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An attempt is made to calculate the relativistic correction to the magnetic moment of the
deuteron in order to determine the D state probability from the accurately determined proton,
deuteron, and neutron moments. It is found that the resulting corrections depend strongly
on the transformation properties of the nuclear fields. If a scalar field is assumed the D state
probability is estimated at 4.8 percent, while for a vector field the corresponding estimate is
3.8 percent. The effect of a non-central tensor interaction is included in these estimates. It is
concluded that the magnetic moment cannot be used for a precision determination of the
amplitude of the D function. The results also indicate that little can be said at this time con-
cerning the question of the additivity of the intrinsic proton and neutron moments.

1. INTRODUCTION

N estimate of the amount of D state required
to account for the quadrupole moment of
the deuteron has been made by Rarita and
Schwinger.! They found the D state probability
to be about 3.9 percent. This result depends to
some extent on the assumptions made concerning
the nuclear forces, since the quadrupole moment
depends on the radial distribution of charge as
well as the angular distribution. For example,
Bethe? found a D state probability of 6.7 percent
on the basis of different assumptions concerning
the neutron-proton interaction.

A more direct method for determining the
amount of D state would be to make use of the
recent precision measurement® of the magnetic
moment of the neutron along with the previous

* This work has been carried out under the auspices of
the Atomic Energy Commission. It was submitted for
declassification on February 19, 1947,

! W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).
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determination* of the moments of the deuteron
and proton. In ordinary Schroedinger theory
these measurements determine the D state prob-
ability uniquely without any reference to the
nuclear forces. However, it has been pointed
out by Margenau® and Caldirola® that relativistic
corrections to the magnetic moment of the
deuteron which are not included in the ordinary
Schroedinger theory may be of the same order
as the D state effect.

In their calculations, Margenau and Caldirola
assumed that the nuclear particles move in a
central field of force with no interaction between
them. They also tacitly assumed that the central
forces arise from a vector field. Since one would
like, if possible, to make a precise determination
of the relativistic correction of the same order
of precision as the magnetic moment measure-

¢J. M. Kellogg, I. I. Rabi, M. F. Ramsey and J. R.
Zacharias, Phys. Rev. 56, 728 (1939).

8 H. Margenau, Phys. Rev. 57, 383 (1940).

8 P. Caldirola, Phys. Rev. 69, 608 (1946).
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ment, it seems worth while to consider this
correction in somewhat more detail. There are
several possible deviations from the results of
Margenau and Caldirola. In the first place, the
force field acting on one particle arises from
the other particle. Since the source of the field
is moving with a velocity comparable to the
_particle, one would expect vector potential terms
to contribute to the magnetic moment. These
do not appear in the Margenau and Caldirola
theories, because they have assumed that the
field arises from a stationary center. In addition,
it is known that the forces acting between the
particles are not central in character. It is just
this non-central nature of the forces which is
required to lead to admixture of the D state.l
It has been estimated by Rarita and Schwinger
that the strength of the non-central forces is
approximately 2 of that of the central force.
There are two effects of the non-central field,
the first of which is the effect on the wave func-
tion which is to be used in computing the rela-
tivistic correction. The other is a change in the
form of the relativistic correction terms.

In addition to the above modifications to the
Margenau and . Caldirola theories, one might
expect that the relativistic corrections would
depend on the nature of the nuclear fields; i.e.,
whether the fields arise from 4-vector potentials
or from scalar potentials.

The purpose here is to attempt to carry
through to order #?/¢® a two-body calculation
taking into account some of the effects described
above. For this purpose it is desirable to avoid
perturbations of the magnetic moment due to
the meson field since we would like to see how
well the observed results can be accounted for
without introducing such perturbations. There-
fore, the problem will be treated using classical
fields. It is known that a satisfactory relativistic
quantum theory of two interacting bodies cannot
be written down in this case. It is possible, how-
ever, to construct an essentially classical Hamil-
tonian which gives the appearance of relativistic
co-variance. This Hamiltonian can be expanded
to terms of order v2/c?, and then the correspond-
ence principle may be introduced to give the
appropriate relativistic formulation of the prob-
lem. In this theory the anomalous moments of
the neutron and proton will be introduced by
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adding the Pauli’ type interaction with the
electromagnetic field to the Hamiltonian.

The one-body problem in a scalar field will
first be repeated using the methods indicated
above in order to indicate what deviations from
the results of Margenau and Caldirola are to
be expected. Then the two-body problem will
be treated using both vector and scalar fields
without introducing the non-central part of the
field. Finally, the effect of non-central tensor
forces will be considered.

