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Calculations in the Liquid-Drop Model of Fission
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The liquid-drop model of fission as developed by Bohr and %heeler and others has been
studied with the use of an electronic calculator, the Eniac. Classical deformation energies
have been calculated for many shapes not all near-spherical. The shapes considered were
axially and primarily, but not exclusively, bilaterally symmetric, and single-valued in polar
representation. Previous calculations are confirmed and extended. Agreement with observed.
fission thresholds and spontaneous fission rates is obtained. No explanation of asymmetric
fission is found.

1. INTRODUCTION

T ha.s bccQ recognized 81ncc 'thc dlscoveI'y of
& ~ fission that this phenomenon permits a clas-
sical interpretation in terms of the liquid-drop
model of the nucleus. It was pointed out by
Meitner and Frisch' that the stability of the
spher1cal shapg of thc liqUld "drop model QUclcus,
owing to the surface tension characteristics of
the short range nuclear forces, is, to a large
extent, counteracted. for very heavy nuclei by
the Coulomb repulsion. Shortly thereafter a more
detailed study of the effects of these opposing
infIuenccs was made by Bohr and Wheeler' and
independently by Frenkel. ' They showed that a
uniformly charged droplet is unstable with
respect to deformation at constant volume into a
prolate spheroid if the ratio of the Coulonlb
energy to surface tension energy exceeds 2.
Following Bohr and Wheeler, this ratio is here
denoted by 2x.

For lesser values of this ratio the spherical
shape is stable with respect to any small defor-
mation. However, for any value of this ratio
greater than 0.70, i.e. , for x&0.35, the potential
energy (surface plus Coulomb) is diminished by
separating the drop into two equal spheres far
removed from each other. Thus for x between
0.35 and 1.0 (true for all heavy nuclei) the
initial spherical con6guration is a relative (local)
minimum of the potential energy but not an
absolU'tc minimum. If thc nucleus 18 con'tinuously
deformed from its initial spherical configuration

to this two-droplet final configuration the poten-
tial energy first rises, say by an amount AB, then
falls to less than its initial value. The least of
these values, AZ, considering all possible defor-
mation trajectories, is the reaction threshold and
the deformation at which it occurs must be a
saddle-point of the potential energy.

The reaction threshold can be calculated for
nuclei close to the stability limit, i.e., x close to
unity, by the following method. '—' The defor-
mation is assumed axially symmetric and ex-
p1csscd a,s a series 1Q Legendre polynoIIl1als. Thc
potential energy is then expanded as a power
series in the coefficients of this expression. . By
evaluating a few terms in this power series the
potential energy can be found for small deforma-
tions. If x is suf6ciently close to unity the saddle-
point occurs within this range of deformations
and its position and potential energy can be
determined.

Bohr and Wheeler' used this method to deter-
mine the first two terms in the expansion of AE
as a function of (1—x). This required calculating
terms up to the fourth power of the I'2 com-
ponent of the deformation and the square of the
I 4 COITlPOQCQ't.

Present and Knipp4 extended this series
somewhat and introduced also odd terms, I'3
and I'5. F. Rcincs, working with Present and
Knipp, included additional terms to an extent
sufficient to permit the determination of the
saddle-point shape and the reaction threshold in
the range 1.0 &~ x &~ 0.8.' The value and derivative

* Now with Frankel and Nelson, Los Angeles.
~ L. Meitner and O. R. Frisch, Nature 143, 239 (1939).
~ N. Bohr and J. %heeler, Phys. Rev. 56, 426 (1939).
3 J. Frenkel, Phys. Rev. 55, 987 (1939) and J. Phys.

U.S.S.R. 1, 125 (1939).

4 R. D. Present and J. K. Knipp, Phys. Rev. 57', 751,
1188 (1940).

~ R. D. Present, F. Reines, and J.K. Knipp, Phys. Rev.
'lo, 557 {1946).
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of the threshold at x={) have been given by
Bohr and Wheeler. ' Using these values and his
results Reines determined by interpolation the
value of the threshold for x =0.74 (corresponding
to U"'). His estimated limit of error is ~15 per-
cent.

During the last stages of the development of
the Eniac (the "electronic numerical integrater
and computer") Professor Fermi suggested to
the authors that the use of the Eniac might
permit. a straightforward numerical calculation
of the potential energy values beyond the range
of validity of the power series.

