
PH VSICAL REVIEW COLUM E 73, NUMBER MAY 1, 1948

On the Behavior of Cross Sections Near Thresholds

EUGENE P. SIGNER
Palmer Physical Iaboratory, Princeton University, Princeton, ¹urJersey

(Received January 16, 1948)

The energy dependence of the cross section for the
formation of a product, near the threshold energy for that
formation, is considered. It is shown that the cross section
is, apart from a constant, in the neighborhood of the
threshold the same function of energy, no matter what
the reaction mechanism is, as long as the long-range
interaction of the product particles is the same. The same
must hold, because of the principle of detailed balance,
for the back reaction, i.e., the reaction between particles
with very low relative velocities. In this case, the cross
section, as function of the energy, depends only on the
long-range in teraction of the reacting particles. The

energy dependence of the cross section is determined for
three types of interactions, @is. no interaction, Coulomb
repulsion and Coulomb attraction. The rule for a 1/r'
interaction can be obtained from the first case. Reasons
are adduced to show that two interactions, the di8'erence
of which goes to zero at least as fast as r~ ' with (c&0},
give the same energy dependence of the cross section.
Hence, long-range interaction in the above connection
should mean an interaction which, at large distances of
the particles, does not go to zero faster than r~. The
eEect of small perturbations in the long-range interaction
is discussed in general.

SECTION I
~HE results of the present article are prob-

ably we11 known to a great many readers:
they are concerned with the behavior of the
various cross sections in the neighborhood of the
threshold of a new mode of reaction. Examples
for the rules to be derived can be found in almost
every article which is concerned with reaction
cross sections. ' lt is believed, however, that the
generality of these rules has not been emphasized
before, nor have they been derived with the same
claim for universal validity as will be done in the
present paper. The principal interest in such an
investigation arises from the experimental dif-
hculty in measuring threshold energies without
the knowledge of how the yield of the product
approaches zero with decreasing energy. From
this point of view, it would be desirable to obtain
also an expression for the yield of reactions in

which the number of end products is three or more
(e.g. , an (n, 2e) reaction). This, however, will

not be attempted in the present article which

' It would be idle to attempt to give a full list of the
pertinent papers. SuSce it to say, therefore, that, if
there is no long-range interaction between the colliding
particles, Horn's approximation already gives the correct
asymptotic behavior even in cases in which it is quite
inaccurate as far as absolute magnitude is concerned. The
importance of the potential type of interaction (cf. Eq.
(5)) of the colliding particles at large distances was
probably 6rst recognized by P. M. Morse and E. C. G.
Stueckelberg {Ann. d. Physik 9, 579 (1931}).Their
method, if properly carried out, shouM give the asymptotic
behavior correctly in all cases, even if the method itself is
quite inaccurate for the calculation of the magnitude of
the cross seedon.

deals only with processes in which only pairs of
particles are formed.

The mathematical formalism will be that
adopted in a previous article of L. Eisenbud and
the present writer. ' In fact, this formalism will be
used in the simplest possible form (vis. Eq. (1),
reference 2):

) Xg(grady)„dS

In this, y is an arbitrary wave function with
energy 8, the 8 being part of the continuous
spectrum; grady is the vector with components
(5'/2M)8y/Bx, , etc. Only y and grad» in

(1) depend on Z. The X&, and Zq are the charac-
teristic functions and characteristic values of the
Hamiltonian, with the boundary condition that
the normal derivative in the above sense of X~
vanish on a surface S. This S is the boundary
between the internal and the external region of
the configuration space. The integration in (1)
is over this surface. The external region of the
con6guration space is dehned by the requirement
that, at the energy B, in the external region (i.e. ,
outside of 5) single alternative wave functions

+,i(r.)&i(&.)4"= &.i(&I)fa (2)

form a complete set of solutions of the Schro-

'L. Eisenbud and E. P. %'igner, Phys. Rev. 72, 29
(1947).
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dinger equation. The P. in (2) is the product of
the vive functions of a pair s of particles which
may be formed by the reaction, r, and 0, are the
length and direction of the line connecting their
centers of mass. 2 ~ can be assumed to be a
spherical harmonic of degree l, giving an angular
momentum /k to the two particles of the pair s
about their common center of mass. The
Q,~=Pz(Q, )$, are orthogonal to each other on
the surface 5, the letter s specifying not only the
nature of the particles which form the pair s but
also their state of excitation, the resultant of
their spin angular momenta, and the projection
of this into a given direction. The f,q will be
further assumed to be normalized if integrated
over 5

(2a)

Let us assume that y and (grady)„, the com-
ponent of grady perpendicular to 5, can be
expanded on 5 in terms of the f.g

as none of the Eq can be expected to coincide
with that threshold.