The results of these calculations indicate that
the answer is not unique but that it depends
strongly on the nature of the fields. As a conse-
quence, the amount of D state as determined
from the magnetic moment may be anywhere
between about 3.8 percent and 4.8 percent. It can
be hoped that a more accurate knowledge of the
neutron-proton potential combined with a knowl-
edge of the quadrupole moment will make it
possible to determine the D state probability
with some accuracy and thereby gain information
concerning the nature of the nuclear fields. For
this purpose. it would be. assumed that the
perturbation of the intrinsic moments of the
neutron and proton by their interaction is
smaller than the effects under discussion. There
is no available evidence as to the correctness of
such an assumption.

2. PARTICLE IN A CENTRAL FIELD

The treatment of the one particle problem can
be handled as indicated by Pauli.® The Dirac
equation modified by the addition of the Pauli
term is written in the form

_ (E—epo)p=c(e-m)x—Neo-H)e, (1)
(E—epo+2mct)x=c(o =)o+ Ne-H)x, (2)
where
h e
n=-grad ——¢, (2"
1 c

¢ is the scalar potential, and ¢ the vector poten-
tial of the nuclear force field, H is the magnetic
field vector, A is the anomaly in the magnetic

"W. Pauli, Handbuch der Physik (Julius Springer,
Berlin) 24/1.

8 W. Pauli, reference 7. It is to be noted that there is a
typographical error in the sign of the (8§-m) term in his
Eq. (89), p. 237.
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moment, ¢ is the vector whose components are
the Pauli spin operators, and ¢ and x are the
2-component wave functions. The wave function
x is of the order of v¢/c when the velocities are
small. To order #*/c® these equations can be
combined to give a modified Schroedinger equa-
tion for the function ¢. If we write JC for the
classical Hamiltonian in the presence of a mag-
netic field, H, then the equation for ¢ becomes

Eep= — o %) (Eo—edy) (o=
e=3ep (ch)z( ) (Eo—ego) (e m) ¢
+(2mc)2(o-n)(ﬂ'H)(ﬂ'ﬂ)- (3)
Here
_32__ _ﬁz_ ;\)( “H)+e
—2m 2mc+ 7 b0

and E, is the energy value for the zero-order
equation 3Cpo=Eopo. In order to determine the
magnetic moment we first seek the solutions to
Eq. (3) when H=0 and then determine the
correction to the energy caused by the presence
of the magnetic field by means of perturbation
theory. The coefficient of H in the expression
for the energy is then the magnetic moment.
The second term in Eq. (3) can be simplified by
commuting the factor (¢-=) on the right through
(Eo—e¢o). The resulting terms in the energy
which contain the magnetic field are given by
the average over the wave function of the
quantity

eh
e=——[(L+e¢)-H]—\o -H)
2mc
T eh eh
+— —[(L+o) H]4+—
mc? 2mc 2mc 4dmc?

1
X[;(é’Xr-H)—[(o-r)(&H)

—<«-H><é’-r)]}+ @D@H @

2m?c?

where L is the (dimensionless) orbital angular
momentum operator, r is the position vector,
p is the momentum of the particle, T is the
kinetic energy of the particle, and & is the
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“electric” field, i.e. §= —grad¢e. The first term
is the usual expression, and all of the other terms
are corrections of the order v?/c2 In the absence
of non-central fields, the term (X r-H) vanishes
and the other terms may be calculated without
reference to the shape of the potential. The result
is found to agree with that obtained by Caldirola.
If the field is non-central there are the two effects
suggested above; namely, the (§Xr-H) term
may not vanish, and the average value of the
other terms depends on the amount of admixture
of states in the wave function. Since the recoil
of the source of the field has been neglected here,
the result does not contain the specifically
nuclear vector potential which is of the order of
v¢o/c where v is the velocity of the source of
the field.

It will be noted that, according to Eq. (4),
the anomalous part of the moment does not
depend on the nature of the nuclear forces,
except through the wave function to be used
in the averaging. It will be found that this
result obtains in general.

