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The absorption coefficient of a gas is related to the
density matrix of that gas. The density matrix is obtained
formally from its equation of motion, which takes into
account a possible time-dependence of the resonant fre-
quency of the molecule and of the frequency of the exciting
radiation. The shape of the absorption line is calculated
explicitly in a variety of cases. For low frequency modu-
lation, it reduces to Lorentz's expression with a time-
dependent frequency difference. For high frequency sinus-
oidal modulation, resolved sidebands to the resonant

frequency are obtained. Finally, for square wave modula-
tion, the line shape is again given by Lorentz's expression
with a varying frequency difference, except that damped
oscillations are superimposed on the expected square wave
time-dependence. In this case, the deviations from the
Lorentz expression are no greater than about ten percent
for the zero frequency and fundamental frequency compo-
nents, if the modulation frequency is less than one-half of
the half-width of the absorption line.

I. GENERAL TREATMENT

' ODIFICATIONS of the theory of collision-
broadened lines of Van Vleck and Weiss-

kopf' have been discussed in the paper preceding
this. ' There the theory has been extended to
include the efkcts of the induced transitions on
the Boltzmann distribution. In this paper, e8'ects
of a time-dependent radiation frequency or
resonance frequency will be discussed. Since
almost all micromave spectroscopes described in

the literature use some such modulation, ' it
seemed worth while to examine the conditions
under which easily interpretable results might
be obtained. The notation of reference (2) will

be adopted. The radiation mill be considered
suf6ciently weak so as not to aAect the Boltz-
mann distribution appreciably, and frequency
modulation e6'ects mill be of the order of the
line width, which in turn is much smaller than
the resonant frequency.

The argument in I leading to Eq. (14) can now
be repeated, provided the Hamiltonian is modi-
6ed so as to include frequency modulation of
both molecule and radiation:

~ United States Rubber Company predoctoral fellow.' J. H. Van Vleck and V. F. Weisskopf, Rev. Mod.
Phys. 17, 227 (1945).' Robert Karplus and Julian Schwinger (henceforth re-
ferred to as I), Phys. Rev. 73, 1020 (1948).

s See, for example, (a) W. E. Good, Phys. Rev. 70, 213;
(b) C. H. Townes, Phys. Rev. 70, 665 {1946);(c) R. H.
Hughes and E. B. Vhlson, Jr., Phys. Rev. 7l, 562 {1947};
(d) B. P. Dailey, Phys. Rev. 72, 84 (1947); (e) R. J.
Watts and Dudley Williams, Phys. Rev. 72, 1122 {1947);
(f) W. D. Herschberger (to be published).

H(t) =HO(t) —p F cos
~

&o(t')dh'

0

=Ho+[Ho(&) —Ho]+V cos Jl ra(t')dt' . (1)
0

H0 is written for some value of the operator
Ho(t). The matrix elements will be calculated in
the representation based on the eigenfunctions
of Ho. Equation (14) of I then becomes

8 8—+f .(&)+&/ D .(~) = ——[po(~)3 ~ (2)
Bt Bt

where

» .(~)=[Ho(~)3 —IHo(t)j"

and the terms in which D is multiplied by the
magnitude of the 6eld have been neglected.
After multiplication by

exp i
J co„„(t')dt'+t/r,

0

Eq. (2) above may be integrated to give

&-.(~) = -l.o(~)j..
+J «'[~(~') j -[&~ .(&)+&/r3

the right side of this equation has been integrated
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by parts, and it is assumed that a long time has absorption is
elapsed, PWT.

As is shown in l, the matrix yo(t) may be
approximated by

=Re (1/h)p„p„„Fexp i— u(t')dt'

+(p„'—p„o)(II,(t') II,)—„/It~ „(4) where the function f(co „,ru;t) has been written
for the integral

where bc'„„=(Ho)„„—(Ho), and p' is the equi-
librium density matrix associated with the
Hamiltonian He,

y' =exp[ —Ha/k T]/Sp{exp[ —Ha/k T]I.