SECTJON H

The F,~(r.) satisfy, in the external region, the
differentia equation

h' |' d' 2 d l(l+1)q
+———— — IF,&+ V, F„

2m, Ear, r, dr,
= (~—")F*i (5)

The M„V„and e, are the reduced mass, poten-
tial energy in the external region, and proper
energy of the pair s. We shall be particularly
concerned with that solution E,~ of (5) which cor-
responds to an outgoing wave and which we shall
assume to be normalized in such a way that
E,~f.~ correspond to unit flux. Assuming that, in
the direction of configuration space which cor-
responds to separation into the pair s, the surface
5 lies at r, =a„ the condition of unit Aux is that
at r, =a,

y= 2 Ve&4'es,

(grady)„= Q hD, pP, ).

Equation (1) then becomes

(3a)

(3b)

h ( dE i dE„*i
I

E„* '-E„' I=1 (atr, =s,). (6)
2z3I, & dr, dr, )

Since it follows from (5) that the expression in
the bracket of (6) is r ' times a constant, the
normalization adopted implies

V,)=Q R.(;. gD;, ,
s'l'

(4)
where

z (E.,e„*—E,~*e,~) =a, '/r, ', (6a)

with
PXe lPXe' g'

+el; ~ 'V = Q

where

y)„)= h& X&,&,QS. (4b)

The above is a repetition of the line of argument
of reference 2 with the difference that the bound-
ary conditions on 5 are assumed in the simplest
possible form, no attempt being made to make
the E~, y~, ~, etc. , independent of the position of S.
The above equations are almost identical with
Eqs. (13), (23), and (17) of the above reference,
but the derivation is, of course, much simpler.
All that will be used in the following is that the
expansion coefficients of y on 5 (as y itself), are
linear functions of the expansion coef6cients of
(grady)„on 5 (or of (grady)„ itself) which has
no singuIarity at the threshold to be investigated

e, ( ——(h/2M. )dE„/dr, (6b).

If, for large r„ the potential V goes to zero suf-
ficiently fast, (6a) should mean that (r,/u, )E,g is
asymptotically equal to (M./hh) & expzhr,

The above dehnition of Z, g applies if the pair
s is energetically possible at the energy con-
sidered. However, particularly just below a
threshold, the expansion (3) requires also such iP, ~

which are energetically impossible. In this case,
E,~ shall be that solution of (5) which goes to
zero exponentially at r.= ~. The E,~* which is
in this case not the conjugate complex of E,& is
any other linearly independent solution of (5).
E,~* goes, of course, to infinity for large r,. It is
not necessary to specify E,& and E,&~ more closely
in this case.

It is convenient to introduce a symbol for the
reciprocal logarithmic derivative of E,~..

~&E ga/elz
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which permits (6a) to be written in the form makes it possible to use the relation (7a) to give

&(qi qi)lail =ii /» (7a) U=e 'e"+ie '( —R)-'e—'. (12)

This shows that the imaginary part of g, i* is
positive for every r, and permits one to introduce

j.i =zing. ~
—g. & q =a. q'r. e.&e8i ~ (7b)

V
= Z Ai(~. aE.i+P.iE.i*)

of the Schrodinger equation in the external region,
The coefficient of f, i in y is

l a i ~ iq Aai a+ P aq la~a a$ (».=a,), (9a)

while its coefficient in (grady)„becomes

D„=~, ie, i+P„e,g, (», =a,). (9b)

If q is to be a permissible solution, the P, i whose

s is energetically impossible must vanish. It is,
therefore, immaterial that the coefFicients of
these Pai are not defined.