2. THEORY

The potential energy of a deformed nucleus in

the liquid-drop model is the sum of two terms

The energies, E, and E„are represented in

terms of their original values,

E,=J3,E,P =2xB,E,P. (5)

The relative surface energy, 8„is the ratio of
the distorted to the undistorted surface.

1

B,= ', V 'I')I -R—$R'+v'(dR/dp)']&dp, (6)
—I

The scale factor Rp is determined by the con-
stant volume condition,

1

0(R')'dy=R 'V=1,

(1) where
p2 ] p2

where 8, is a surface-tension-like energy arising
from the lack of saturation of the binding forces
of particles near the surface, and is proportional
to the surface, while E, is the Coulomb energy of
the charge of the nucleus which is assumed
uniformly distributed throughout its volume.
The energy of the undeformed (spherical)
nucleus is denoted by

8' =R,'+Z, ' =Z.o(1+2x).

Only axially symmetric distortions are con-
sidered. These are specified by giving the radius,
R', as a function of the cosine of the co-latitude,
p. The unit of length is the undistorted radius.
It is convenient to introduce a scale factor, Rp,
and write

(3)
R(p) =1+ngPg(p)+n2P, (y)+

where I'; is the ith Legendre polynomial. A par-
ticular distortion is specified by the coefficients
a; of this expansion. Only terms up to I'&p have
been considered.

It may be observed that (3) does not represent
all axially symmetric deformations but only
those described by single-valued functions,
R'(p). Thus a deformation into two almost
spherical parts connected by a thin 61ament
cannot be so represented.

8, is similarly calculated for the volume bounded

by R(y), then normalized by multiplication by
P—'5/3

B,= (15/16'') U "'
i &dr,

y —y

&&'(y') )2w
r"dr' . (8)

p y y

Tsar.H I. Threshold values and saddle-point shapes.

Bs Bo «LQ cr4

0.9 0.0007 0.0195 0.0107 0.28 0.019
0.81 0.0050 0.0731 0.0420 0.47 0.083
0.77 0.0093 0.094' 0.055& 0.5s 0.11
0.74 0.0136 0.1871 0.0884 0.70 0.198
0.65 0.0400 0.8044 0.2034 2.4 1.15

—0.0016
-0,006—0.01—0.008—0.11

-0.006-0.01-0.020—0.22
-0.0025

0.03

6 This method was suggested to us by Dr. H. Hurwitz.

.The calculation of 8, thus involves calculating
a sixfold integral, threefold in dv' and threefold
in dz. Since the shape is axially symmetric the
azimuthal integration of dr is trivial. 8, can be
reduced further, to a fourfold integral, by the
following device Consider another distorted
drop having the same shape and charge density
but scaled up in all linear dimensions by a factor
(1+c) where e«1. Then the volume of the
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second drop, hence 3180 its charge, 18 glcatcl
than that of the first by a factor (1+3') and its
electrostatic energy is greater by a factor
{1+5&).This second drop may be produced from
the first by adding a thin layer of the (charged)
material to its surface. The increase of electro-
8tatlc energy ln this plocess 18 th.c work 1cqulIcd
to bring thc added suI'face charge from in6nlty
and thus clcpcnds only on the potentials on thc
sUlfacc.

3,4—

(&s ')/(' ")- ~

SeZ, =So t ydr=)I y(R, a))(eR)R'A. (9)

Hence

B,= (3/8sV'I') )t.@,R'dp, ,

FIG. 2a. Dependence of the relative Gbulomb energy,
8„and the surface energy, B„ofsaddle-point shapes on x.
(Cf. Eqs. (5)-(7)).

Landen's transformation, 7

rvhere p, is the potential at the surface as given
by (g).

The azimuthal integration in the evaluation of
can bc calrlcd out analytically and rcsUIts ln

Bn elllptle lntegI'al of thc 6rst kind,

[8'+r" 2Rr'(pii'+—vv' cosP') j 'dP'

p
2%

$20' cos'(P'/2)+Go' sin'(P'/2) j &dP'

0

I(A 0, G0—), (11)

A O' =R'+r" —2Rr'(yp, '+ v v'),

G02 =R2+r" 2Rr'(pli—' —vv').

provides the basis of a convenient" iterative
scheme for evaluating I(Ao, Go). On successive
applications of this transformation the difference,
~A„—G„~, rapidly approaches zero. Then de-
noting thc common limit of A„and G„by 3f
{the "arithmetic-geometric mean" of Ao and Go),

I(&oGO) = 2~/3I. (13)

Thc number of steps ln thc ltcration procedure
vras left free in the planning of the problem.
Calculating expel lcnec Showccl. that suf6eicnt
accuracy was obtained by carrying the ealeula-
tioii to A4 (cf. Appeiidix II).