Now it has to be assumed that [IID(t) —Hg] .
contains no terms that oscillate at a frequency
close to au „and are comparable to V „ in

magnitude. This means that an alternating
electric field, which may be used to introduce a
time dependence into H0(t) via the Stark effect,
has no appreciable Fourier components near the
resonance frequency of the molecule. If only
resonant contributions to the density matrix are
considered, therefore, the last term in Eq. (4) as
well as the non-resonant term in the cosine may
be neglected, so that the equivalent of I, Eq.
(21), is

Xexp —i) r~ .(t")—~(t")jest" —Tlr (&)
g-T

which is obtained from the integral in Eq. (5)
by setting T= t —t' and by approximating
(u„„(t')—i/7)/co by unity, again with t&)r.

Since the transitions occur independently of
each other in the absence of saturation, Eq. (6)
may readily be extended to include degenerate
or approximately degenerate resonances:

p(t) =Ra{(1/l)p {p„„'"{
'F exp —~ a&(t')dt'

«, X "o

here all p's refer to the component of the dipole
moment along the 6eld Ii and ~ and X are
degeneracy indices. Finally, the absorption co-
eScient is

All other otf-diagonal elements of tt(t) except
p (t) will make negligible contributions to ab-
sorption at the frequency co if the resonances are
widely spaced and non-degenerate. Hence the
average dipole moment responsible for this

Transitions induced by the modulating 6elds
may somewhat alter the populations of the
initial and final states, but they wi11 not affect
the function f(cu „'",cu;t), which alone determines
the shape of the absorption line. Since all
essential information is obtained from the study
of a simple transition, the degeneracy indices
will hereafter be omitted.

The remainder of the paper will be devoted to
the evaluation of Itef(ru „,co;t) in various special
cases. Periodic modulation alone is of interest in
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g(x)dx =0,

so that
ts Qo

f((u„„,cv, t) =2J dT
0

microwave spectroscopy, because only in this
case is a quasi-steady state reached eventually.
The frequency diR'erence appearing in the func-
tion f(cv„„,co;t) may then be expressed

co „(t)—cv(t) =(a'g(vt)+(a, '* (10)

with
g(x+22r) =g(x) ~unity

modulation, for instance, is almost universally
employed to display the absorption coefficient
as a function of frequency (3); the problem of
low frequency sinusoidal modulation has recently
been discussed by Herschberger (3f); square
wave modulation of the resonance frequency by
an external electric field has been used to aid
detection of absorption lines as well as to study
their Stark effect (3d).

III. WEAK MODULATIONtt

If the amplitude of the modulation is small

compared to the modulation frequency, co'&&a,

the exponential can be expanded to give (x = vt')

CO
t2S «gpt

p — ', g( t')dt' —(' +1/ )T . (12) f( „;t)=
J

dT 1 ( / )J"s-r 0 «(f—T)
g(x)dx

It may be noticed that most of the integral
comes from values of T~~v because of the expo-
nential decrease of the integrand. It should
further be pointed out that cu' will be the same
for all members of a group of coincident absorp-
tion lines if the exciting radiation is frequency
modulated, but that au' will, in general, vary
from component to component if the resonance
frequency is modulated.

II. SLY MODULATION

If v is small compared to 1/r, the function
g(vt) will change only slightly in a time interval
of the order of 1/r The exp. onent of the inte-
grand may therefore be replaced by

—L2a'g(vt)+cv+ f/r]T
= —iLc2 „(t)—co(t)]T T/r. (13)—

Hence

so that

Xexp L
—(icv+ 1/r) T], (15)

1
Imf(cv „,co',t) = +(cu'/v)Im dT

2+ f/r2 do

~vt

Xexp L
—(2a&+1/r) T])' g(x)dx'. (16)

v(g—7')

Because it is periodic, g(x) can be expanded in a
Fourier series

g(x) = QLg, 2 coskx+g, v sinkx].
k 1

By carrying out the indicated operations, the
shape for any modulation can be obtained (cf.
Appendix A). A typical result is that for simple
harmonic time dependence, g(x) =cosx. Then

Im f(cd„„,(u;t)

(14)
La)„„(t) vu(t) ]'+ I/r'—

Physically, the line has the same shape as in
the absence of modulation; the absorption peak
is merely shifted in a straightforward manner,
according to the modulation.