One can write (4) by means of (9) in terms of
the a and P

qaAi~ai+qai &aa Pai

=g R„;;(e,;n,, ;+e, P;;) (10).
e'i'

From this the collision matrix U, which gives the
outgoing wave coefficients in terms of the
incoming wave coe%cients, can be obtained:

where

U=e i(q —R) '(q* —R)e~

Actually, q. i satisfies a Ricatti-type differential
equation which follows from (5). The q, i as
defined by (7) is real for s which are energetically
impossible and (7a) and (7b) will not be used
for such s.

Equations (3) and (4) permit the determina-
tion of half of the coefFicients of the most general
solution

The simple form of (12) could be obtained by
the use of the relation (7a) because the columns
of U, which refer to energetically impossible
states, are without significance. Since, on the
other hand, the rows of U which refer to such
states are without much interest —they give
only the coefFicients of the exponentially decaying
solutions in the external region —it is permissible
to make use of (7b) to eliminate I el from (12).
For this purpose we define

s= leis)*, (13a)

where cv is a unitary diagonal matrix defined by
(13a). We obtain

U=(o(1+ij (q R) —j')a)— (13)

In this, j,& can be considered to be the imaginary
part of 2g.&, which is zero if s is energetically
impossible. For these s, the e, E can be assumed
to be real, co, ~

= 1. As a result, U will assume the
form

U 0
,

0 1

U, the reduced U, occupies the rows and columns
which correspond to energetically possible pairs
s, the 1 to the energetically impossible pairs.
This form of U gives automatically zero cross
section to those transitions which are ener-

getically impossible. The unitary symmetric
nature of (13b) can be easily proved directly by
means of the relation (7b) j=(i(q —q*))&. Even
though (12) and (13) are not fundamentally dif-
ferent from (38), reference 2, their form is not
the same and they are more general by permitting
the surface 5 to be drawn in close even just
below a threshold (compare footnote 9, reference
2).

From (12) and (13) one obtains for the reaction
cross sections (either s 0 s' or / /l')

=s 's'+s '(q —R) '(q*—q) s'. (11a) a»ai,. i ~ ——i»k (2l+1) I U.i;. a I'

The e and g are diagonal matrices with diagonal
elements s, &(u,) and q, i(u, ), respectively, The
summation over s', /' must be extended in (11)
only over the energetically possible s'. This

=~k '(2l+1)l& i&* i I 'l((q —R) ').i;"i I'

=ok,-'(Xi+1) lj,aj, i I'

X l((q —R) '). ;" I' (14)
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TwBJ.E I. No interaction in external region. Asymptotic values of E, g, j, ao for small k&,.

l=O

l= 1

Eel{ade)

DM/kk) &]s/r

Li(Mjkk) &la/kr'

~'1.3. ~ (2l—1)
(kk/M) &{r/a) (kr) '

-23fa/h
—Ma/k

23fc
(l+ 1)k

g.&(a,)

2ka(m/ak)&

P(ka) /3g(m/ak) &

2 (ka) '+'(m/ak) &

(l+ 1)1.3. ~ ~ (2l —1)

1 +ilies](us)

$i(kc) 'j/3
—

t i(ka)~g/6

&l(kc) 2&+1

(l+ 1)(2l+ 1){1.3. ~ ~ ~ {2l—1))'

TasLs II. V =Ze2/r) 0. Asymptotic values of R, q, j for small kr or ka.

l=O

genera1

E(~)

—exp(~a+ia ln2kR)H~(ip}
(kr/x Ma') & arg

(—)'+' exp(~a+ia ln2kR) Hm~+I(tP)
(hr/~ j/Ia') & arg

q(a)

(4'/k)HI(ip)
ipH, (ip) —2H, (ip)

(4'/h}H2&+, (ip)
ipHgi(~p) —(2l+2)H2)+I(sp)

j{a)

4(Ma/xk) & exp( —~0.)
ipH, {ip)—2H, (ip)

4(3fa/mk) & exp( —xa)
!2W sr (2P) (2l+—2)Hsi+2 (2P)!

The scattering cross sections become

s„&;.&=rrk, '(2&+1)
I

1 —( —)'& &; &I

= s.k,—2(2l+ I) I
1 —(—) 'cs, i2

—(—)'i~.Pi.i'((V —&) ').i;*iI' (1~)

SECTION III

Table I gives E.~, q, ~, j,~, ~,g for a free particle
( V, =0 in (5)) in terms of k. = (2M, (Z —s.)) &/h,

assuming that k~, is very small.
These are the quantities to be used in Eqs.

