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initiated either in the upper wall of the chamber
or in the counter just above. This picture is
unusual, not only because of the size of the
shower, but also because of the associated proton
that stops in the erst lead plate.

The third (Fig. Sc) is a picture of a mesotron
shower. This shower differs in its nature from all.

the others because its particles do not spread
out from a central core as the shower progresses,
but each particle goes through the second lead
plate without multiplying. Most of these par-

ticles are heavier than electrons and several may
be speci6cally identified as mesotrons. It may be
noted that there are about four particles in the
top of the chamber which seem to converge
toward the point where the shower begins. One
of these may have been the initiating particle,
though the shower may have been started by a
non-ionizing particle such as a neutron.

The author wishes to express great apprecia-
tion to Dr. Wayne E. Hazen for suggesting the
problem and for many very helpful discussions.
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The broadened diffraction lines from colloidal particles have shapes which depend on the
particle size and shape and on the geometrical features of the experiment. An analytical
method is developed for eliminating the effect of the geometry of the experiment, thereby
giving the shape of the diffraction line. The method is applied to the 200, 220, and 222 lines
from colloidal magnesium oxide. The shapes of these diffraction functions in the low intensity
regions are not suf6ciently accurate to permit the determination of particle shape. The relative
half-intensity breadths of curves give best agreement with the values to be expected for cube-
shaped particles. The particle size, determined from the Scherrer equation, is 140 angstrom
units, and the average deviation from this value is 3.1 percent.

I. INTRODUCTION

"URDOCK' gives a theoretical treatment of
- ~ the breadths and shapes of the x-ray dif-

~

~

~

~

~

fraction lines from colloidal powders of the cubic
symmetry class. The purpose of the present
paper is to give a method for calculating ideal
line shapes from experimentally measured line

shapes and to apply this method to several
diffraction lines. Many investigations have been
made on the breadths of broadened diffraction
lines, but the shapes of the lines have not been
measured because of the difficulty of correcting
the measured shape for the effect of experimental
conditions.

II. METHOD OF SOLVING FOR THE IDEAL
DIFFRACTION FUNCTION

The procedure used in these experiments has
been suggested by Jones. ' For a given diffraction
line a correction curve, f(y), is measured, using
a powder containing particles larger than 1000
angstrom units. An uncorrected diffraction curve,
@(x), is measured, using a colloidal powder of the
same material. Jones has shown that these
measured functions are related to the ideal dif-
fraction function, I"(y), by the integral equation:

(&) = ' f(y)P(& y)dy=
l f(& y)P(y)gy

*Present address: Eastman Kodak Company, Research
Laboratories, Rochester 4, New York.' C. C. Murdock, work not yet published in full but
some of the results are given in Phys. Rev. 63, 223 (1943).

Knowing the functions @(x) and f(y) from
experiment, the solution of the equation for F(y)

2 F. W. Jones, Proc. Roy. Soc. London 166, 16 (1938).
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may be accomplished in the following manner.
If the Fourier transforms of p(x), f(y), and F(y)
are, respectively:

00

A (x) = ~' y(P) exp( iPx)dp,
(2s.)' ~

QO

B(y)=, f(P) «p( —~Py)dP,
(2s.)i ~

then

M

u(y) = ll F(P) exp( —fPy)dP,
(2z.)l & „

1 A (z)
u(z) =

(2z)' B(z) I

+SO

1 ("A(z)
F(y) =— exp(iyz)dz

2z ~ B(z)

Since the experimental curves, @(x) and f(y),
look somewhat like Gaussian distribution curves,
they may be approximated rather well by a few
terms of a series of Hermitian orthogonal func-
tions, ' the first term of which is the Gaussian
distribution. Then let g(x) and f(y) be repre-
sented as:

n

0(&) = Q yxHx(x/a) exp( —x'/2a')
IK=O

500

FIG. 2. Average correction function for the 220 mag-
nesium oxide reflection. Crosses show the representation
of the correction function by the sum of six terms of a
Hermitian expansion.

n

f(y) = 2 PxH(y/b) «p( —y'/2b'),
II:=0

where a, b, yx, and px are constants and Hx(z)
is the Xth order Hermitian polynomial.

The Fourier transforms of p(x) and f(y) may
then be expressed in the following form:

A(z) =a g yx( i)xHx(za—) exp( —z'a'/2)
II."=0

and
n

B(z) =b Q Px( i)xHx(zb) —exP( —z'b'/2).
K=O

Inserting these expressions in Eq. (1) a relation
for F(y) is obtained:

-50
I

+50

n

Z ~x( ~) Hx(«)—
g oo %=0

F(y) =——
bJ „

Q Px( i)xIXx(zb)—
II:=0

FIG. 1. Correction functions for the 220 reflection from
relatively large particles of magnesium oxide.

