
from the present experiment agrees very well

with the latest direct y-energy determination of
Kruger and Ogle" which gave 1.70+0.02 Mev.
It is somewhat higher than the value 1.67 Mev
which Wattenberg obtains from the mean energy
of the photo-neutron source.

We wish to extend thanks to Dr. A. Watten-
berg for his help in preparation of the sources
used and for valuable discussion, to T. Drill for
the design of cloud-chamber control circuits,
and to N. Goldstein and S. Jashemsla for aid in

taking data.
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Although elastic and first-order inelastic cross sections for a neutron against a Debye crystal
have already been determined, expressions for higher order inelastic collisions have not been

calculated, and would be very complex for the Debye model. The calculation of the total
inelastic cross section involving the emission of an arbitrarily large number of phonons is here

presented for a neutron against an Einstein polycrystal. The result, as one would expect, is

essentially the same as that given by Fermi for amorphous scatterers, except at high neutron
energies where we have calculated the cross section for the ejection of the struck nucleus from

its lattice. The coherent elastic cross section is also determined; it is important for energies

as high as 1 volt, and does not differ appreciably from that previously calculated for a Debye
crystal. The total cross section, the sum of the coherent and incoherent parts, is compared
with the experimental data on beryllium.

l. INTRODUCTION

'HE scattering of a neutron by a crystal
may be described qualitatively in the

following manner. As long as its energy is large
compared to the chemical binding energy of the
lattice, the neutron is scattered as if the nuclei
forming the lattice were free. A fast neutron
therefore slows down by dislocating effectively
free nuclei until its energy becomes of the order
of the crystal bond. It then makes inelastic
collisions with the lattice as a whole, until it
loses so much more energy that its wave-length
exceeds the amplitude of the temperature vibra-
tions of the scattering nuclei. At this point
elastic collisions with the lattice become the
most probable process and further cooling of the
neutron takes place very slowly. Finally, if the
neutron energy is somehow made still lower,
inelastic scattering becomes important again,

*This work has been carried out under the auspices of
the Atomic Energy Commission. It was submitted for
declassification on March 10, 1947.

*~ Now at the Institute for Advanced Study, Princeton,
New Jersey.

since the neutron begins to absorb energy from
the crystal.

In this paper the cross sections for these
different kinds of scattering are calculated for
the Einstein crystal. The elastic and 6rst-order
inelastic cross sections have already been deter-
mined for the Debye crystal. ' The di8'erence
between our formula for elastic scattering and
that deduced from the Debye model is insigni6-
cant. For first order inelastic collisions the Debye
type of formula is to be preferred, but for higher
order collisions, in which many phonons are
exchanged, the equations of the Debye model

become too complex. In these higher order
collisions the cross section computed from the
Einstein model is essentially identical with the
cross section calculated by Fermi' to describe

' I. Pomerantschuk, Physik. Zeits. d. Sowjetunion 13,
65 (1938); R. Weinstock, Phys. Rev. 65, 1 (1944). See also
Halpern, Hamermesh, and Johnson, ibid. 59, 981 (1941);
Wick, Physik. Zeits. 38, 403 (1937); Seeger and Teller,
Phys. Rev. 62, 37 (1942).

2 E. Fermi, Ricerca Sci. /, 13 (1936); H. A. Bethe, Rev.
Mo d. Phys. 9, 124 (1937).
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the thermalization of neutrons in hydrogenous
substances. The cross section is incoherent and
the formula for it is hence applicable to amor-
phous matter. In the same energy interval in
which higher order inelastic collisions become
dominant, the elastic cross section, which is a
discontinuous function of energy in the thermal
region, becomes efkctively continuous, Finally,
at still higher neutron energies the Einstein
model of the crystal must be modified because
the nucleus struck by the neutron may be
ejected from the lattice.