(12) to (15) in case of neutral particles. It will

be noted that the j,& cannot be obtained from
the g.i of Table I by means of (7b) because the

q, & are real in the approximation used in this
table. It is necessary, rather, to calculate the q, ~

to the first imaginary term or, alternately, to
obtain its imaginary part by means of (7b) and
the e,~. Table II contains the same quantities for
Coulomb wave functions if both charges have
the same sign. In this and Table III

ti = 2MZes/hs,

c2 = 'ti/k = j!/fZes/hsk -=Zes/ho,
(16a)

p=2(ter)&=(SMZesr)&/h in the expression for E
and p = 2 (tea) & in the expressions for g and j.The
Z is the product of the charges on the reaction
products to which the 8, q, and j apply. The ge
is not assumed to be small in the derivation of
the above formulae, while the ka is. On the
other hand, ts=tia/2ka is a large number. R is
the distance outside of which the electrostatic

potential ceases to act. It is well known that,
because of the complicated asymptotic behavior
of the Coulomb wave functions at large dis-
tances, the introduction of such a range for the
Coulomb force is necessary in order to obtain a
definite phase shift, etc. , arg = II(ia)/I II(ia)

I
is

the phase factor of II(ia) =(its)! The Hsi and

H~g+~ are defined as these quantities with the
upper index 1 are defined by Jahnke-Emde.
WatSOn'S X (Z) =i" '(2/2r)H„(ie). The abOVe

formulae were calculated on the basis of the
outgoing Coulomb wave function'

E(r) = —(3I/hk) isa(iver)
' exp(ia 1n(2kB))

X (exp(22ra)/II (ia) ) (1—exp (—22rts) )

(y2+k2r2) i 1

expI y+in ln((y+—ikr)/(y —ikr))]dy, (16)

where the path of integration runs from y=
(where the value of the ln is zero) counter-clock-

'W. Gordon, Zeits. f. Physik 48, 180 (1928). See also
A. Sommerfeld and G. Schur, Ann. d. Physik 4, 409 (1930);
M. Stobbe, i'. 'T, 661 (1930). H. Bethe, Geiger-Scheel's
Handbgch der Physik (Berlin, 1933), 2nd edition, Volume
XXIV/1, p. 289 8. and N. F. Mott and H. S.W. Massey,
The Theory of Atomic Collisions (Oxford University Press,
London, 1933). The remark that the Coulomb wave
functions of the continuous spectrum reduce to Bessel
functions for low values of the energy is due to J. G.
Beckerley, Phys. Rev. 6'7, 11 (1945). I could find no
reference for the numerical coeRicient of the Bessel function
at a given asymptotic behavior of the wave function for
large r, i.e., the essential part of Tables II and III. See,
however, L. W. Nordheim, Proc. Roy. Soc. A121, 628
{1928),and Th. Sexi, Zeits. f. Physik 56, 72 (1929).
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Tasr, s II I. V=Zss/r &0. Asymptotic values of E, g, j for small k~. or kr.

general

exp{ io( ln(2kB) )~H1(p)

(kr/sMo'}& arg

(—)' expI ia ln{2kR) j~H2]+I, (p)
(hr/mMa') & arg

q.l(its)

{4M'ajh)H1(P)

PHD{&)—2H1{P)

(4m~//a)a (p~

P~&l(P) —(2~+2)H&&+I.(P)

jsl(~s)

4(Ma//xk) &

I ~H.{~)-20 (a) I

4{MI2;/xk) &

I Wu(tt') (2—t+ 2)&si+i (tt} I

wise around the singularity at y= —ikr back to
y = ~ (where the value of the ln is 2si now).