Piane of.
Sym @etr'y

FIG. 1. Saddle-point shapes
for various values of the nuclear
parameter x. The unit of length
is the undistorted radius.

0~ E. T. %'hittaker and G. N. %'atson, 3&dern Analysis (Cambridge University Press, Teddington, England, 1915),p.
0

8 In treating this problem with a desk calculator the use of a table of the first elliptic integral in this step would be far
easier. However, in setting up the problem for the Eniac the economy in program controls and programming labor of this
procedure seemed to us adequate compensation for the increase in computing time. It see 1'k l th h f h h
p cu a ing mac ines will often efFect changes of this kind in„the economy of calculating procedures.

i e. seems i ey at t euseo ig.



The radial integration in the evaluation of p are approximated by summations as follows:
and both co-latitude integrations were carried

10
out numerically. In the radial integration the V=+ cQ
relative radius i=1

with the range (0, 1) was used as argument. A

6ve-point integration

boule

Has usedI

R;=1++n», (I&;),.

y;=0.2, 0.4, 0.6, 0.8, 1.0,

e;=0.014881,0.148809, 0.089286, 0.5654/6,
0.181548.

B.=V "' g cQ;)E;2+&'(dR/dp) 2$~,

l0 10

B.=V "' P P g c;c,epR 3RP/M;;g,
j=l j=l k=1

The coefficients are so chosen that the equality
sign holds for any fourth-degree polynomial,

f4(x)

2~/M;;s ——I(&0, Go),

Ao'=R 2+R;2ygP —2RQ;yg(P;I&;+ v;vy),

G0' ——R +R yg' —2R~;y), (I&;I&;—~;v;).

FlG. 2b. Relative threshold values. It is convenient to
use $/(1 —x)' as ordinate rather than P itself; cf. Eq. (23).
The initial slope and intercept are taken from Bohr and
Wheeler.

The co-latitude integrations in p, 8„8„and
V are performed with a 10-entry gauss integra-

tion rule. "Denoting the ten roots of Pqo(I&) by
p, ; and the integration coefficients normalized to
unity by c; the equation

The contributions to 8, for 0 =5 (@5=1.0) require
special treatment. The surface potential (say at 8;, p,;)
produced by a shell of material at the surface is represented.
by the integral

f,&II 'l~(& &., ~'l

where 3f(p;, p,') is the arithmetic-geometric average of the
maximum and minimum distances from the point (R;, p,;, 0)
to the circle (E.', p, ', p'). For p'=p;, i', M has the value
M;, ;, ~ as defined in (21). However as p' approaches p,; the
integrand, 1/M, approaches infinity logarithmically. Thus
the numerical approximation (16) is inapplicable to the
integral (22). This difFiculty is circumvented by separating
the integrand, j./M, into a non-singular part which is
integrated numerically in the usual way and a simple
singular part which is integrated analytically. In the
summation (20) each term, 1/3f;, y, I„ for which i ~j, 4 =5
is replaced by the sum of two terms, one of which is the

2.0

I.S

holds with the equaHty sign if f(p) is a poly-
nomial of 19th degree. Thus the various integrals

~ It proves convenient in the following to choose a unit
o.ormalization for the coefFicients, e;.

10 Cf. Appendix I.
"Lowan, Davids, Levenson, Bull. Am. Math. Soc. 48,

739 (j.942). Fm. 2c. Maximum radii of saddle-point shapes.
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Fl(. 3. Fission thresholds for nuclei near uranium.
Curves for various Z values are given. Quantum-mechan-
ical eEects are not included.

integral of the singular part of 1/3.I, the other the ~th
contribution to the numerical integral of the singular part.
The details of this separation are given in Appendix II.

The change in the total energy of the nucleus
produced by the deformation is expressed by the

quantity
b,B

=B.—1+2—x(B. 1). —
. +0 (23)

~%e are indebted to Present, Reines, and- Knipp for
access to a more complete description of their. work than
their publication, reference 5.

3. RESULTS

The most accurate and extensive study was
made for x =0.74, the value calculated by
Present, .Knipp, and Reines' for O'". The
g-value found for its symmetric saddle-point is
0.013'. (Cf. Table I.) This value coincides with
the upper limit estimated by them;" the inter-
polated value given by Bohr and Wheeler' is
0.011.