Before describing the calculations, we distin-
guish between two ways of regarding a crystal as
a set of equivalent oscillators. (a) The nuclei
comprising the crystal may be considered as
independent oscillators whose frequencies are
all equal. In this picture an inelastic collision in
which many phonons are absorbed or emitted by
the lattice occurs when a single oscillator makes
a macy quantum -transition. (b) The motions of
the individual nuclei may be analyzed into 3X
lattice vibrations whose frequencies are all equal.
In this picture a collision involving many pho-
nons is described as a combination of simultane-
ous One-qgantgm transitions of many lattice
vibrations. Description (b) is easier to connect
with the Debye model, whereas description (a),
which we use here, can be reduced to the problem
of scattering by a single isotropic oscillator.

2. THE MATRIX ELEMENTS

The wave function for a composite system
consisting of a crystal and a free neutron is

P(k, n4 .n~) =exp(ik. r) ii y(u;, n;). (1)

In Eq. (1),k and r are wave number and position
vectors of the neutron; u; is the displacement of
the jth oscillator from its equilibrium position,
and n; is the set of three quantum numbers
needed to describe this oscillator. The functions,
y, are products of Hermite functions. AVe calcu-
late the matrix element for a transition in which
the neutron changes from state k to k' while the
crystal simultaneously makes a transition from
(n& ng) to (nq'. ny') as a result of the fol-
lowing interaction potentiaP between the neutron

and the crystal:

V= P A, 6(r —r,)

where r; is the instantaneous position of the jth
nucleus. The evaluation of this matrix element
depends on whether the collision is elastic or
inelastic. The results are

(k, n, n&l Vlk'n, n&)

= Q A;(n, (I(n,) expLi(k —k') R,j (3a)

for elastic collisions, and

(k, n~. n„nz( V(k'n4 . n„' . n~)

=A„(n„(I(n„') expLi(k —k') R„] (3b)

for inelastic collisions. Here

(n;(I(n, ') =Jf expLi(k —k') u, jp(u, , n, )

&&p(u, , n )*du, (4)

and R;(=r,—u;) is the equilibrium position of
the jth nucleus. The probability of an elastic
collision, being proportional to the square of the
sum in (3a), contains cross terms which represent
interference between neutron waves scattered
from different oscillators; elastic scattering is
therefore coherent. On the other hand, matrix
elements describing inelastic collisions consist of
single terms only, so that there is no interference;
inelastic scattering by an Einstein crystal is
hence incoherent and the scattering is isotropic.
This feature of the present model is in error for
nearly elastic scattering, which is not isotropic
either according to the Debye model or to the
experimental evidence on x-rays; but for larger
energy transfers our simple model should be
correct.

3. THE SCATTERI:NG CROSS SECTION

.I.n terms of the matrix element 3II~~ the cross
section for a transition from state A to state 8
is, per unit solid angle,

a, = (4m'm~'/Nk4) ( V'/V)

where A and 8 refer to states of the composite
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system consisting of the crystal and the neutron.
The initial and final velocities of the neutron are
V and V', and its mass is nz~. The cross section
is here norm. alized by dividing by the number,
X, of nuclei in the crystal. If P& is the probability
that the crystal is in state A, then the total
cross section 18

B.Elastic Cross Section

The elastic cross section' of a single crystal,
also found by putting (3) in (5), is per unit
solid angle

o' = (m~/p) 'L (2s'Ioo,./B) 5 (k —lr' —2s ~)
+Qo;/4s J (7)

o =a Q Pg
I Its I

". {5) where B is the volume of a unit cell, and

The total elastic cross section 0 is obtained by
carrying the sum (5) over only those final states
for which E~ ——E~, where E is the energy of the
indicated state of the crystal. Likewise the sum

gi~ing the total-absorption (emission) cross sec-
tion, o+(o ), is limited by the conditions Zz) P&
and Ez&Z~, respectively; here emission (ab-
sorption) means emission (absorption) of pho-
nons by the neutron.