Table III, which applies if the potential is
attractive, is calculated on the basis of the same
formula. The rt and cr = rt/2k are negative in this
case, and P=2( —rtr)& is real and positive. The
most essential difference between these formulae
and those of Table II is the absence of the factor
exp(sa) or exp( —str). It is to be remembered
that a =Zs'/ho goes to infinity near the threshold.
This factor is the most important part of the
"penetration factor" and its absence in the case
of the attractive potential of Table III is quite
natural. Mathematically, the difference can be
said to arise from the 1—exp( —2sn) factor in

(16): the 1 is dominant if of)0; the exponential
term, which cancels a similar factor which

always occurs at small kr is dominant if 0. &0.
This also accounts for the difI'erences in sign, In
addition, the H= J+iN has a real argument in

case of the attractive potential of Table III, an
imaginary argument in case of the repulsive
potential of Table II. In the latter case, it goes
to zero exponentially for large p=2(rla)&. This
partly compensates for the exp(s a) factor and is
particularly important for large a in accord with
the fact that only the part of the barrier outside
c has to be penetrated. Strictly speaking, how-

ever, this factor is irrelevant from the point of
view of the present paper since it is independent
of energy. It is clear, however, that it inAuences
the absolute magnitude of the cross section even
if it leaves its energy dependence una6ected.

The important point to be noted is that g —R
is, in first approximation, independent of energy.
This means that g —R assumes a de6nite value
for the threshold energy e„and that its derivative
is finite at that point. The same will be true of
the matrix (g —R) '. It then follows from (14)
that the factors (e.~e,.~. )

' or (j,tt;~. ~'will deter-
mine the behavior of the reaction cross section
near ~ . Even these factors will be independent,

of E in first approximation if e„ is not a threshold
for the formation of the pair s or s'. They mill

contain the relevant dependence on k if it is.
It should be noted that only the dependence on
k is meaningful in Tables I, II, III because E
or (g —R) ' will depend on the a, in such a way
as to compensate for the dependence of e, & or j,&

on these quantities.
The rules which follow can be best described

by using, instead of s, the letters p or n for pairs
which are or are not energetically possible below
the threshold. These will also be denoted as old
or new type of particles, respectively. The e~~, j~~
wi11 be considered as independent of E.

A. Reaction Cross Sections

1. Production of new type of partsdes with

angular momentum l from old type The beha. vior
of the cross section depends in this and all other
cases on whether the new type of particles, in
the present ease the reaction products, are
charged or uncharged. We have to distinguish,
therefore, three cases:

Neutral particles: 0- k "+'
Coulomb repulsion:

a exp( 2s M„Z„e—'/k'k„);
Coulomb attraction: 0 1.

In the last case, the cross section sets in with a
finite value right at the threshold, even for
higher angular momenta.

2. Reaction of now type of particles witk angular
momentum l to form old type of particles This is.
the typical case of the reaction of particles with
very low kinetic energy. Again, three cases have
to be distinguished, depending on the charged
or uncharged character of the reacting particles.

Neutral particles: 0~k„" ';
Equal charges:

a k„' exp( 2s M~„e'/k—'k„);

Opposite charges: 0. k„'.
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These rules can be obtained, of course, from the
above ones by the principle of detailed balance.
According to this principle, the ratio of the cross
sections of forward and back reaction is equal to
the ratio of the square of the relative momenta
of the particles in the final state. Since the rela-
tive momentum of an old type of pair is con-
sidered to be constant near the threshold, the
quantities just enumerated are just k„' times
the quantities enumerated above.

The best known example for the above rule is
the 1/s law of the absorption of slow neutrons.
The angular momentum l can always be assumed
to be zero in this case since any excess angular
momentum can be carried o8', if necessary, by the
emitted light quantum. In fact, the above con-
sideration is a Inore rigorous derivation of this
law in the case of reactions like 8"+n~Li'+He'
or Li'+n —+He'+He' than the one originally
given.

A greater variety of examples can be found,
e.g. , in the article of Schwinger and Teller or of
Hamermesh and Schwinger. ' Even these ex-

amples show, however, that the total cross
section almost always follows the behavior given
above for l=o. The reason for this is that an
excess angular momentum can always be sup-
plied or carried away by the l of the "old type"
of particles.

3. Reaction of new type to new ty pe (depolarisa
tion at tow energies) n, l~, I,'.

Neutral particles: 0 ~0 "+'";
Equal charges:

o k„' exp( —4s M„Z„e'/k'k„);
Opposite charges: a.

Naturally, all these reactions have finite cross
sections only if they are consistent with the con-
servation rules for angular momentum and for
parity.

3. Scattering Cross Sections

The only important case here is the scattering
of a new type of particles e, l—+e, l,

4 G. Beck and H. L. Horsley, Phys. Rev. 47, 510 (1935);
H. A. Bethe, Phys. Rev. 47, 747 (1935); F. Perrin and
W. Elsasser, Comptes Rendus 200, 450 (1935).

