)

where the a's are certain functions of the vari-
ables u, u', u", which may involve the y"' at
these points. From (44), (45), and the further
wave equations

{II&(u") —P&(u") }& =0,
we get

I ~, ~(I, u', )uP&(u")d' "u

—[II (u), P&(u')] —[P (u), Ilt'(u')]

+[P (u), P~( )u) /=0. (46)

All the four terms in the {} here operate only on
the q variables in f, not on the 5 variables. This
is evident for the first and last terms, and for
the others it is easily proved. Taking the second
term, for example, we have

[[II (u), P&(u')], x„(u")]
= [[II (u), ~.(u")], P'(u')] =0

from (29) and (30), showing that [Il~(u), P&(u') ]
commutes with all the quantities x„(u") which
define 5, and hence it does not operate on the 5
variables. Thus, Eq. (46) is a condition on the
wave function f for just one 5.

Usually in quantum mechanics the wave func-
tion at one particular time is arbitrary. There
are certain special dynamical systems for which
it is not arbitrary, and the restrictions on the
wave function at a particular time are then
known as supplementary conditions. Let us sup-
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This result may be written, with the help of
(45),

[II (u) —P (u), II~(u') P~—(u'))

s(u, u, u ) }II "(u ) —P"(u") }diu '. (48)

It can now be expressed in words, the commuta-

tion relations between the cluantities II (u) P(u)—
are the same as those between the II~(u). The argu-
ment by which this result was obtained is similar
to the argument by which one infers that all the
Hamiltonians must commute in the many-time
theory of electrons interacting with the electro-
magnetic field, using the condition that all the
8/Bt operators commute.

Equation (47) now gives, with the values of
the a's provided by (35), (36), (37),

[P"(u), P'(u')]+ [II'(u'), P'(u)]

-[11(.), P (")]
88(u —u') Bb(u —u')

P"(u') + P'(u),
BQ, 8Q„

[P'(u) P"(u') ]+[ll"(u'), P'(u) ~

(49)

Bb(u —u')—[II'(u), P"(u')] = -- —P"(u), (50)
BQ„

[P'(u), P"(u') ]+[ll"(u'), P"(u) ]
—[11"(u), P"(u') ]
Bb(u —u')

f y„(u)P"(u)+y„,(u')P"(u') }. (51)
BQg

Equations (49) give the commutation relations
between the P"'s, and ought to be satisfied auto-
matically if the P"'s have been correctly cal-
culated. It may easily be checked that they are
satisfied for Eq. (43). Equations (50) and (51)

pose there are no supplementary conditions in

the present theory. There are then no restrictions
on the wave function for one particular 5, and so
the operator in (46) must vanish. Thus,

)} ~, e(u, u', u")P&(u")d'u"

—[II (u), P e(u')] [—P (u), Ile(u')]

+LP (u), P'(u')]=o (47)

concern the Hamiltonians P"(u), and are the

fundamental commutation relations of the present
theory.

In non-relativistic quantum mechanics, for a
dynamical system not acted on by external
forces the Hamiltonian operator must not de-

pend on the time. There must be a corresponding
condition in the present theory. At first sight
one would think this condition should be that
the operators P", P" are all independent of the 5
variables. This will not do, however, since it
leads to a contradiction. It would make all quan-
tities of the form [II (u), P~(u')] vanish, so that
it would make the left-hand side of Eq. (51) in-

dependent of the S variables, while the right-
hand side is not independent of them as it in-

volves the y„,. We must take the weaker condi-
tion, that the operators P", P" can involve only
those functions of the 5 variables that describe
geometrical properties of the parametrized sur-
face 5 and are independent of its position and
orientation in space-time. Thus they can involve
the y's and 0's and their derivatives, but must
not involve the variablesx„(u), Bx„( )u/8 uexcept
insofar as these. variables are contained in the
y's and Q's.

IV. SCALARS AND TENSORS

Let us consider a dynamical variable X on S.
It varies with a variation of S according to the
Heisenberg equation (13). It may be that X
remains unchanged for all changes of S such that
the surface and its parametrization are un-

changed in the neighborhood of a particular
point u'. In this case the dynamical variable X
is localised at the point N' in 5, or at the point
x„(u') in space-time. We have here the mathe-
matical condition for a dynamical variable to
be localized at a particular point.

It may be further that X remains unchanged
for all changes of S such that the point x„(u')
remains fixed, i.e., such that 5 always passes
through the fixed point in space-time where X is
localized and the parameters u' of this point are
unchanged, although the direction of S at this
point may be altered. In this case X is called a
scan. In general, a dynamical variable X local-
ized at a point x„(u') will undergo changes when S
is changed subject to the condition that the point
x„(u') remains fixed. X will then be a component
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of a tensor, referred to the Q's and the normal to
the surface 5 as coordinate system, the tensor
character of X being determined by its law of
transformation under these changes of S.