This kind of modulation has found most use
in microwave set-ups. A low frequency saw-tooth

~* Observe that ~ is an angular frequency.

+
~2+1/r' L(cd v ) r2 f 2]+42 2r

[«&2 —v2] r2 3
X v7'

07 7' +i.
sinvt —2 cosvt . (18)

At low modulation frequency, v«1/r, this is
seen to represent an effective differentiation of
the absorption line shape obtained in II above.
At high modulation frequency, the time de-

ft The experimental use of such modulation was sug-
gested by Dr. +. D. Hershberger,
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pendent term decreases as (co'/v) near the line expanded in the Fourier series
center cv =0.

IV. SINUSOIDAL MODULATION exp[ —ipsinx]= Q J~(P) exp[ i—tx],' (19)
If the modulation is simply harmonic, g(vt)

=cosvt, the exponential in the integrand may be so that

00
l

t

f(Cd-, ld;t) = sdT exp $6)
J0

cosvt'dt' i"T—T/r—, (20)

pQO

f(co „,co;t) =, idT exp[ i(co—'/v) sinvt] exp[ i(co—'/v) sin(vT —vt)] exp[ —(ice+1/r) T]
~o

=i Q J,(u&'/v) exp[ —ilvt] j dT Q J,(&o'/v) exp[ is(vT— vt) ——(iso+1/r)2]
00

QO 00 (sv+(o)+i/r
P J,((u'/v) J~(a&'/v) exp[i(s —l) vt]

s=—m )=-m (sv+ro)'+1/r'
(21)

00 coskvt —(sv+&o) r sinkvt
Imf(a)„„,a&;t) =(1/r) Q J,((o'/v) J.+g(a&'/v)

(sv+au)'+1/r'
(22)

This predicts a series of absorption lines sepa-
rated by a frequency v and resolved if v 1/r;
their intensity varies as [J',(~'/v)]'. This phe-
nomenon has been observed and accounted for."

Also of interest is that component of the line
shape that oscillates at the modulation fre-
quency. It is (see Appendix 8)

00 T
a, cos(vt+ y,)

(sv+co)'+1/r'
(24)

The coeScients c depend to some extent on the

'E. T. Khittaker and C. N. Watson, &ader+ Analysis
{Cambridge Umversity Press, Yeddington, England, 192'tI'),
p. 358.

e C. H. Townes and F. R. Merritt, Phys. Rev. 72, 1266
{194'tI').

D. BIochinzem, Phys. Zeit. USSR, 4, 501 (1933).

This expression is convenient only for rela-
tively high modulation frequencies (v 1/r),
since otherwise it converges slowly.

The average value of the shape factor is
relatively simple (k =0):

(Im f((a „,(u', t))g,

CC 1/r= 2 [J.(~'/v)]' (23)
(sv+s))'+1/r'

frequency cv. This results in removing the central
line (s=0) and in distorting the side-band lines.

Similar results will be obtained for the higher
harmonics.