~ J. Schwinger and E.Teller, Phys. Rev. 52, 286 (1937);
M. Hamermesh and J. Schwinger, Phys. Rev. 69, 145
(1946); compare, in particular, F&gs. 1 and 2 of the former
article.

Neutral particles: a k 4',
Coulomb repulsion: a k
Coulomb attraction: a~k

Even in the case of neutral particles the cross
section is finite for /=0 at very low energy. In
this case, the rusg(q —R) ' term of (15) is the
dominant one. On the other hand, in the case of
charged particles, the first two terms within the
absolute sign do not compensate and most of the
scattering is due to these. In this case, the poten-
tial scattering is of the order of the maximum
possible scattering and this situation is not
altered by the nuclear scattering, and our rules
become rather meaningless. All these rules are
valid, of course, only if k~, (&j. where u, is a
distance outside of which (5) can be expected
to be valid. This condition assures, at the same
time, the accuracy of the asymptotic expressions
of Tables I and II. In addition to this, it is
necessary that (g —R) ' or g —R do not change
substantially in the energy interval considered.
For g, this condition amounts to d, (k' a)«1 but
although this has to be valid for all s (rather than
only for the particuiar s the formation or reaction
of which we are considering) it will hardly limit
the validity of the above rules. On the other
hand, the condition that AZ(dR/dZ)«R effec
tively limits the validity of the above rules for
the behavior of the cross sections to an energy
interval which is small compared with the
distance of the next resonance. It is clear, of
course, that such a limitation must exist. The
inclusion of the formulae for higher l into the
tables can be of value only if the angular dis-
tribution of the reaction products can be inves-
tigated. The total cross section will be propor-
tional to the expression given for the lowest l
which can be formed.

SECTION IV

The above tabulations which form the essen-
tial result of the present note, give the energy
dependence of the dominant term for the various
cross sections just above the threshold. They
give, of course, the cross section only up to a
factor the determination of which cannot be
carried out by the methods used in this article.
It may be worth while to remark, however, that
the next term in all cross sections is proportional
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to lk~ l
and that there is such a term in all cross

sections, even in those which do not involve the
new mode of reaction. Furthermore, a term of
this nature is present both above and also below
the threshold. As a result, for example, all reac-
tion and scattering cross sections, which are pos-
sible below the threshold energy of the new mode,
show a cusp at the threshold energy for the new

mode, i.e., have a functional dependence on 8
bot for Z(e„and for &)e„hi e ii+&l~ —~.

l

~

+higher order terms in 8—e„. In fact, the coef-
ficients k can be determined if the R matrix (i.e. ,

essentially the coefficients of the dominant term)
is known at Z=e . However, it does not seem
that these cusps are particularly important and
they will not be discussed further. e

It may be more important to consider small
deviations from the potentials considered above.
Indeed, it can hardly be expected that it is pos-
sible to choose the surface 5 so far out that the
interaction outside of it be represented accu-
rately by Ze'/r (Z positive, negative, or zero).
One can approximate such a condition by choos-
ing the a, very large but one thereby increases
the internal region and thus also the Auctua-
tions of R in a given energy range. It seems more
natural, therefore, to investigate directly how a
small potential outside 5 will aKect the quan-
tities of Table I.Such an investigation shows that
if the sma11 potential is twice integrable to
infinity, i.e., if it drops as fast as r ' with e&2,
the asymptotic behavior will not be affected.
This shows then that the centrifugal potential,
which causes the differences between the dif-
ferent rows of Table I, is just about the weakest
potential to change the asymptotic behavior.
Indeed, a comparison with Tables II and III
shows that the much stronger electrostatic
potential completely washes out the eiTect of the
centrifugal potential. On the other hand, while
a potential which is small in the above sense does
not alter the asymptotic behavior of the cross
sections, it can substantially inAuence both the
absolute magnitude of it and also the range
within which the asymptotic behavior is valid.