The changes in a dynamical variable discussed
above require a departure from the usual con-
cept of a "dynamical variable at a particular
time. " A dynamical variable is defined in the
first place as a linear operator operating on a
wave function on a particular S, 5», say. By in-

terpreting the linear operator as an operator on
the 5 dependent wave function, the linear opera-
tor becomes dependent on 5» and we get Heisen-
berg's picture of dynamical variables. In Heisen-
berg's picture in non-relativistic quantum me-

chanics, a dynamical variable localized at a
particular point P in space-time is a well-defined

operator. In the present theory it is not, unless
it is a scalar. In general it will depend on the
direction of the surface S» through the point P
~here the dynamical variable is localized, its
variation with variations in this direction being
given by an equation of the form of Heisenberg' s
equation of motion. It may also depend on the
parametrization of 5» in the neighborhood of P,
but this will involve rather trivial variations. It
noway also even depend on the curvature of 5» at
the point P. From the point of view of Heisen-
berg's picture, it would be more reasonable to
count the difFerent linear operators corresponding
to a dynamical variable localized at P referred
to difFerent 5's through the point P as difFerent
dynamical variables, but this mould involve c de-

parture from the usual connection betvoeen Heisen
berg's picture and Schrodinger's

Let

8*= I Ia„II'+a„II"}d'u
J

(S3)

A*= I fa,P'+a P"}d'u,

for functions a„a„, which vanish at one par-
ticular point Q in their domain. The tensor char-
acter of a dynamical variable X localized at the
point x„(u) is determined by its commutator
with A ~, in accordance with (13). Thus a scalar
commutes with A ~. Any function P of dynamical
variables and of variables which determine 5,
which are all localized at x„(u), will similarly

have its tensor character determined by its com-
mutator with A*—8~, in accordance with (14).
Thus a scalar P commutes with A* —8",

[$, A* —8,*7=0. (S4)

The four quantities Bx„/8 u„n„ for a particular
value of p with s=1, 2, 3 form the four compo-
nents of a covariant vector with respect to
the u coordinate system. Their commutators
with A* —8* are, from (18) and (23)

~Xtt ~Xtt ~Or ~Qn

, A* —8,* = +n„.BQ BQ„BQ, BQ,

[n„, A* —8*7=y„
BQ„BQ„

Any four P's with similar commutation relations
are the four components of a covariant vec-
tor. Thus the commutation relations for a general
covariant vector P, $" are

BG„BG„
[p, A*—8*7=/ +$"

BQ, BQ,

Ba„

BN„

[p, A*—e'7=pBag/Bu„

may be called a scalar density, (in a three-
dimensional sense) because the integral of such
a quantity over all Q», Q&, Q3 is independent of
the parametrization of 5. Any scalar multiplied
by y& gives a scalar density. Similarly, a tensor
multiplied by y& may be called a tensor density.

One would be inclined to assume that the
operators P", P" are the components of a second-
rank tensor density T, P" being the component
T""and P" the component T"".This assumption
would lead to some further simple commutation

I'he commutation relations for other tensor
characters may readily be obtained from this
one.

From (20)

[y, A "—0', *7= 2yBa, /8u,

Thus the determinant y is not a scalar according
to the present definition. A quantity p with the
same commutation relation as y&, namely
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relations between the P" and P". However, I do
not see any justification for this assumption in
general. It leads to dif6culties when there are
particles with spin half a quantum present, ow-

ing to such spins not being directly describable
with reference to oblique axes.

V. DISCUSSION

Any relativistic quantum theory of u loculisable
dynamicaL system will provide ae example of
linear operators P"(u) satisfying the commutation
relations (50), (51), (provided there are no sup-
plementary conditions). Conversely, any ex-
ample of linear operators P"(u) satisfying (50),
(51) will provide a relativistic theory of u localisable
dynamical system. If one accepts the assumption
that atomic systems are localizable, the problem
of getting a relativistic theory of them becomes
the problem of obtaining examples of sets of
operators P"(u) satisfying (50), (51). If no suit-
able examples can be found, free from incon-
sistencies and sufFiciently complicated to corre-
spond to interaction between the elementary
particles, one could infer that atomic systems are
not localizable,

A field theory comparable with the present
theory has been given by P. Weiss. 4 Weiss starts
with a classical Lagrangian function involving
field variables g, which provides an action inte-
gral bounded by any space-like surface S. Weiss
then introduces momentum variables p on S,
which are conjugate to the g's, also introduces
Hamiltonians, and finally passes over from the
classical theory to the analogous quantum theory.

Weiss' theory applies to dynamical systems
which are localizable and are thus subject to
the present theory, and his theory provides a
method for obtaining Hamiltonians P" satisfying

4 P. Weiss, Proc. Roy. Soc. A169, 102 {1938).

the required commutation relations. The Hamil-
tonians obtainable in this way are not of the
most general kind, but are restricted by two
conditions. Firstly, the method applies only to
dynamical systems describable in terms of dy-
namical variables satisfying the standard com-
mutation relations of canonical g's and p's—it
thus would not apply to electrons or other par-
ticles satisfying Fermi's statistics, for which the
field quantities satisfy anticommutation rela-
tions. Secondly, the g's in Weiss' theory must be
scalars, independent of the direction of the
surface S. Only the p's may depend on this
direction. '

Another quantum theory of Fields has recently
been given by Tomonaga. ~ This theory, like the
present one, deals with wave functions on arbi-
trary space-like surfaces, but uses a different
standard for identifying wave functions on dif-
ferent surfaces, based on the wave equations for
particles without interaction. A wave function
P~(g~) on the surface S~ counts as equal to a
wave function $2(g~) on the surface Sm in To-
monaga's theory if the wave function P~(q~)
on S~ leads to the wave function $2(gu) on Ss
according to the wave equation for particles
without interaction. This method of identifying
wave functions avoids the need for parametrizing
the surfaces S. A wave function will now change
on passing from one surface S to another only
on account of the interaction energy, so the
Hamiltonians of Tomonaga's theory involve only
the interaction energy. Tomonaga has developed
his theory only for the case when all the Hamil-
tonians commute, but probably his method can
be generalized.

~ P. Weiss, Proc. Roy. Soc. A169, 107 {1938),see bottom
of page.'S. Tomonaga, Progress of Theoretical Physics 1, 27
(1946).