3. TWO-BODY PROBLEM WITH SCALAR FIELD

Because of its relative simplicity we first treat
the problem of the scalar field without tensor
forces. Designating the field acting on particle 1
(the proton) resulting from particle 2 as®® Uy, it
is assumed that U; may be obtained from the
field equation

D1U1—K2U1=—7:(Y2'52)y (5)

where []; is the D’Alembertian with respect to
the first particle, « characterizes the range of the
nuclear forces, 8, is the current density 4-vector
for particle 2 (the neutron) and v, is a 4-vector
which will later be identified with that which
can be obtained from the Dirac matrices of the
second particle ; namely,’

o = —ifsas®
vt =

All that will be required for our purpose is the
solution of Eq. (5) to zero order in v/c. To that

8 UJ; represents half of the interaction potential and Us
represents the other half. This division is required in order
to separate the roles of the two particles in the relativistic
equation, Eq. (8). It will be seen below that the interaction
potential is related to the sum of U; and Us.
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approximation, Eq. (5) reduces to

A1U10—K2U10=ﬁ292 (6)

where p, is the charge density of the second
particle. The solution to this equation is of
the form

U1°=ﬁ2V1(|r1—r2|) (7

where T, is a Yukawa type potential. A similar
expression can be found for the potential acting
on the neutron caused by the proton. Making
use of these potentials we may now write the
Hamiltonian for the two interacting particles

E+ Mc?=mic*B1+mac*Ba+c(ar- )
+c(as =) +B1UL+B U

—M(o-H)B1—Nz(02-H)B2  (8)

where =; and =, are the usual generalized mo-
menta containing the vector potential caused by
the external magnetic field (see Eq. (2')), \1 is
the anomaly in the magnetic moment of the
proton and A, that of the neutron. In this ex-
pression we will only carry terms to order 2?/c?
in the U. With this understanding, the wave
equation is

Ep=LEo, )

where ¢ is now a 16-component wave function.
In analogy to Eq. (1), we write ¢ in terms of
4-component functions ¢1, ¢, @3, ¢s. We choose
¢11n such a way that it is the zero order function,
@2 to be of order ve1/c in the first particle, ¢; to
be of order ve:i/c in the second particle, and ¢,
to be of the order #2¢:/c®. The equations for
1, P2, @3, and ¢4 are then

Epi1=c(01-m1) patc(o2-®2) 03+ Vr

—>\1(01'H)¢1—)\2(‘72'H)¢11 (103)
(E4+Mc®) po=c(o1m1) @1+c(o2- %) 04
— Vst (o H) oo —No(o2-H) 02,  (10b)
(E4+Mc2) ps=c(o1®1) es+c(o2- ) 01
= Ves—Ai(e1-H) pz+Na(0-H) @3,  (10c)
(E4-2Mc*) ps= (01" 1) ps+c(o2- =2) 02
+Vest+Mlor-H) os+No(o1- H) s, (10d)

where M=m1+mz=2m1 and V= V1+ V2.
These equations are to be treated by the
method indicated in the previous section. Terms
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only as high as #?/c? are to be carried, and then
the magnetic moment is to be determined by
treating the terms proportional to the magnetic
field as perturbations. In the equations for the
unperturbed system, there will be contributions
due to retardation effects in U and Us; but these
effects will only affect the magnetic moment
through their influence on the wave function.
Thus, for example, the amount of D state con-
tained in the deuteron wave function may be
caused partly by tensor forces which arise in
zero order and partly by tensor forces which
arise in order #2/¢%. A distinction between these
two interactions is not necessary for our purpose,
since we are primarily interested in determining
the amount of D state from a measurement of the
magnetic moments and not in calculating directly
what the amount of D state should be. There-
fore, in the determination of the corrections to
the formula relating the magnetic moment to the
wave functions only terms of zero order in the po-
tential such as that given by Eq. (7) will play
a role.

It was mentioned in Section 2 that the correc-
tions to the anomalous part of the magnetic
moment are essentially independent of the nature
of the force field. This follows directly from the
proper manipulation of Egs. (10). The final
result which need not be repeated again in the
following sections is

€a=(2/(Mc)*)[M(o1-D) +Xs(02-p) J(H D),

where €, is the correction of order #2/c* to the
perturbation energy which arises from the
anomalous moments, and p is the momentum of
the proton which is equal to the negative of the
momentum of the neutron in the center of
gravity coordinate system. It is to be remembered
that A\ and A, are very nearly equal and opposite
(A=1.790, A\y= —1.910 in nuclear magnetons).
Since the ground state of the deuteron is a
triplet state, the spins o1 and e, are parallel so
the two terms in Eq. (11) very nearly cancel.
The residual is small compared with the effects
that are of interest, so in the following €, will be
neglected.