As is well known, the emerging wave function,
E, for a potential V+&'P/2M can be obtained
from the emerging wave function E for the

' lt may be mentioned, though, that these cusps are not
given by either of the two methods of reference 1.

potential V by means of the formula

E(r) =E(r)+E(r) ' (r'E(r'))-'dr'

This can be rewritten as

XP(r")dr", (17a)

where P=P(E/E). Now a changed asymptotic
behavior would entail a change of j', or of lel',
at p =0, by an infinitely large or infinitely small
factor. The same would then hold for E. It thus
appears that the asymptotic behavior of the
cross section can change only if the perturbation
P is such that the integral on the right side of
(17a) diverges at k=0. Since however, rE(r) is,
at large r, proportional to exp(ikr) this condition
is equivalent with the condition that the second
integral of P diverge. This certainly will be true
if the second integral of P diverges. On the
other hand, if the second integral of P converges,
and goes to zero for la,rge r, then E/E goes to 1

at large r and P becomes equal to P under the
same condition. Hence, P's second integral will

converge or diverge if P's second integral con-
verges or diverges. It appears to follow that the
asymptotic behavior of the cross section near a
resonance remains unaltered by the addition of a
"small" potential P whose second integral to
infinity converges. Although this derivation of
the insensitivity of the asymptotic behavior of
the cross sections is certainly not rigorous (it can
be made rigorous easily if P drops to zero ex-
ponentially or faster), the writer feels convinced
that its result is correct.

Even if the above surmise should prove to be
correct, there remains the question of the re-
striction of the region of validity of the limiting
laws above derived for the cross sections. This
region is determined, in the absence of the addi-
tional potential O'P/2M, by the more rigorous
of the two conditions enumerated before: (a) The
region must be small as compared with the
distance of resonances 8&, of (4a) from each other.
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(This is the condition which apparently limits
the validity of the 1/s law for slow neutron ab-
sorption. ) (b) In the case of uncharged particles
k„a «1, and in the case of charged particles also
a =Ze'/kv »1.

It is clear, however, that the additional poten-
tial can further reduce the region in which the
asymptotic behavior is followed. An obvious
example for this is a low but extended repulsive
potential of constant magnitude of say k'ko'/2M.
The jej' for a potential of this height and of
extension / outside a is

j e j
-'= (k/4Mku') L(Ch 8+ zu Shel) '

+ (k'/~') (Shd+ ma Chd)') (18)

s = (ko' —k') &.

Hence, for small k,

g(a)'= j e(a) j-'= (4cVka'/k)

X (Chkol+koa Shkol)
" (18a)

+terms proportional to k' and higher powers of
k. The dependence of the j on k is, according to
(18a), the same as given in the first row of
Table I. This illustrates the point that a poten-
tial which goes at r = ~ suf6ciently fast to zero
does not a&ect the asymptotic behavior of the
cross sections. Ho~ever, even for k=ko the j
is equal to L1+k02()+a)'] & which is already very
different from (18a) and shows that the asymp-
totic behavior does not extend to k=ko. This
was, of course, to be expected, since the potential
k'k02/2M for a(r(a+I, which is important for
k =0, becomes insignificant for k»ko. The con-
dition that the potentials be insignificant for all

k, and therefore do not acct the region of
validity of the asymptotic law for the cross
section, is that the integral of (17a) with P
instead P, be not only finite but also small com-

pared to 1. This is equivalent with the condition
that the second integral P2 of P from a to infinity
be small compared with 1. In practice this is
equivalent with the condition that the 8'EB
integral be small.

As an example, the magnetic interaction of a
neutron with a nucleus may be considered. The
P is in this case

and the second integral of this is

8 gyp'
Pg= -—

4Mc'r

For r =a e'/mc' this is of the order of 10 ', and
shows that the magnetic interaction should be
without appreciable eR'ect on slow neutron
processes.

For k»ko the z of (18) becomes imaginary
and

j
e j' fluctuates with a small amplitude

around the value of Table I. If the other condi-
tions of the asymptotic behavior of the cross
section remain valid, there will then be at
k»ko a second region in which the reaction cross
section is proportional to k but the constant of
proportionality will be different from the con-
stant of proportionality at k «ko. A similar

second region at somewhat larger k, in which the
asymptotic behavior is followed, may exist even
if P goes so slowly to zero at r= ~ that it
changes the asymptotic behavior at very low k.
Its existence depends more on the maximum of
P than on its behavior at large r, and its ap-
pearance can be judged from the decrease of the
integral in (17a) to a very low value at such a
low k that the other conditions for the validity
of the asymptotic behavior still hold.