If the matrix elements (3) are put in (5), one
gets the scattering cross section of a monocrystal
in terms of single oscillator functions. The results
are, of course, quite different for the elastic and.

inelastic cases.

A. Inelastic Cross Section

The result for the inelastic case is

I'=
I Z~(n)(nIIIn) I'

Q = &-I P(n) —P(n)'3
I (nI I In) I'

o, = (1/p) I
g'o;& exp(~2s.~ R,) I'.

(7b)

(7c)

(7d)

ln Eq. (7d) R; is the position of the jth nucleus
in a unit cell; the sum runs over the unit cell;
the sign of r;& in general depends on j.

The 8-function, arising from the sum in (Ba),
is characteristic of crystal-diffraction problems
and restricts scattering to the direction of the
Laue spots. These directions are determined by
the equation

k —k' = 2xc.

2m~ = lgb~+l~b2+l, b, .

Here l~, l2, and l3 are integers; the b; are re-
ciprocal lattice vectors.

where
o ~ = (m~/p) 'o;J~ ( ) Since k=k', one has 2k sin8/2=2sr, and hence

J~= J~I~dQ (6a)

is the integral of I over all solid angle, and

I =(1/4s)p(U'/V)P(n) I(nIIIn') I'. (6b)

P(n) is the probability that a single oscillator is
in the state n; (nIIIn') is given by (4). In Eq.
(6) o; is the incoherent cross section of a unit
cell, namely,

o'= (&/P) 2'o. (6c)

where the sum is to be carried over all p nuclei
in a unit cell; 0„ is the cross section of a free
nucleus.

o„=(16s'p'/k')A ' (6d)

where p, is the reduced, mass of the neutron and
free nucleus.

Since the inelastic scattering is incoherent, it
is the same foI. the polycrystal as for the mono-

crysta),

(8a)

The second term in (7) gives rise to an isotropic,
incoherent scattering, which disappears if the
crystal is cooled to O'K; it is introduced by the
randomness of the initial state of an oscillator.

The polycrystalline elastic cross section is
calculated by averaging the monocrystalline
cross section over all orientations of the single
crystal. This may be done by averaging over ~,
since ~ is fixed relative to the axes of the single
crystal. Finally the cross section is integrated
over all scattering angles in the neighborhood of
k'=k+2m~. The result is that the total cross
section associated with a given value of v is

o'= (mN/Ii)'[so. Io/2Bk'r+Qo~7 (9).
C

The total-elastic polycrystalline cross section is
obtained by summing (9) over all allowed

3 gefereno' 1, R. Vifeinstot:k,
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directions. The result is

r ~(k/m.

0'= (mm/&/'/2/i'Bk') Qi Ioo./r.

orthonormalized-assoriated Laguerre functions. '
Equation (13) can be proved as follows.

By use of the generating function

The isotropic term is omitted from (10) because
it vanishes if all oscillators are in their ground
state, and in any case it is small.

4. THE SINGLE OSCILLATOR FUNCTIONS

exp( —t'+2') = ZH (x)t"/n!

it is easily shown that
co co

y= Z Z ——I„,.
;=o m-0 n! m!

where

(14)

The elastic and inelastic cross sections are
given by Eqs. (10) and (6) respectively, but the
one-oscillator functions appearing in them must
now be calculated. These functions are based on
the matrix element (n~I~n') which is defined in
Eq. (4) where

y(u, n) = y(u„n )p(u„, n„) q (u„n.).

and

Hence

I =J exp( x')H„(x—)H (x)e'&'dx

y e"'=f exp! —(t+s x)'ge'&*d—x

exp( ~2/$)&2te+iq(t+e)

Bt"BSm

Hence (n
~

I
~

n') can be broken into three factors„
one of which is

(n, ~I~n, ') =jf exp'(k, —k, ')u,

X p(u„n, )y(u„n, ')*du, . (11)

The y are the oscillator wave functions

p(u, n) = (n ~a2"n!) lexp( -——',P)H„(&) (11a)

where
'

(=u/a and a = (5/mo)) &. (11b)

—(2t+ig)my
Bt" - o

By performing the indicated differentiations one now
shows that y generates the Laguerre functions. In fact
the required integral is

(~2 ~n!m!)-~I„=I n!(n+~)!j-~
s -@/2

Xexp( —g'/4)~„—' —— . (15}

This last expression. is readily identified with the Laguerre
functions as stated in Eq. (13).

