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The Theory of Liquid Helium*
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A quasi-thermodynamic theory of liquid helium is developed based on very general assump-
tions regarding the energy spectrum of the liquid. Below the X-point helium can be considered
as a mixture of two fluids capable of two velocity fields. The macroscopic hydrodynamic
equations of this system are derived. These are in the same relation to ordinary hydrodynamics
as a two-body is to a one-body problem in point mechanics. The flow connected with the
center of mass coordinate is associated with the transport of mass at constant entropy, the one
connected with the relative coordinate (internal convection) is associated with an entropy
transport at constant density. The results are in excellent agreement with experiment, in par-
ticular with the measurements of the temperature waves (second sound), the existence of which
was predicted by the theory. The Bose-Einstein liquid introduced earlier is a possible molecular
model consistent with the macroscopic results. Landau's theory is discussed.

I. INTRODUCTION of the atoms was the seat of a superfluid mass
transfer.

Employing these ideas the present author was
able to show' that the kinetic effects to be
expected in an ideal Bose-Einstein gas revealed a
close similarity to the well-known effects in
helium Il. Nevertheless, the theory did not seeIn
very convincing since it was difficult to under-
stand how the properties of a liquid could be
interpreted, even qualitatively, in terms of a gas
theory. The rigorous treatment of this problem
would require the solution of the quantum-
mechanical many-body problem. The mathe-
matical difficulties involved have proved so far
to be so tremendous that as yet it has been
impossible to substantiate these ideas by the
development of a rigorous molecular theory.

In view of this situation, the author has tried
to avoid these difficulties by developing a some-
what more phenomenological theory of the vari-
ous thermo-hydrodynamic effects in helium II.'4
(See also H. London. ' For an account of the
experiments, we refer to Keesom's monograph
on helium. ')

There are good reasons to expect that a quasi-
thermodynamic method should be adequate to
handle the problem of helium II. The peculiar
properties of helium II are usually described by

S EVERAL years ago F. London' brought
forward evidence to support the idea that

the peculiar phase transition of liquid helium at
2.19'K (X-point) might be regarded as caused by
the condensation mechanism characteristic of
the ideal Bose-Einstein gas distorted by the
presence of molecular forces which of course
cannot be ignored in the case of a liquid. He
showed that the various earlier attempts to
explain the ),-transition by the familiar mecha-
nisms of phase transitions of the second kind
(order-disorder transition in ordinary space) are
incompatible with the actual van der Kaals
forces of helium and with the requirements of
quantum mechanics. In this situation the ex-
ample of an order in momentum space, as
presented by the Bose-Einstein condensation,
seemed to offer a very welcome and suggestive
new possibility. Moreover, the Bose-Einstein
condensation demonstrated a very peculiar fea-
ture. It led to a kind of phase equilibrium of two
phases inter-penetrating in ordinary space but
separated in momentum space. There were good
reasons to suspect that the "condensed" fraction
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the statement that this substance is superfluid
and super-heat-conducting. Actually it is im-
portant to realize that the behavior of helium II
cannot be characterized by assuming extremely
small or large values of kAzetic coegcients such as
viscosity and heat conductivity. It is rather
that the usual digerentiat, ecluatioms governing
capillary flow and the transfer of heat have to be
replaced by equations adapted to the particular
mechanisms effective in helium II. This change
in the differential equations rather than the
assumption of an extreme value of the conduc-
tivity is characteristic also of superconductivity,
as is apparent from the well-known theory of F.
and H. London. Khile kinetic coeScients depend
very sensitively on the nature of the molecular
forces, this is usually not the case for the differ-
ential equations themselves.

The main point of the theory was the definition
of the "Bose-Einstein liquid, " uniting some
properties of a liquid and some of a Bose-
Einstein gas in a self-consistent scheme. Khereas
the discussion of such a "hybrid" system could
not be carried out with quantum-mechanical
methods, it proved to be easily manageable from
the much more schematic quasi-thermodynamic
point of view. In particular, the notion of
"condensation in momentum space" was ex-
tended to the Bose-Einstein liquid. Hence, below
the condensation temperature, this system was
supposed to have a heterogeneous character
implying the existence of tm'0 velocity fields.
The existence of two fields rather than one
resulted in an "internal convection" carrying
energy and entropy, but not associated with any
net transfer of matter. Hence the macroscopic
hydrodynamics of helium II proved to be of
greater complexity than that valid for other
substances and allowed the correlation of phe-
nomena which appeared paradoxical from the
point of view of ordinary hydrodynamics. The
theory led also to various predictions which
have been subsequently verified by experiment.
The most important of these was the conclusion
that inhomogeneities of the temperature would
propagate according to a nave equation rather
than the usual puro, boHc equation of heat con-
duction. The velocity of propagation of these
"temperature eaves" was computed as a function
of the temperature, It was also indicated that an

experimental verification could be obtained by
exciting the temperature waves through periodic
heating of helium II. A short report of these
results appeared in 1938 in the form of prelimi-
nary notes, ' but the detailed account4 was,
because of wartime conditions, not generally
available until recently.