The threshold value found for x =0.90,
g =0.0007, agrees with the value found by Reines
and Present. However at x=0.81, which bounds
the range of validity of their series, their
threshold value is some 8 percent less than the
Eniac value, )=0.0050.

The threshold for x=0.77 was investigated

briefly. An approximate threshold and saddle-

point shape are given in Table I.

The neighborhood of the saddle-point as deter-
mined by this procedure for x=0.65 was inves-
tigated with some care. The results obtained are
listed in Table I.

The deformation shape near this indicated
saddle-point (x=0.65) borders on the region in
which multiple-valued R vs. p description is
required. The saddle-point shapes which have
been obtained are shown in Fig. 1. It appears
likely that for values of x somewhat less than
0.{j5 the true saddle-point shape requires a mul-
tiple-valued description and can therefore not be
treated by the present method.

In Fig. 2a the values obtained for (B,—1)/
(1—x)' and 2(1—B,)/(1 —x)' for the saddle-point
shapes are plotted. Smooth curves have been
drawn; the values at x=1 were taken from the
series development of Bohr and Wheeler. In
Fig. 2b the values obtained for g/(1 —x)' are
plotted. A smooth curve, consistent with the
culves of Flg. 2a) ls drawn: the initial value and
slope are taken from Bohr and Wheeler. In Fig.
2c the, maximum radii of the normalized saddle-
point shapes are drawn.

In Fig. 3 the 6ssion threshold (e.g. , for photo-
6ssion) is shown for nuclei near uranium. The
constants used to evaluate these energies are
those used by Present, Reines, and Knipp. They
correspond to a value of 0.74 for x and to 538
Mev as the unit of energy in which P is measured
for U"'. These energies may be regarded as the
classical fission thresholds, i.e., the energy dif-
ferences as computed with the liquid-drop model
between the initial spherical equilibrium shape
and the saddle-point unstable equilibrium shape.

Two quantum-mechanical effects must be
taken into account in comparing observed photo-
fission thresholds with the energies of Fig. 3.
Photo-hssion will be observed for energies below
the saddle-point energy by reason of the tunnel
eAect. Moreover the zero-point energy of the
mode of vibration which leads to 6ssion effec-
tively increases the energy of the equilibrium
state. To calculate these effects requires the
determination of a suitable trajectory of defor-
mations leading to fission and of the momentum

conjugate to the deformation coordinate so
lntl oduced.

To determine a suitable trajectory of deforma-
tlons for a particular x value, say xo, consider
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first the quantum-mechanical problem of spon-
taneous 6ssion which requires the traversal by
tunnel effect of most of the region of positive g.
The rate of spontaneous fission will be deter-
mined primarily by the minimum of the Gamow
factor exponents for all such trajectories. It is
clearly reasonable to suppose that a trajectory
possessing this minimum value passes through or
very close to the classical saddle-point of xp. It
furthermore seems reasonable to assume that
this minimizing trajectory also lies close to the
saddle-point deformations determined by other
x-values than xp. For this reason, and by reason
of its convenience, the sequence of shapes of
Fig. 1 is taken for the "6ssion trajectory. " The
maximum radius will be used as the coordinate
specifying the deformation and will be denoted

by 1+a.
The evaluation of the Gamow factor requires

the use of an effective mass, M„such that the
kinetic energy associated with a motion along
the fission trajectory is ', M, (da/—dt)' Of all.

possible motions of an incompressible Huid con-
sistent with the prescribed motion of the surface
the minimum kinetic energy, hence, the minimum

M, is that of an irrotational motion. This
minimum value of M is the value required for

l.e—

l6—

OIO

OOI

P .I .2 .3 .4 .6 .6 .7 .6 .9 I 0 I 2

FIG. 5.- The energy of def ormation for x =0.74. The
coordinate b is plotted in Fig. 4. The unit of energy is
taken as 538 Mev and the unit of length is the initial
nuclear radius.

the Gamow factor calculation. The zero-rotation
condition, together with the prescribed motion
of the surface, uniquely determines the motion
and permits the calculation of 3EI .