The required matrix elements are

(n
~

I
~

n~) —( )i(xx+&g+xz)@ iig(q 2)

gxg(q 2)@ rig(q 2) (16)
Here m and co are the mass and frequency of an
average nucleus in the lattice. Let where

q = (a/v2) (k —k'). (16a)
X($, n) =a'p(u, n) (12)

Then use can be made of the result that the
Fourier transform of the product x($, n) x($, n')
of two orthonormalized Hermite functions is an
associated Laguerre function. That is,

f e'«x(P, n)x(P, m)*d&

where
P(n.) =-s"./P s"= (1 —s)s'"

s=exp( —ku&/kT). (17a)

But by (7b) and (16)

Now the probability that the x-oscillator will be
in the state n, is

where

=(—)&&~~ »g &~ ~&(q'/2) with myn (13)

(nf)k d"I.„+g(x)
C „~&,"(x)= e

—~/2x&/2 (13a)
L(n+) )!j~ dx~

and where )&. =m —n. Here I„(x) is the nth La-
guerre polynomial. The functions C„+),~ are the

The square bracket in (18) is just the generating
function of the Laguerre functions, i.e.,

2 s"C'-'(x) =(1/1 —s) expL. —x(1+s)/2(1 —s) j
0

4 The integral (13) is calculated by Weinstock but the
result is not. identified as a Laguerre function.



Js =exp( A—r') (i9)

A = (k'/2mkO) coth(O/2T). (19a)

ln (19a) k is Boltzmann's constant and 0 is the
Einstein temperature of the lattice (S~ =kO).

An exact calculation of the function I given
in (6b) appears difficu!t, but may be avoided by
use of the following approximations. To calculate
the emission cross section assume that the initial
state of the oscillator is always the ground state:
P(ts) =b(ts, 0). On the other hand, to calculate
the absorption cross section assume that the
final state of the oscillator is always the ground
state. Under these assumptions the matrix ele-
ments for emission and absorption are equal:
(o lrln) = (nlI I

o)*.
The absorption cross section becomes impor-

tant only for very slow neutrons. For these
neutrons it varies with the energy, 8, as B—' for
the Einstein model and as 8 ' for the Debye
model. In this case the latter model is, of course,
to be preferred; the Einstein picture fails here,
as it does for specific heats, because it does not
take account of low frequency vibrations. For
this reason further discussion of absorption
cross sections will not be given.

The calculation of J—has been given elsewhere, '
under the above assumption P(n) = 5(n, 0). The
result, which is to be inserted in Fq. (6), is

(20)

where

J„-=(m/4~~e) l f„(a, ) —f„(a, )3, (2Oa)

f (x) =e-*(1+x+ ~ +x"/tt!), (20b)

rIt ——(m p /m) 1[el—(e —n) 1], (20c)

q, = (m~/m) 'Le i+ (e —n) '*$, (20d)

I'=expL —V'(i+s)/(i —s)j
Since we are considering the case of elastic
scattering we also have q = (a/&2)2tre. Hence Js
may be written

case in which the harmonic-oscillator model of
the crystal is not appropriate.