3 For definitions and some of the properties of Hermitian
functions and Hermitian polynomials see: L. Pauling and
E. B. Wilson, Introdmction to Quantum Mechanics (Mc-
Graw-Hill Book Company, Inc. , New York, 1935), pp.
73-82.

Xexp(fyz) exp( —z'a'/2) exp(z'b'/2)dz. (2)

Inserting the polynomials Hx(zu) and Hx(zb) in

Eq. (2), the expression in brackets can be sim-

plified, and if higher power terms in s are
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neglected, one may write:

1 6
P(y) — [(4+) s2b2+. . .i s2nb2n)

2mb &

+~(l sb+f s3b8+. . .l s2n —lb2m —1)]

Xexp(hays) exp( —s'a'/2) exp(s'b'/2)dh, (3)

where the l's are constants depending on a, b,
'yx, and px.

A change of variable from sb to s gives:

1 8
&(y) =——

~l t:(&o+4s'+ 4.s'")
2~b~ „

+z(lis+l8s'+l2„, s'"—')j
Xexp(hays/b) exp( —s'a'/2b') exp(s'/2)ds. (4)

If this change of variable is not made, the coef-
ficients of s in the two sums of Eq. (3) become
very large for large powers of s, zince b is of the
order 30 in the units used for measuring x and y
in these experiments. But in Eq. (4) the coef-
ficients become very small for large powers of s.

Then Eq. (4) may be integrated term by term,
giving for F(y) an equation of the form:

F(y) = constant Xexp( —y'/2a' —2b')

XP C (y/b)x.

The constants C~ will decrease rapidly as E
increases only if the breadth of the function

f(y) at half-maximum intensity is at the most
approximately half the breadth of the function
~(~).

III. EXPERIMENTAL PROCEDURE

mounted at the center of the camera. For each
di8raction line the surface of the powder was set
at the Bragg angle to the ray passing through
the center of the camera. Better focusing was
obtained by curving the surface of the powder,
but the diA'raction patterns from flat surfaces
could be reproduced more accurately.

Relatively large partides of Mgo were ob-
tained by catching the smoke from burning
magnesium ribbon. Small particles were obtained
by decomposing Mgc03 in an oven at a tem-
perature of about 640 degrees centigrade.

Sensitometric exposures were made on East-
man Kodak, Type-K, industrial x-ray film for
cobalt En-radiation reflected from a calcite
crystal. While maintaining the characteristic
Ea x-ray intensity constant to within 2.7 per-
cent, exposure times were varied. The densi-
tometer readings were proportional to the time
of exposure up to a density of at least 0.60 above
chemical fog. In diffraction experiments densities
were kept smaller than 0.60 and, assuming no
reciprocity failure, were recorded as intensities.

IV. EXPERIMENTAL RESULTS

Figure 1 shows the three determinations of the
correction function, f(y), for the 220 line and
indicates the accuracy to which measurements
were reproduced. At the half-maximum of inten-
sity the average absolute deviation of breadth
from the mean value is 2.9 percent. The abscissa
unit, y, is a measure of distance on the photo-
graphic film and is equal to 1/8000 the angle in

l.0

To obtain a narrow, intense correction func-
tion, f(y), an experimental arrangement was used
which gave some focusing of the x-rays at the
photographic film. A rocksalt crystal, bent to a
radius of 20 cm and ground to a radius of 10 cm,
was used as a focusing monochromator. 4 The
Xa-radiation reflected from the monochromator
was converged to the slit on the circumference
of the camera. The x-rays diverged from the slit
and fell on the flat powder sample which was -F00

CXP.

i@OR.
(UGf

4For description of bent |.ocksalt monochromators see:
R, M. Bozorth and F. E. Haworth, Phys. Rev. 53, 538
(1938).

FIG. 3. Corrected diffraction function for the 200 reflec-
tion from magnesium oxide and the theoretical di8'raction
function for cube-shaped particles of uniform size.
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radians subtended at the center of the camera.
One degree subtended at the center of the
camera is very nearly equal to 140 units of y.

Figure 2 shows the curve obtained by taking
the average ordinate of the three curves in Fig. 1.
The crosses show the representation of f(y) as
the sum of the first six terms of a Hermitian
expansion. Obviously, greater accuracy in deter-
mining line shapes may be obtained by using a
larger number of terms in representing the ex-
perimental curves, but the computations outlined
above become very lengthy. In Fig. 2 the average
absolute deviation of the crosses from the experi-
mental curve is 4.3-intensity units, 0.9 percent
of the maximum intensity. This was the order of
accuracy in representing the various experi-
mental curves by Hermitian sums of six terms.