For small a the surface is described by

&( ) =1+ & ( )+o( ')

The pattern of motion can be shown to be

8= (da/dt) grad(r'P2(y))

M'. =0.3M(1+a) +0 (a'),

I.O

0 !.2 I.4 I.6
l l

l.8 2.0 2.2 2.4 ? 6
a+I

where 1lI is the total mass of the nucleus. After
fission (i.e. , for large a) M, approaches M. A
numerical calculation has been carried out for
one intermediate value of a, @=0.69 correspond-
ing to the saddle-point for x=0.74. The value
obtained is iV, =0.7U/I with an estimated prob-
able error of 5 percent. These values were used
to draw the approximate 3II, vs. a curve of Fig. 4.
This determination of M, permits the trans-
formation to another coordinate specifying the
deformation,

FIG. 4. The upper curve represents the effective mass for
barrier penetration in units of the total mass. The lower
curve is the transformed deformation coordinate b for
which the effective mass is the total mass.

b = (M /M) &du,

for which the effective mass is the total mass, M.
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In Fig. 5 the energy of deformation is drawn
as a function of this deformation coordinate, b,
for x=0.74. The unit of energy is 8,' which for
values of the mass number, A, near 238 is taken
to be 538 Mev as determined by Feenberg. "The

unit of length in which b is measured is the
initial nuclear radius which is taken as A 1.47
X10 "cm as determined by Bohr and Wheeler. '

The energy vs. deformation relationship of
Fig. 5 has been used to calculate the Gamow
penetration probability for various excitation
energies. This penetration probability is found
to be well represented by

]0—7.8w»'

.24—

.20—

86-1
.i6

l2

.04—

.40

.38

2.0
l. 6
1.6

l. 2

1.0

.2

where AE is the energy deficit at the saddle-point
in Mev.

The zero-point energy of vibration as cal-
culated with the initial curvature of Fig. 5 is
0.4 Mev corresponding to a vibration frequency
of 2 X j.P2o sec -i in agreement with the value pal
culated by Bohr and Wheeler. '

Using this value for the zero-point energy and
Eq. (24), the mean 1ife for spontaneous 6ssion
may be calculated. '4

T,=10 "sec/0=1026 yr.

(Cf. Tab1e lI.)
The excitation energy required for Fission will

be approximately B,~ less the zero-point energy,
0.4 Mev. , where

jv, QO(

34

Q6 [ .32

.30

.26

.24

.6 .7,6 .9 I,O i. i

c4

Fit-. 6. Relative surface energies as functions of the
deformation parameters a2, 0.4, cf. Eq. (3).

13 F Feenberg~ Ph+s Rev 5/504 (]939)

A corresponding set of values has been calcu-
lated for x =0.75. The results are listed in Table
II. It mill be seen there that if x is assumed to
have the value 0.74 for U"', reasonable agreement
with experimental results on photo-fission" and
spontaneous fission" is obtained. This choice
represents a slight revision of the conclusions
reached by Bohr and V&eeler who chose x =0.74

by similar considerations based on their inter-
polated P-curve.

It should be noted that the fission trajectories
for which these calculations have been made are
not precise minimal trajectories, thus the mean-
life values for spontaneous fission given in Table
II are upper limits.

'4 T, is reduced by a factor of 5 for the degeneracy of
this mode of vibration. Cf. reference 2.

~6 R. O. Haxby, W. E. Shoupp, W. E. Stephens, and
W. H. Wells, Phys. Rev. 59, 57 (1941).' G. Scharff-Goldhaber and G. S. Klaiber, Phys. Rev.
N, 229 (1946};W. Maurer and H. Pose, Zeits. f. Physik
121, 285 (1943};H. Pose, Zeits. f. Physik 121, 293 (1943);
G. N. Flerov and K. A. Petrzhak, J. Phys. 7J.S.S.R. 3,
275 (1940).
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TABLE II. Energies and mean lives for E,0=538 Mev. ,
A =238, r0=1.47X10 ".

0.74
0.75

0.0137
0.0120

Z«-0.4 (Mev. )

6.97
6.07

T& (yrs. )

1()26

101'

Thus for the sphere, R(y) =1, the displacement
is described by a change in o.~ alone. However,
for a shape such as

E.= 1+0.7I'2

(an approximate saddle-point for x =0.74) which
becomes

R' =1+0.7P,+P,&+L0.84&/(1y0. 7P,)j
X(P -P.)+0(~')

= 1+0.7I'2+0.205Pg+ 1.058P3—0.288I'5+

the principal effect of the displacement is to
change n3. Thus in the neighborhood of the
heavy-nucleus thresholds the effect of u3 is of
secondary interest while 0,& makes the important
contribution to the asymmetry. For the deforma-
tion shape