The other terms may be obtained by the
methods indicated in Section 2. The results are
somewhat different because of the change in

(11)
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sign of the potential terms which occurs in
Egs. (10). This is a characteristic difference
between the scalar field and the vector field.
The final result for the perturbation energy due
to the maénetic field, H, is

= ok L H]-\ H
fs——M[( 1+e1)-H]—\(o1-H)

h
—Ne(02-H) +ﬁ—[(L;+m) ‘H]JQE—-T)/Mc*
Mc

2% eh[cl'H)_(cl-r)(bH)]’ 12)

4Mc? Mc r?

where E is the binding energy of the deuteron, r is
the distance between the two particles, and V' is
the derivative of V with respect to 7.

Under the assumption that the only inter-
action between the particles is given by the
central potential V, the average value of the last
term in Eq. (12) is found to be

(eh/Mc)((o1-H) — 3o H)XT/2Mc%), (13)

as a consequence of the Schroedinger equation.
The angular brackets are meant to indicate the
average over the wave function. The ground
state of the deuteron may be assumed to be a
3S state since the effects of the tensor force are
being neglected. Then the average value of this
term is found to be

(eh/Mc)(or- H){(T /3 Mc2),

and the relativistic correction to the magnetic
moment of the deuteron (measured in nuclear
magnetons) becomes

Ap=—AE—T/3)/Mc. (14)

For the deuteron E/Mc*=—1.2X10"% and
(T'/Mc* may be taken to be about?® 5.4X1073.
Then the correction to the moment is found to be

Ap=6.0X1073,

9 This estimate of the kinetic energy is based on the work
of Rarita and Schwinger (reference 1) so it is not strictly
consistent with our assumption of no D state. In any case,
this calculation serves only as an indication of the effect.
Certain numerical constants which are not given in
reference 1 were kindly provided the author by M. E. Rose
who has recalculated them.
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so about 0.88 percent of the deuteron moment
would be ascribed to this relativistic effect. The
correct relation between the moment of the
deuteron and those of the neutron and proton is!

#p = (untpp)(1—3D/2)+3D/4+Ap, (15)

where D is the D state probability. The above
estimate of Ap leads to D=35.1 percent as com-
pared to D =4 percent obtained by Arnold and
Roberts.?

4. TWO-BODY PROBLEM WITH VECTOR FIELD

The treatment given in Section 3 can now be
repeated using a 4-vector interaction in place of
the scalar interaction. For this purpose we
introduce a 4-vector field, @1, which arises from
particle 2 and acts on particle 1. @; may be taken
to be the solution of the equation

D@r‘“ K2@1 = 8s.

Again, only that approximation to the solution
of this equation which neglects retardation
effects is required. To this approximation one
finds

A14=’iV1, (1621)

A;=(p2V1+ Vip2) /2mqc (16b)

where A, is the 3-vector representing the spatial
part of @;. Since the spatial components A, are
of order v/c times the fourth component, it is
to be expected that they will only contribute to
the correction to the magnetic moment.

The Hamiltonian for the two interacting par-
ticles may now be written in the form

E+ Mc2=m1c?B1+mac?Be

o ()]

1 1
+()[Ol2‘ (ﬂz"'"'Az)J'*— 1/1'*" Vz. (17)

4

The contributions of the anomalous moment to
the Hamiltonian have been ignored for the
reasons given above. The perturbation treatment
of the wave equations which follow from this
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Hamiltonian leads to the result
eh

€y = “‘——[(Ll +0’1) . H] —)\1(01 H)
Mc

eh
_)\2(0'2 H) +—[(L1+0‘1) H:[T/M(,Z
Mc

U R T
4Mc? Mc 7’
2V ek (L.-H). (18
Mc* Mc ’ . )

The last term arises from the spatial part of the
vector potential. It has been simplified by making
use of the relation Eq. (16b) between the spatial
part of the vector potential and the ordinary
potential.

The V7’ term in Eq. (18) is again given by the
expression (13) on the assumption that the
ground state of the deuteron is a 3S state, and
the last term vanishes. Consequently, the correc-
tion to the magnetic moment is found to be

Ap=—2AT/3M)=—3.6X103,

in agreement with the results of Margenau and
Caldirola. The D state probability which would
be obtained from Eq. (15) using this correction
is 3.4 percent. Thus there is a wide difference
between the results obtained with the two
different types of field.