V. SQUARE %'AVE MODULATION

As already pointed out, square wave modula-
tion has been applied particularly successfully.
This has been made possible by the fact that a
low frequency square wave modulation of the
molecular resonance together with a still slower
saw-tooth sweep of the exciting frequency per-
mits the simultaneous observation of two ab-
sorption lines, corresponding to the two values
of the resonance frequency in the two half-cycles.
If these two resonance frequencies are suSciently
di6'erent, a Lorentz shape will be obtained at
each one. The detection of weak lines can be
facilitated by using a 6lter circuit tuned to the
square wave frequency or to any of its harmonics,
because all Fourier components of the absorption
coeScient reproduce the true line shape. Further-
more, the Stark e8ect pattern of a degenerate
transition as well as the unperturbed line are
obtained if the modulation is brought about by a
square wave electric field based on zero voltage
(3d); measurement of the splitting and square
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g(x) =+g, 0&x—2rw&w,

g(x) = ——,', w &x—2rw&2w.
(25)

wave amplitude then give the Stark effect
coefficient directly. ff

Square wave modulation will be obtained if

It is convenient to rename the frequencies

or~-, co'=or~, or ——,~ =or~.1 / - Z i

As is shown in Appendix C, the function
determining the line shape then has the following
time dependence:

~i+i/r
f(cu „,v/, t) = '{1—Ai exp[ —(icoi+1/r)(t 2wr/v)—]}, 0&vt —2wr &w,

org +1

(d2+$ T

f(a&„„,&o ,$) =—'{1—Aq exp[ (iau—i+1/r) (t (2r+1)w—/v)] }, w & vt 2rw &2w-,
orn;+ ~

(26b)

Inspection of these equations shows that the
distortion is largest at the line center. Quantita-
tively, the peak intensity is changed as follows:

where A» and A~ are complex functions of or i, or~,

v, and v. These equations show that the square
wave shape that would be predicted from the
treatment of slow modulation has superimposed
damped oscillations. The damping decreases with
an increase in modulation frequency. In the
case of slow modulation, of course, the funda-
mental frequency component reproduces the true
shape of the line.

It is of interest to calculate at what modulation

frequency the line shape becomes distorted by
the modulation. As long as the frequency v is

still smaller than the line width (vr~&~), the
coefficients A~ and A2 are practically unity.
Experimentally, also, the line is usually swept
from near resonance (cubi 1/r) to non-resonance,

(/dna&1/r), so that terms with ~2 in the denomi-
nator may be neglected. The average value of
Imf(&a„„,~;f) and the fundamental frequency
component of this function are then, to
1 percent accuracy,

(28a)

(~v i/r)/un'/(ix~&&1/ )fund=& (3/8—)v'r' (28b)

Thus the corrections are indeed small up to
v7~~. Another interesting parameter is the half-
width d'or of the absorption line. This may also
be estimated from Eq. (27) and (28):

(a(a, -i/, &A,/(D/d. «i/. )A,=1 //- vr/w, (29a)

and

(hiv „ i/, ) fillip/(6/d „((i/g) ill lip 1+(1/4) v'r' (29b).

(I+if(~ „vi;&))A.

1 T

2 cgi2+1/r'+ (v/wr) (1 a)i'r')—
VI. CONCLUSION

The efFects here are of the same order of
magnitude as the efFects on the peak intensity.
It may be noticed that the fundamental fre-

quency component is affected much less than
the average value.

(27a)

(Iwif(GO~+& td & /') )/un@

1/r
= (2/w) (27b)

ivi + 1/r y(1/8)v (3—rui T )

ff This observation prompted the author last March
to suggest the replacement of the sinusoidal modulation
used by Hughes and Wilson (Phys. Rev. Tl, 562 (1947))
by square wave modulation (B. P. Dailey, Phys. Rev. 'H,
84 (1947}}to permit better interpretation of experimental
results.

A general equation has been derived for the
shape of a collision-broadened absorption line.
When the transition frequency and the exciting
frequency depend on time, only their difFerence

enters into the final result. Hence, modulation
of the exciting radiation and modulation of the
molecular resonances are equivalent.