Landau, apparently unaware of these results,
criticized the Bose-Einstein theory on the basis
of the earlier note' and advanced instead a
theory in which he maintained the assumption
of the heterogeneous nature of helium II, but
tried to justify it from a different molecular
point of view based on quantum hydrodynamics. ~

As soon as the possibility of the two velocity
fields was granted, the development of the
macroscopic hydrodynamic equations had to
proceed on the same lines as those based on the
Bose-Einstein theory. In particular, Landau
concluded that there should be two different
modes of sound propagation in helium II with
different velocities for the "first" and "second" '

sound. Landau did not discuss the physical
meaning of this second sound wave. According
to the recent account of Peshkov, ' it was only
after an attempt to excite the second sound by
mechanical means had failed that the question
was reconsidered by Lifshitz, ' who concluded
that the excitation of second sound could best be
obtained by periodic heating of the liquid. Thus
the second sound proved to be identical to the
temperature waves predicted earlier on the basis
of the Bose-Einstein theory. The existence of
these temperature waves has been experimentally
demonstrated by Peshkov' who measured also
their velocity of propagation as a function of
temperature. These results have been recently
confirmed by an interesting indirect method
suggested by Onsager. " The measurements of
the temperature dependence of the velocity of
propagation of second sound confirm the present
author's prediction rather than that of Landau. "
It may be noted that the theoretical curves do
not contain any adjustable constants but are

7 L. Landau, J. Phys. U.S.S.R. S, 71 (1941).
V. Peshkov, J. Phys. U.S.S.R. 10, 389 (1946); ibid. 8,

381 (1944).
E. Lifshitz, J. Phys. U.S.S.R. 8, 110 (1944)."C.T. Lane, H. Fairbank, H. Schultz, and W. Fairbank,

Phys. Rev. 70, 431 (1946); ibid. 71, 600 (1947). My
thanks are due Professor Lane and collaborators for
communicating their results before publication,
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evaluated with the empirical values of the
entropy measured previously by Kapitza. "

The aim of the present paper is to clarify the
relation between the theories and experiment,
whereby it seems advantageous to proceed as far
along phenomenological lines as possible. Such
a procedure was adopted previously in reference
4, but the present paper is a further step in this
direction. Thus it will be possible to avoid the
pitfall of justifying any special molecular model
by experimental results, which in reality can be
also understood under broader assumptions.

Our procedure will then be to advance certain
general assumptions regarding the energy spec-
trum of liquid helium, expressing the fact that
this system unites in a peculiar way some char-
acteristics of a liquid and of a gas (Section II).
The lowest state of the system has liquid char-
acteristics. The excited states can be classified
into compressional modes which are also liquid-
like (Debye phonons) and shear modes corre-
sponding to the rearrangements of the molecules
at constant density which are supposed to have
a gas-like character. The technique of drawing
conclusions from these assumptions will be essen-
tially thermodynamic (Sections III and IV).
Such an extension of classical thermodynamics
seems to be an adequate method of dealing with
second-order transitions. A discussion from the
molecular point of view is, of course, of the
greatest interest and will be outlined in Section
V so far as it seems possible at present. Landau's
theory will be discussed in Section VI.

II. THE FUNDAMENTAL ASSUMPTIONS

Let us consider a macroscopic system of
helium atoms enclosed in a box of volume V.
The characteristic values of the Schroedinger
equation of the system, in particular the lowest
energy Eo, are determined by the properties of
the helium atoms and in addition depend on the
volume V as a parameter. Two assumptions will
now be made regarding the properties of this
lowest state of the system. After a short discus-
sion of the meaning of these assumptions, two
others will follow regarding the excited states.
Postulate (a). The function Zo(V) has a minimum
for some value V= Vo of the volume:

(dB0/d V) r=«=0 (d'Eo/d V') r=vo) 0 (I).
"P.Kapitza, J. Phys. U.S.S.R. 5, 59 (1941).