The relevant matrix element is now

(0!I!I ) = (a'I'/m'~') J exp( —'p'+~'aS g)d(—
= {2c)~f2''~4 exp( —2i S2a2)

where

{2])

{21a)

S is the momentum given to the lattice. The total proba-
bility for the ejection of the scattering nucleus into the
continuous spectrum is determined by the following
integral, which replaces the sum in {6b),

I =(1/32x4)f""f' f (k'/k)
l (0!I!K)l'It'sinradradndIt

where SKAG, is the momentum which a nucleus needs in

order to escape from its position in the lattice and AK is
the maximum momentum which a nucleus can acquire in

a collision with the neutron. Here {co, a) is the recoil
direction of the nucleus. The total cross section is by {6)

a=(m~/p)'a;(a'/4m'")f "f J f f (k'/k)

gexp( —5 g ) sinmdcvdo, sined0dpX dK (22)

where (8, q) is the recoil direction of the neutron. Integra-
tion over all recoil directions of the nucleus gives

2' 2r

exp( —52n,2) sinorda)da
0

==( /«~') e pL —{~—&)2~'t {2~)

where 1=k—k. (This last equation is approximate since
it is based on the assumption lE'a2»1 or A'«/2m» duo/2.

This condition is well satisfied, however, since 1=
l 1!

=!S+K!&X. Hence k'LX/2m&k'X'/2ta&kiss/2tn. Bnt
SPIC//2m&&leo/2. . . PP«/2m&&kco/2. ) Put Eq. (23) in

(22), and integrate over (8, q). As the variable of inte-
gration it is convenient instead of 0 to use

x=a(l —IC).

S. NEVTRON ENERGY LARGE COMPARED TO
CHEMICAL BINDING ENERGY

If the energy absorbed by the scattering
nucleus exceeds the energy by which it is bound
to the crystal, then the collision ejects the
nucleus from its original lattice site. To calculate
the cross section for this event, assume for
simplicity that the wave function of the 6nal
state of the nucleus is the unbound plane wave
exp(iK r) where kK is the momentum of the free
nucleus.

s =Z/khan. (20e)

Before discussing these results we consider the
a. = o, (en~/2@k)') . [4 (xs)+C (xt) jKdK (24)
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FIG. 1.Total cross section (Curve A) and inelastic cross
section {Curve 8) for the scattering of neutrons by micro-
crystalline Be. (Note the different scales for curves A and
B.) Curve 8 actually intersects the energy axis with a
vertical tangent and in addition has a discontinuous struc-
ture. These features are not shown in the figure because
the discontinuities of slope contributed b both th 1

inc astic cross sections have been smoothed o»t at
higher energies.

(i/w
o.,j r ' exp( Ar') p(—r)dr (26)

The sum is extended over all triplets of integers
1= (li, lm, lq) not excluded by either the vanishing
of 0-.. or the maximum value of v. Each term in
the sum may be interpreted as expressing the
scattering by a set of parallel planes (with Miller
indices: li, 1&, 18). Equation (25) agrees closely
with the one deduced for a Debye crystal the
only di8'erence is the expression for 2 (Eq. 17a),
but even here the difference between the two
formulas is insignificant. The factor exp( —Ar')
is in any case nearly unity; although even at
'1=0, it is not exactly unity because of the
zero-point energy.

When the kinetic energy of the neutron is of
the order of 1 volt, the sum in (25) is conveni-
ently replaced by an integral, namely,

where

xg ——[k+k[1—(m~/m) (K/k) ']I —K]a,

xi ——[—k+k[1 —( mdiv/m)(K/k)']l+K]a,

and C is the error function

(24a)

(24b)

w ere p(r)dv is the number of points in 1-space
inside of the ellipsoidal shell (r, r+dr) The.
equation of the ellipsoid, ~, is

r'= Q(l,b,)'= + 1;1;b,bi.

(24c)

The gmaximum momentum which the recoilin
nucleus can take from the incident neutron is

K~ —(m/miv) rk (24d)

This large value of X is allowed, but improbable,
since the integrand of (24) is small unless
momentum is conserved between neutron and
nucleus alone. Equation (24) gives the cross
section for collisions in which a nucleus is dis-
located. The total cross section consists of (24)
plus the contribution from (6) where the sum
in (20) is, of course, only to be carried as high
as the binding energy.