R= (1+0.7P2)+ngPg,
$= (1.12783—0.247nP) +2x(—0.07132

+0.238ug')+0(ng'). (28)

Thus for x&0.52 the deformation energy is
increased by this introduction of asymmetry. It
should be noted that the effect on the deforma-
tion shape of the term aiI'~ is to narrow the
"neck, " i.e. , the relative minimum of R(1—p') &,

in comparison with the length. Thus in addition
to the introduction of asymmetry, this term has
a geometric eBect similar to that of an increase

parallel to the polar axis. Thus for small deforma-
tions from the spherical shape the center of
gravity condition is approximately equivalent to
the restriction a~ =0.

i%Iore generally, a small displacement,
parallel to the polar axis, transforms the ex-
pansion

R(~) =1+2~*P*(~)
to

R'(p) =1++a;P;+Pro

~(i+1)
+(~/R) Z n, — — (P;„—P, ,)+0(s'). (27)

2i+1

of n2. On the other' hand the introduction of
asymmetry, by shiting material from one side to
the other, has in part the effect of restoring the
original spherical shape. Thus the I'~ term has
two effects, that of producing asymmetry and
that of changing the symmetric distortion in an
ambiguous way. As 0.2 is increased from 0.7,
t increases if x&0.88, decreases if x)0.88 (cf.
Figs. 6—7). Since the P ~ term increases
throughout the range 0.52&x(1.00 it seems
likely that that part of its effect due only to
asymmetry is uniformly unfavorable.

For a more quantitative study of the eA'ect

of asymmetry on the deformation energy, small
amounts of I'i and P3 were added to the sym-
metric saddle-point expansion for x =0.77. It may
be seen from Eq. (27) that the displacement by
a distance b of a symmetric-deformation shape
introduces changes in the even-harmonic coef-
ficients, n2, n4, etc. , of order b'. At the saddle-
point these changes affect the deformation
energy only to order b4. Thus if small odd-har-
monic terms are added to the saddle-point ex-
pansion the change in P of order n, qq' is due
entirely to the true asymmetry which they
produce and not the change in the symmetric
distortion produced by their "equivalent dis-
placement. " The change in P for small a,qq was
found to be

h$, O.y7—0.246(0.659ug —0 752ng).'
+0.010(0.752ng+0. 659n8)'. (29)

The coefficient of the second term would be zero
if all the odd terms produced by a displacement
were taken into account. The corresponding ex-
pression for the (spherical) saddle-point of x = 1.0
is (cf. Eq. (26))

&)~&.0 =0.306ug'+0. 000nP. (30)

The slight decrease in the first coefficient as
x decreases from 1.0 to 0.77 suggests that
with increasing symmetric deformation a small
amount of asymmetry becomes energetically
less unfavorable and may even become favorable
for very great distortion. To check this possi-
bility the deformation energy has been cal-
culated analytically for the extreme deformation
represented by two spheres in contact. " The

"We are indebted to Dr. John Mauchly and to Dr.
Leonard SchiA for this suggestion.
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result is

(= (Vl+ W&) —1+2xL V"'+ W"'
+5 UW/3(V&+ W~) —1], (31)

where V and H/' are the fractions of the original
volume in the two spheres. The derivative,

d$/d V= 2( V& —W&)/3 V&W~

X L20x V-:W~/3( V~+ W') —17

consists of two factors, the First increasing from
0 to + ~ as V increases from 0.5 to 1.0, the
second decreasing monotonically from Sx/3 —1

to —1.Thus for x)0.6, $ has a relative minimum
at V=%'=0.5 and no other. For x(0.6 no
minimum exists. Figure 9 shows the dependence
of P on V for various x-values.

In 'order to compare this result with the
previously evaluated effects of asymmetry, Eqs.
(29) and (30), the two-sphere shape may be

the relationship

V= (1+ay/2)'/2(1+3nP/4)
gives

A$ =2"'(1+17x/12)+2—'~'(Sx/3 —1)ng'+

For x=0.75 (for example) the coeKcient of a&'

is 0.0788, which is considerably smaller than the
leading coeKcients in Eqs. (29) and (30) but is
still appreciably greater than zero. Figure 9
shows, moreover, that the increase of energy
with increasing asymmetry extends to quite
great asymmetries.