Figures 3—5, show the plots of the expressions

1.0-

0
J

FiG. 4. Corrected diffraction function for the 220 reQec-
tion from magnesium oxide and the theoretical diA'raction
function for cube-shaped particles of uniform size.

for the corrected diffraction functions, F(y), for
the 200, 220, and 222 lines, respectively. Plotted
in the same figures are the theoretical functions
for cube-shaped particles of uniform size. Ac-
cording to Murdock, ' these functions are

F(y) =sin'y/y' for the 200 line,

F(y) =6(y —siny)/y' for the 220 line,

F(y) =3(y' —sin'y)/y' for the 222 line.

Each theoretical function is matched to the cor-
responding experimental function with respect
to breadth at half-maximum intensity. The ex-
perimental curves are considerably broader near

-100

F&& 5. Corrected diffraction function for the 222 reflec-
tion from magnesium oxide and the theoretica1 diEraction
function for cube-shaped particles of uniform size.

the base than the theoretical functions. More-
over, the theoretical functions for particles
having tetrahedral, octahedral, rhombic dode-
cahedral, and spherical shapes lie closer to the
theoretical cube function than to the experi-
mental curves.

The irregularities near the position y = —120
in the experimental determinations of F(y) for
the 220 and 222 lines indicate the inability of
the method to produce accurate results in the
region of low intensity. The higher order Her-
mitian coefficients, which are the least accurately
known, determine the behavior of F(y) in the
region of low intensity. Since the theoretical
functions for particles of various shapes differ
widely only in the low intensity region, it is not
possible to determine the shape of the particles
from the shape of the curves shown here.

To check the accuracy of the approximations
used in calculating F(y), the second member of
the equation

e(~) = f(~ y) F(y)dy—

can be evaluated by graphical integration for
various values of x and may be compared to the
experimentally measured values of @(x). Such
integrations were performed for each of the dif-
fraction lines at nine values of x. The average
absolute deviations of the calculated values of
g(x) from the measured values were 1.7, 1.4, and
1.3 percent for the 200, 220, and 222 lines, re-
spectively. This error is smaller by a factor of at
least two than that obtained when the graphical
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integrations of

f(~ y—) F(y)dy

B~/B2 can be evaluated from the experimental
curves and may be compared with the values
obtained from the right member of the equation
when the values of X corresponding to the
various particle shapes are inserted. The relative

TABLE I. Ratios of the observed relative breadths to
the theoretical relative breadths of the diffraction lines for
particles of various shapes.

Form—
Tetra-
hedron

Octa- Dodeca-
hedron hedron Sphere Cube

0.820 1.220 1.170 1.155 1.090
R200(220 theoretical

222/200 observed 1.050 0.790 0.870 0.905 0.940
R222t2oo theoretical

R222/220 observed 0.855 0.965 1.005 1.050 1.020
R2221220 theOretiCal

' P. Scherrer, Gottinger Nachrichten 2, 98 (1918).' C. C. Murdock, Phys. Rev. 35, 8 (1930).

are performed using for F(y) various breadths of
theoretical diffraction functions for the different
particle shapes. It appears that the excess
breadth near the base of the experimental dif-
fraction functions is not an effect introduced by
the approximations in solving for F(y). Later
discussion will suggest an explanation for this
excess breadth.

From the half-maximum intensity breadths of
the diffraction functions and the Scherrer equa-
tion, ' information concerning the size and shape
of the particles may be obtained. A form of the
Scherrer equation suggested by Murdock' is:
B =XX/V* costt, where B is the half-maximum
intensity breadth of the diffraction line, X is a
coefficient depending on the shape of the par-
ticles and on the Miller indices of the reHection,
0 is the Bragg angle, t/" is the volume of the par-
ticles, and ) is the wave-length of the x-rays. To
determine particle size from this equation, the
shape must first be known. If the relative breadth
of two di8raction lines is calculated, the size of
the particles is eliminated, and there remains

Bl +1 coseg
R=—=——

B2 E2 cos01

breadths of the experimentally measured dif-
fraction functions are B200/B2~0 =0 993, B222/B200
= 1.244, and B22'/B 220 = 1.236. The ratios of the
observed relative breadths to the theoretical
relative breadths for particles of various shapes
are given in Table I.