Postulate (b). The state 80(V) is characterised by
a vanishing microscopic rigidity

Assumption (a) expresses the fact that at, the
temperature of absolute zero and with a vanish-
ing external pressure I' = dE—p/dV = 0, the sys-
tem is in a condensed, and not in a gaseous, state.
Assumption (b) specifies further that this state
is liquid rather than solid. The postulate that a
system should have a vanishing coefficient of
rigidity at absolute sero is very far reaching.

. Indeed, according to classical statistics, one
would expect every system which is in thermo-
dynamic equilibrium at absolute zero to be in a
crystalline state. Hence it is reasonable to define
a system satisfying postulates (a) and (b) as a
quantum /quid. Significant conclusions regarding
the properties of such systems can be obtained
from an analysis of the notion of "microscopic
rigidity. " This terminology was introduced""
in order to account for the fact that ordinary

, (classical) liquids are in some way more remi-
niscent Of solids than of dense gases. Even in
liquids there are potential barriers opposing the
rearrangements of the molecules at constant
density. (Such rearrangements will be of im-
portance for this theory; we shall refer to them
briefly as isopycnic rearrangements )The poten. -

tial barriers constantly collapse under the impact
of thermal agitation, hence no macroscopic
rigidity results. There is, however, a so-called
microscopic rigidity which manifests itself in
various visco-elastic effects.

If a shearing stress is applied at a high fre-
quency, the system will react as a solid and
propagate transverse elastic waves. For liquids
of low viscosity the frequency required for such
a behavior is in the thermal range (hypersonic
in contrast to ultrasonic waves). The specific
heats of monatomic liquids near the freezing
point show good evidence for their presence. "

At low frequencies, the microscopic rigidity
gives rise to viscosity. This liquid-type viscosity
should be distinguished from the gas type or
transport viscosity well-known from the kinetic
theory of gasses; we will call them dynamic and

"L. Brillouin, Les tenseurs en, mecanique et en 8asticite
(Masson et Cie, Paris, 1938)."J. Frenkel, Kinetic Theory of I.i' ttds (Clarendon
Press, Oxford, 1946)."E.Bauer, M. Magat, and M. Surdin, J. de phys. et
rad. '7, 441 (1937).Also p. 349 of reference 11.



kinetic viscosity, respectively. The two viscosities
give rise to the same type of macroscopic effects,
but they can be clearly identified from their.

temperature dependences.
For the kinetic viscosity one has

where p is the density, c the mean t hermal
velocity, and l the mean free path. qk;„ increases
slowly with the temperature.

For the dynamic viscosity one has a strongly
negative temperature coefficient, since

~~4/kT
'/ cl+Il

20-

He I

where A is an activation energy clearly indicating
the presence of potential barriers. The situation
is illustrated in Fig. 1 where the dynamic vis-
cosity of liquid hydrogen is compared with the
kinetic viscosity of hydrogen gas. The case of
hydrogen is typical of classical liquids.

The most spectacular effect of the microscopic
rigidity is freezing As the. thermal agitation
decreases with temperature, the potential bar-
riers opposing molecular rearrangements organize
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Fic. 1. Viscosity of liquid arid gaseous hydrogen, from
KV. H. Keesom pnd G. E. MacWood, Physica 5, 745
{1.938}; A. Van Itterbeck and A. Claes, Physica 5, 938
{1938}.
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Fr&. 2. Viscosity of liquid and gaseous helium from pp. 106
and 267—8 of reference 5.

into a crystalline pattern ind give rise t,o the
macroscopic rigidity of the solid.

The important point for the present purpose
is that the propagation of transverse hypersonic
waves, dynamic viscosity, and freezing are all
due to the same factor, the microscopic rigidity.
As helium does not solidify at low pressures, one
concludes that the microscopic rigidity vanishes,
as was postulated in (b). According to the above
discussion this implies also the vanishing of the
dynamic viscosity and the absence of transverse
hypersonic waves. The first conclusion finds a
striking verification io the measurement of vis-
cosity. Figure 2, which shows the viscosity of
helium, is to be compared with Fig. 1. Attention
is drawn to the viscosity of helium gas and liquid
helium I, since in the case of helium II additional
complications arise which will be discussed below.
It should be pointed out that in our terminology
it is helium, not just helium I I, that is a quantum
l.iquid, This terminology is at variance with the
rather generally adopted view that helium I is
"classical" or a "normal" liquid.

A qualitative discussion of postulate (b) from
the point of view of quantum mechanics will be
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found in Section V. At present we turn to the
discussion of the excited states of the system.

The excited states of a continuum or quasi-
continuum can be classified into compressional
and shear modes of motion. (P. 277 of reference
12.) The density fluctuations connected with the
first type can be analyzed into longitudinal
waves. The elastic quanta, or phonons, obtained
by quantization of these waves are the "ele-
mentary excitations" of the compressional modes
of motion.