5. THE EFFECT OF TENSOR FORCES

In the foregoing discussion it has been assumed
that the fields are spin independent in zero
approximation. Thus they do not include a
tensor interaction of the type required to ac-
count for the quadrupole moment of the deu-
teron, except for the fact that some tensor
interaction would arise in higher approximations
in v/c. It seems desirable to treat the problem
on the assumption that the tensor interaction
arises in zero order, since this interaction ap-
pears to be quite strong.! Such an interaction
can be included in the discussion by introducing
additional fields, either scalar or vector.

Since the results of the calculation for a central
field are already ambiguous, it does not seem
worth while to go into very great detail with the
tensor interaction. As a matter of fact, it is
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well known that the introduction of tensor forces
in a field theory usually carries with it potentials
proportional to #* for which there is no proper
solution of the Schroedinger equation.? To avoid
these difficulties the treatment of the fields will
only be carried far enough to indicate the manner
in which the tensor interaction is to be inserted
in Egs. (10a-d), or their equivalent. Then the
usual tensor interaction will be inserted in the
indicated manner.

The scalar field may be modified by the addi-
tion of a term

P1 = knl(Yl J gradl) W,
where Wi is a solution of the equation

LhWi— e Wi= na(ys-grads) (y2-S2),

and 7, is the pseudoscalar obtained by taking
the product of the four components of the
4-vector vy, and 7 is similarly defined for the
second particle. The indicated gradients are to
be interpreted in the four-dimensional sense.
Again, only the zero-order contributions of W,
are of interest and in this approximation we find

P1°=k61(01-grad1) (az-gradg) Vi (19)

where the gradients are now to be interpreted
in the three-dimensional sense, and the matrices
o; and o are the four-dimensional matrices
obtained by taking the direct product of the
ordinary two-dimensional spin matrix with a
two dimensional unit matrix. This result is a
consequence of the fact that the time derivations
occurring in Eq. (19) are of the order of v/c
times the spatial gradients, so they may be
neglected.

The introduction of P; and of the analogous P,
in the Hamiltonian given by Eq. (8) leads to an
expression containing a tensor interaction. The
feature which is of importance for our considera-
tions is that P; is to be multiplied by B; on
introduction into the Hamiltonian so that the
tensor interaction term appears with the factor
B:?=1. Therefore, the sign of the tensor inter-
action term is the same in all four of the equa-
tions which are the analog of Egs. (10a—d). If we
now introduce a simple tensor force of the type

Ki=Fk[(01-11)(02-12)

—%((711]'2)(1'1'r2)]V1/27lr2 (20)
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and make use of the fact that the signs of K; and
the analogous K, are to be the same in all four
of the Dirac equations, the additional correction
to the magnetic moment due to the tensor
forces can be calculated. The resulting expres-
sion is

(21)

e=¢+¢€
where ¢, is given by Eq. (12), and € is
1 e
¢ =———{(o: rXH)
2Mc* Mc
X [h(ey-gradiK) /2t —k V(s 1) (r-p) /%]
+(kV/3)[(o1-rXH) (o2 p)
+ (021 XH)(01-p) ]+ (k#/34)[ (01 -1)
X (oot XH) V' /r—2(o1 Xos- H) 1]},

In a similar manner, the behavior of a tensor
term which is introduced in the vector field may
be obtained. In this case one may add to the
4-vector potential an additional vector inter-
action which is given by

Bi=Fkni(y:-grad,)Q,

where Q; is a 4-vector potential satisfying the
equation

(22)

(01— €*Q1=12(y2-grads)$,. (23)

Again, to the approximation which is of interest,
we find

B1°=k6162(01-gradl) (o-z~grad2)@1", (24)

and here, also, the important feature for our
purpose is the fact that the potential appears
with the factor 818, This factor leads to changes
in sign which do not arise in the ordinary vector
potential terms. The procedure has again been
to introduce a tensor interaction of the form

Bi"=kB1B:[ (01:11) (02 12)

—3(r1-19) (01-02) J@1°/ 27172 (25)

into the Hamiltonian Eq. (17). The corrections
to the magnetic moment may then be computed
in a straightforward manner with the result

e=¢,—€ +e”’ (26)
where e, is given by Eq. (18), ¢ by Eq. (22)

(note the negative sign of this term), and ¢’ by

e
1"

1 .
= Y Mc{ (2/2¢)[(o1-gradK) (o1 -1 X H)

—~((n-rXH)((n-gradgK)+(01-r><H)
X (o1 Kp) — (01-K(o1-tXH)p)}.