From Table I the shape which gives the best
approximation to the value 1.000 is the cube.
The average absolute deviation for the various
shapes from the value 1..000 is 0.057 for the cube,
0.100 for the sphere, 0.102 for the dodecahedron,
0.125 for the tetrahedron, and 0.155 for the
octahedron.

Assuming the particles are cubes, the mean
size can be found from the Scherrer equation.
The measured half-maximum intensity breadths
of the three calculated diffraction functions are:
B200= 1.27)& 10—' radian, B220 ——1.28 &( 10 ' ra-
dian, and B222=1.59X10 ' radian. Then the
cube root of the volume of the particles as cal-
culated from these line breadths is 134, 145, and
142 angstroms, respectively. This gives a mean
value of 140 angstroms and an average absolute
deviation from the mean of 3.1 percent.

If the size of the 'particles were calculated
assuming a spherical shape, the cube root of the
volume would be 134, 154, and 147 angstroms
for the 200, 220, and 222 lines, respectively. This
gives a mean value of 145 angstroms and an
average deviation from the mean of 5.1 percent.

Electron micrographs of the magnesium oxide
powder were made by Dr. James Hillier of the
RCA Laboratory. The size of the particles
appears two to three times larger in linear dimen-
sion than the above values. It seems likely that
aggregates and not single crystals appear in the
micrographs. The shape of the particles cannot
readily be determined, but it does not appear
that they are regular cubes in aggregates, except
in a few instances.

A study was made of the effect on the dif-
fraction function of a distribution of particle
sizes. The theoretical calculations by Murdock'
give the diffraction functions for the case o
particles of uniform size. If F(a„y) is the theo-
retical diffraction function for particles of a
given size, the resultant diffraction function for
a discrete distribution of sizes will be

F(y) = 2- II'-F(~-y)/E- II'-,
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where 8' is a weighting factor which depends
on the particle size. JV is proportional to the
number of particles, N, of a given size, to the
intensity, I, diffracted by a single particle of
a given size, and inversely proportional to the
area, A, of the diffraction function for particles
of a given size. I is very nearly proportional
to the volume of the crystal. It can be seen from
the Scherrer equation and the theoretical diffrac-
tion functions that A is inversely proportional
to the cube root of the volume of the crystals.
Then the weighting factor is W =CD V "'.
The resultant diffraction function due to a
mixture of sizes will then be

The half-maximum intensity breadth of this
function will give the observed mean size of the
particles. Since the diffraction function is
weighted in favor of the larger particles, the
measured mean size will be expected to be too
laIgc In practice. The effec on thc diffraction
function of various distributions of particle size
was investigated using the above relation. A

discrete distribution of particle sizes, approxi-
mating the continuous Gaussian distribution,
does not seem to change the shape of the dif-
fraction function appreciably. However, a dis-
tribution in which there are a large number of
relatively small particles gives . a diffraction
function which is broad near the base. For ex-'

ample, the calculation was made for the 220
reHection from cube-shaped particles when there
aI'c four times as IIlany paI't1clcs of 75 angstrom
edge length as of 150 angstrom edge length. The
half-intensity breadth gave a mean edge length
of 135 angstrom units, but the resultant line
shape corresponded to the shape for cubes of
uniform size only in the upper half. In the lower
half the resultant function was much broader
than the function for cubes of uniform size. It
seems reasonable that some such distribution of
particle sizes may account for the experimentally
determined diffraction functions.

The author wishes to thank Professor Carleton
C. Murdock, who suggested the problem, for his
encouragement and assistance in carrying out the
I cscafch.
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None of the values of the dissociation energy of carbon monoxide, D(CO), proposed on the
basis of interpretations of predissociations in the spectrum of CO is in satisfactory agreement
with the results of electron-impact experiments. The only possible interpretation of these
experiments gives D(CO) =9.6 ev. Compelling reasons can be given for considering this result of
sufficient accuracy to make it irreconcilable with any of the values from the band spectrum. A
new interpretation of the effects in the spectrum which brings agreement with the electron
impact value is possible, however. It involves a potential curve with maximum for J=0 for the
state a''Z+ of CO which predissociates 8'Z+ and O'Z+ at 11.11 ev. Various data favor this
interpretation and its consequences. Satisfactory agreement among all data bearing on D(CO)
and L&(C), the heat of sublimation of carbon, can be attained in this way.

1. INTRODUCTION

HE dissociation energy of carbon monoxide,
D(CO), is a particularly important quan-

tity because of its relation to the heat of sublima-

tion of carbon, I r(C), and through it to the heats
of formation and bond energies of every carbon-
containing molecule. The relation between 1~(C)
and D(CO) is obtained from the well-known