The author wishes to express his appreciation
to Professor Julian Schwinger and to Professor

J. H. Van Vleck for many clarifying discussions.
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APPENDIX

A. W'eak Modulation

Following Eq. (17),

g(x)«= P (1/n) Ig.„[sinnvt+sinnv(T —t)]+ g, „[—cosnvt+cosnv(T —t)] I
N~],

= P (1/n) Isinnvt[g, „—g„cosnvT g, „—sinnvTj

Using the fact that
+cosnvt[ g, „+g—,„sinnvT+g. „cosnvT] I. (Al)

re sinnvt exp[ (ico+—1/r)t] =nv/[n'v'+ (2co+1/r) 2],

ctt cosnvt exp[ —(jco+1/r) tJ = (2co+1/r)/[n'v'+ (2co+1/r) '1,
(A2)

pet

Im d T exp[ —(ico+1/r) T]~ g(2c)«
0 p(g—T)

r=Q(r/n) sinnvt—
COr [COr(CO —n p )r +1jgoo —2nVCOr geo

3r;..+
M2r2+ 1 [(~2 n2V2) r2 1]2+4co2r2

+cosnvt
cor[(co' n'v') r'+—1]g. 2nvcor2g. ,—

l

co2r2+ 1 [(co2 n2V2) r2 1$2+4co2r2 j

covr' ~ nvr[(co2 n'v') r—' 3]g —(2co2—r+21)gI.—Z sine vt
co'r'+1 o-2 [co2 —n2v2) r2 —1]2+4oo2r2

nvr[(co' n'v') r'—35g,„—2(co'r'+—1)g.„
[(co2 n2v2) r2 1j2+4cor2

B. Sinusoidal Modulation

The imaginary part of the fundamental frequency term of the shape-determining function is,
from Fq. (21),

Jg(co /v)[Jg+l(co /p)+ Jg l(co /v)] cospt JI(co /v)[Jg+$(co /v) —J~ l(co /v) jr(sp+co) sill pt

(1/r) Z
B~aO (sv+co)'+1/r2

c4 cos(vt+ cv,)
=(1/r) 2, (B1)

~=~ (sv+co)'+1/r'

J.+2(~'/P) —J.-l(~'/V)
co„=tan ' r(sv+co) J.+2(~'/v)+ J.-l(~'/v)-

—~/2&co, &v/2, (82)

cc =J (~'/v) (LJ +2(~'/v)+ J.-c(~'/v) 3'+ r'(sv+~)'[J. +2(~'/v) —J.-c(~'/P) O' I '.
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(to=2J((((u'/v) Jl(a&'/v)Tv=0 if a&=0.

C. Square Wave Nodulation

pC

f((v„„,cu; t) =) idT exp —i ' ((a (v)d—t' —T/T
0 C—T

sr„„—(d = (dl 0 & vt 2rsr &—lr
r=0, +i, +2, -.

x&vt —2rx &2g

To simplify the manipulations, it is convenient to use

(C1)

(C3)

=vt 2rsr+(k —1)lr and —t((=0 (0&vt 2rTr&s)—

= vt —2r7r+ (k —1)w —lr, to =0 (v & vt 2rlr &2l—r);

f CA+I

A. =)' dT pt —' —T/ ].
4

(C3)

onlpdrlllg (( .5) and (( ..1 ), o(le ('an see (ha(

f(au,„„,(0 ,t) =i g A'(.
k 0

(C6)

The calculation of the A(t,. will now be divided into four cases (s=0, 1, 2, ):

0&~t —2r«~
tg, & '1(fg,+y,

0&v(t —T) —2(r —s)~&~

= (fdl+(((g)(ss'/v)+(J (Tl2$'ll'/v))

A 0' = (iso ( +1/T) ' {1 —exp[ —(Tca(+1/T) (t 2r lr/v) j}, —

A 2 (i(v1+ 1/T) exp{ (i(M1+(02) +2/T)s7r/v] ex'PL (i%1+1/T) (t 2 ll/ r)jv

(C7)

(«)
(C9)

X{expL(i +1/ ) / j—1} (C10)