6. DISCUSSION OF RESULTS

By Eqs. (10) and (17) the total elastic cross
section of an Einstein polycrystal is

0' = (~m~'/2p'Bk')

v ~4k/vr

X Qi 0,(~)r ' exp( —A ,r'). (25'I

Let the diagonal values of ~~p, ;~~, where p;;=b; b, ,
e Pi, P2, and P3. The volume of the ellipsoid

associated with r is 4s r'/3(pip2p8) '. Hence

p(r) =4s.r'/(pip2p~)'. But the invariant pip~p3
=

~ p;;~ =B ' where B is the volume of a unit
cell. Hence p=47rBr'. Using this density in (26)
one finds

J„=m/4m e. (28)

Finally, if the scattering nucleus is dislocated,
one uses (24) in conjunction with (6), (20), and

(28). These equations may be combined to give

' See the papers of Weinstock and Halpern, Hamermesll
and Johnson, reference 1.

a' = (o,s'mv'/Ii'A k') [1—exp( —Ak'/s') ] (27)

The elastic cross section given by (25) is a
discontinuous function of neutron energy in the
thermal region, but Eq. (27) obviously repre-
sents a continuous function in the region in
which it is valid.

The inelastic cross section is given by Eqs. (6)
and (20), for the case in which the scattering
nucleus is not knocked out of its lattice site. For
large e and low I, Eq. (20) shows that
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the approximate formula, valid for large k,

p&m

0 =0;[(m~/2iik)' [C (x,)+C (xi) jKdZ
~x,

+(iaaf/4i ) (F~/&) 3 (29)

where M =m+m~ and Eb is the binding energy.
Formula (29),.of course, simplifies for large k.

In fact, if k&&X»1/a, then xg, xi))1, so that
4=1. Hence (29) becomes

a o;—(vs~/2kii)'X ' (30)

It has been remarked in the previous section
that momentum is usually conserved between
neutron and nucleus alone, although there is a
small probability that some momentum will be
lost to the lattice. The improbability of trans-
ferring momentum to the lattice is clearly dis-

played in Eq. (21) which shows that the proba, —

bility that the lattice acquires the momentum 5
is proportional to exp (——,'S'u'), where a measures
the tightness of the chemical binding. The same
effect is brought out by the fact that the inte-
grand of (29) is very small for values of X
larger than

E = 2k p,/m~.

which is the limit correct for a two-body collision.
The effective upper limit in (29) is therefore
given by (31) and not (24d). Substitution of
Eq. (31) into (30) then leads to the correct
limiting condition

In Fig. 1 the theoretical cross section for Be
computed from Eqs. (6), (20), (24), (27), and

(28) (and the constant 0= 740'K) is compared
with the experimental data. ' The data are com-
patible with a binding energy, Bb, of 3.3 volts,
the cohesive energy of Be. Although the theo-
retical curve is not changed much if Eb is taken
greater than this value, it is changed if Bb is
taken much smaller; but the curve is not very
sensitive to Zb. It should perhaps also be noted
that the effect of binding is underestimated by
our simplifying assumption that the Anal state
of the struck nucleus is free; whereas it is over-
estimated by the other extreme assumption,
Eb= Qo, according to which the IIinal state is
also bound.

The formulas obtained here for the inelastic
cross section may be useful in an investigation
of the slowing down of neutrons in crystalline
materials. For example, the average energy loss
in a collision is

& Av= ~ 0'e

where 0, is the cross section for losing the energy
e in a collision and where a is the total cross
section.

I wish to thank R. G. Sachs and R. Stern-
heimer for comments, and S. Moszkowski for
the numerical computations and for the figure.

6 E. Fermi, W. J. Sturm, and R. G. Sachs, Phys. Rev.
Vl, 589 (1947). There the theoretical elustic cross section is
compared with the data.