The above evidence seems to us to suggest
strongly, although not to prove conclusively,
that asymmetric 6ssion is not favored in the
liquid-drop model.
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APPENDIX I

An Alternative Radial Integration Rule

An alternative integration rule (analogous to
the Gauss rules) was developed for use in the
event that the rule of Eq. (15) proved insuf6-

ciently accurate. The gauss rules for the approxi-
mate evaluation of integrals in the range (—1, 1)
with unit weight factor are based on the ortho-
gonality property of the legendre polynomials in

this range and with this weight. For the present
problem we make use of the polynomial, F4(x),
which is orthogonal to polynomials of lower

degree with the weight factor x'.
This polynomial can be constructed from the

legendre polynomials, I';, scaled to the intervaj
(o 1)

p, (x) —=F,(2x —1),

p() p() p(x)
x'F4(x) = p4(o) p~(0) p6(0) .

p.'(0) p '(0) p '(0)

The determinant and its first derivative evi-

dently vanish at @=0, thus it does contain the
factor x'. x'F4(x) is a linear combination of p4(x),

ps(x), and ps(x) and is therefore orthogonal to
any cubic polynomial in (0,1). Any seventh
degree polynomial, fq(x) may be divided by F4(x)
leaving a cubic remainder.

fp(x) = Qg(x) F4(x) +Rg(x)

~1 ts 1

f,(x)x2dx = R,(x)x'dx.
p

lf x, is one of the four (real) roots of F4(x)

f~(x~) =Rg(x;).

The cubic polynomial, R~(x), may be expressed
in terms of these four of its values

R3(x) =P R3(xg) F4(x)/(x —xp) F4'(x;),

~1
3 fy( )xxd =xg e;f7(x;)

e.=3 " [x'F4(x)/(x x)F'(x —)jdx
Jp

The roots and coefficients have the values

x;=0.204149, 0.482953, 0.761399, 0.951499,
e;=0.031057, 0.205902, 0.430376, 0.332665.

This method can obviously be extended to other
weight functions and to other numbers of entries.

X =.55

1.05

Fro. 9. The energy of defor-
mation corresponding to two
spheres in contact as a function
of the fractional volume V for
various x values. No central
minimum exists for x(0.60.
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APPENDIX II zero) the value

~ = ~L(dR/d~)'+R'/(1 ~') 3'
0(B(&1, p=p;, R=R(p;)

and the iterative process carried out to determine
1/M;. The expression (33) then has the value

8 = V "' i —'dp i
—'dp')' 3x'dx2

1/M~+ Q/R

Q= Inb/x+0(b' lnS).
wher e

gR'(y)R'(p')/M(p, p', x)

The separation of the singular part of the
surface integral.

The integral

is to be approximated by the 6nite sum of
Eq. (20). Special treatment is required for
x=1.0 (4=5 in Eq. (20)) since there the y'

integral is singular. For small values of
~ p —y' ~,

1/M(p, p', 1) becomes infinite as —ln~ p —p'~/R.
Thus the integral over p,

' may be separated as

)"LR"/M(~, ~', 1)]2d~'

Now approximating the integral of the right.
side of Eq. (32) by the gaussian integration
formula gives

J
LR"/M(~*, ~', 1)32d~'=R'V(~*)/~

+ Q c,[R,'/M;, 5+R,2 Ini p; —@3i/xj

10

= )~LR"/M+R'(p) Ini p —p'i/xj-, 'dp'
where

+.,R,3[1/M;+Q/R, j=g.,R,'I ... (34)

+R'( )0 (u)/~, (32) X;i= 1/M, ;g for g Q't

=1/M;+P, /R; for j =i

The remaining integrand is now sufficiently
smooth to permit numerical integration. Its
value for p, = p,

' is, apart from the factor R",

1 64R'(1 —p')
-ln2' R'+ (1 p, ') (dR/d p) '—

To evaluate this quantity the minimum distance,
Ao of Eqs. (11) and (12), is given (instead of

In calculating ~, 8 was taken as 10—4. The
remaining factor in e is the ratio of two numbers
available at this stage of the calculation. The
ten constants, E;, were stored in a function table.
In the Eniac routine it was possible to make the
above indicated changes in procedure at the
"singular points" with relative ease: the numbers
entering into the calculation of 1/M were there
chosen in a special way. Because of the smallness
of 8 the number of iterations (Eq. 12) was doubled.
1/M is added to P,/R; and is then entered into
the series in the normal fashion.