0 & ~t —2r«~
~2e+i & T«2.+2,«v(t T) —2{—r —s) ~ &—0

q"= ((d(+el,) (sTT/v)+ ((0l ra~) (t 2rv/v) +—cop(T —2s(r/v), —

A ~,+( = (i(d2+1/T) ' exp{ —(i((d(+co2) +2/T)sv /v jexp L
—(i(dl+1/T) (t —2rlr/v) 1

(C11)

(C12)

X {1 expL (—i(as+1/—T)sr/v'jI (C13)

x & vf —2rx &2x
(C14)



ROB E RT KA RPI. US

= (cd g+ cd z) (Ss'/ v) +cd z (T—2$zr/ v),

A Q&» = (zcdz+ 1/ r)-' {1 —exp[ —(zcdz+ 1/ r) (t—(2r +1)zr/ v) ],
A zo~" = (icdz+1/r) ' exp[ (z(cd&+») +2/r)szr/v] exp[ —(icdz+1/r) (t —(2r+1)zr/v) ]

(C15)

(C16)

X {exp[(icdz+1jr)zr/v] 1—}. (C17)

x (vt —2rm&2x
~~ +x & ~«s +~

0& v(t —T) —2(r —s)~&2~

= (cdc+cdz) (szr/v) —(cdc —cdz) (t —(2r+1)zr/v) +cd&(T 2szr/v), —

Az, ~catv = (icdc+1/r) —' exp[ —(z(cdc+cdz)+2/r)sn/v] exp[ —(zcdz+1/r)(t —(2r+1)n/v)]

X {1—exp[ —(icdc+1/r)zr/v] }. (C20)

These results may now be substituted into Eq. (C6). The sums are geometric series that are
easily evaluated. Inspection of (C10), (C13), (C16), and (C20) shows that

f(cd„„,cd,t) =i Q (A z.'+A z,+g")
e=l

(0 & vt 2rzr & zr—), (C21)

f(cd „,cd,t) =i. Q(Az, "'+Az,+c'v) (s & vt —2rs &2zr).
e 0

(C22)

The result can be written most conveniently with the aid of two constants:

1 —eXp[—(Z'cdz+1/r)zc/v] icdc+1/r
Ag= 1 — exp[ —(i(cd +cd )+2/r)s. /v],

1 —exp[ —(i(cdc+cd z) +2/r) zr/v] lcd z+1/r ~

1
1 —exp[ —(icdz+1 jr) zr/v] zcdz+1/r

Ag= exp[ —(z(cdc+»)+2/r) s/v] '.
1 —exp[ —(i(cd'+»)+2/r) /vzr] icdc+1/r

(C23)

f(cd„„,cd,t) = (» z/r)-' {1——A, exp[ —(zcd, +1/r) (t —2rs/v)] } (0 &»—2««), (C2&)

f(cd„„,cd;t) =(cd, —z/r) —'{1—Az exp[ —(zcd&+1/r)(t (2r+1)m/v)]} —(zr&vt —2rs &2zr). (C26)

It may be observed that the deviation of A& and A2 from unity depends on the expo-
nential exp[ —zr/vr]. If vries', as considered in the body of the paper, exp[ zr/vr]~exp—[ 6]—

2X10, certainly a negligible quantity as far as comparison with experiment is concerned.
With the aSSumptiOn, mareOVer, that cd,)&1/r, the funCtiOn f(cd„„,cd,t) beCOmeS effeCtiVely ZerO

during one-half of the cycle. Hence

a-lv

(f(cd „,cd,'t))A„=(cd' i/r) ' 1/2——Ac(v/2s) " dt exp[ —(i +c1d/cr)t]
J0

= {i/2(zcdg+1/r) } {1+v/zr(icdc+1/r) }

=z/2(zcdg+1/r+v/ )zr

(C27)

Taking the imaginary part then leads to Eq. (27a). Equation (27b) is derived in a similar way.