27

The correction to the moment is affected in
two ways by the action of the tensor force.
First there are the new terms ¢’ and ¢’ given by
Eqs. (22) and (27) which are to be added to
the moments. Then there is the effect of the
appreciable amount of D state contained in the
wave function of the ground state. The latter
effect introduces corrections to the expression
(13) which has been used in computing the last
term of Eq. (12). Also, cross terms between the
S and D states appear for this term and all
other angle dependent terms such as ¢ and ¢”
and the next to last term in Eq. (18).

Although the tensor force is strong (k=~9/4),
the D state amplitude is small enough! (20
percent of the S state amplitude) for a rough
estimate of the correction to be made without
taking into account the change in the wave
function. This requires a determination of the
average values of ¢ and ¢’ in a 3S state. It is
easily found that

(Y=~ (eb/Mc)HT /4 M c2, (28)

and

(") =0. (29)

The final results for the corrections to the mo-
ment are then found to be for the scalar field,

Aqu=0.46 X102, 30)
and for the vector field,
Apu=—0.22 X102, 31)

The corresponding D state probabilities which
are to be obtained from Eq. (15) are found to be
D;=4.8 percent and D,=3.8 percent, respec-
tively. These results are, of course, very rough
since the cross terms between the S and D states
have been neglected. They serve, however, to
demonstrate that the tensor interaction decreases
the difference between the vector and scalar
fields.
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6. CONCLUSION

Only two special types of nuclear field have
been considered here. The ‘‘true” field may
differ from these or it may be composed of
a combination of the various possibilities.!®1
Therefore, the wide difference between the rela-
tivity effects on the magnetic moment obtained
for the two special types of field considered
indicates that the D state probability in the
deuteron cannot at present be accurately deter-
mined from the measured moment. It also
becomes clear that the measurements of Arnold
and Roberts® cannot be considered as evidence
that a small perturbation of the intrinsic mag-
netic moments of the neutron and proton does
not occur when the particles are bound together
in the deuteron. At best, one can conclude that
such changes amount to no more than one or
two percent of a nuclear magneton.

These results do indicate that an accurate
determination of the D state probability from
other data, such as the quadrupole moment,
may be used to gain information concerning the
transformation properties of the nuclear fields.

10 C, Mgller and L. Rosenfeld, Kgl. Danske Vid. Sels.

Math.-Fys. Med. 17, No. 8 (1940).
u J, Schwinger, Phys. Rev. 61, 387 (1942).

For this purpose it would be necessary to assume
that the changes in the intrinsic moments dis-
cussed in the preceding paragraph can be neg-
lected.

To obtain the D state probability from the
quadrupole moment, more detailed information
concerning the neutron-proton interaction poten-
tial (but not the transformation properties of the
fields) would be required. In particular, it would
be most desirable to be able to distinguish be-
tween the very short range square well potential
used by Rarita and Schwinger! in obtaining their
estimate of D =3.9 percent and the longer range
exponential type of potential used by Bethe? in
obtaining the estimate D =6.7 percent.

Even if the required information were avail-
able, there would still be serious doubts con-
cerning the additivity of the intrinsic neutron
and proton moments. It appears that present,
knowledge of the ground state of the deuteron
is in a most unsatisfactory state.

The author had the good fortune to see,
through the kind offices of Professor A. Roberts,
a paper'? on the same subject by Professor Breit
before completing this manuscript.

2 G, Breit, Phys. Rev. 71, 400 (1947).
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On the Time Required for the Fission Process*
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An experiment has been done to determine if any fissions were delayed by as much as 108 sec.
Less than 5X 1075 of the fissions were delayed by this time.

T is of interest to detect any measurable delay
between the absorption of a neutron and the
occurrence of fission. Feather! demonstrated by
an ingenious experiment that some fissions oc-

* This document is based on work performed in 1944 at
Los Alamos- Scientific Laboratory of the University of
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curred within 5X 107 sec., the time required for
the compound nuclei formed by the absorption
of very fast neutrons by uranium to be stopped
in solid matter. His observed effect, however,
was about one-third of that calculated. The
experiment described here was designed to find
if any fissions were delayed.

The experimental arrangement is shown in
Figs. 1 and 2. Nearly pure U»5 was plated uni-
formly, 10 ug/cm?, as oxide on platinum strips
20 cm X 0.9 cm which were fastened to the side