Regarding the shear modes, postulate (b) leads
only to the negative statement that they cannot
have the character of waves. This gap will be
611ed by the next assumption: Postulate (c).
The shear modes of motion of liquid helium

(isopycnic rearrangements of the molecutes) have a
gaseous character. The "elementary excitations"
correspond to translations of atoms (or groups of
atoms) with definite vatues of mass momentum
and energy.

In accordance with the program formulated
in the introduction, postulate (c) is kept in very
general terms, since the macroscopic equations
to be derived in the next two sections do not
depend on the molecular interpretation of the
"gas" introduced in (c). A molecular interpreta-
tion is, of course, important for the intuitive
understanding of the theory and will be discussed
in Sections V and VI. At present it will suffice to
mention that a molecular model compatible with
postulate (c) is the Bose-Einstein liquid. In this
case the "elementary excitations" correspond to
helium atoms in translational Bloch-type states. ' '
In reference 4 the term "translational quanta"
was used to emphasize that only the translational
energy in excess over the zero-point energy is
considered to be the energy of the "molecule. "

Also a somewhat different molecular model
could possibly be considered. In this case the
"elementary excitations" of postulate (c) are
groups of atoms possessing, besides their linear
momentum, also an internal angular momentum.
Thus, the monatomic "molecules" of the Bose-
Einstein liquid are replaced by polyatomic
"molecules. " This digerence is irrelevant for
most of the thermo- and hydrodynamic phe-
nomena considered in this paper.

The most. important property of the Bose-
Eiqstein liquid is its "condensation" in momen-

turn space. ' ' The essential features of this con-
densation phenomenon will now be postulated
for our more general case.

While the elementary excitations introduced
in (c) have the main attributes of molecules in
the kinetic theory of gases (constant mass,
momentum, and energy) this is true only if a
definite quantum state is considered. At absolute
zero no "molecules" are present, but they can
be created by means of thermal excitation. In
every quantum state one can distinguish the
total mass of the corresponding "molecules"
from the total mass of the system. On averaging
over a canonical ensemble, the same kind of
subdivision is obtained as a function of tempera-
ture. Hence the density of the system will be
subdivided into two parts:

p= pn+ps

where p„ is the density connected with the
"molecules" of the gas and p, refers to the
"background" in which the molecules are mov-
ing. The subscripts refer to "normal" and
"superHuid, " a terminology which will be ex-
plained below. The ratio p„/p is a very important
property of the system. The last postulate of
the theory will be concerned with it: Postulate
(d). There exists a temperature To such that

=0 if T=0 He II
p„/ps, (I 0(T(TO He II

T To He I

with p„/p monotonicalty increasing between T=O
and To. To is to be identified with the lambda-
point of helium"

Let us consider now a volume element in
helium II which is small compared to macro-
scopic dimensions but big enough to contain not
only a large number of helium atoms but also a
large number of "molecules. "Averaging over the
translational motion of the "molecules, " one
obtains a drift velocity v„which will not in
general coincide with the velocity of the "back-
ground" v, . In contrast with ordinary liquids
and also with helium I, one has two densities
and correspondingly two velocity fields. The

'~ Actually p„jp will also be a function of the pressure
P and this would have to be taken into account in a
refinement of the present theory.
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total mass current density is

]=pnVe+ psvs.

According to (c) every "molecu! e" has a
momentum. Averaging over this momentum
current one gets, through the procedure well-
known from the kinetic theory of gases, a stress
tensor. The diagonal elements will be equal to a
pressure P (iohichis to be distinguished from the

tiquid Pressure P) while the non-diagonal ele-
ments represent a viscous stress. This is, of
course, of the kinetic type and is uniquely
associated with the flow v„. Xo kinetic viscosity
is associated with the flow of the background v, .
Since the dynamic viscosity was found to be
totally absent in helium, none of the mechanisms
of viscosity is effective for the flow v, which may
hence be called superguid. In particular at abso-
lute zero at which p„=o, p, = p, helium II as a.

whole is superfluid.
The character of the two currents will be

essentially different; this is reflected most clearly
in the boundary conditions for the tangential and
perpendicular components of the velocities at a
solid wall at rest:

v „=0, v ~=0 whereas only v,~=0. (6)

The kinetic viscosity of the gaseous component
entails the "normal" boundary condition for
the velocity, while no condition is obtained for
the tangential component of the superfluid flow.
The terminology "normal" and "superfluid" is
thus explained.

The superfluid component can "slip" along a
solid surface which is its most essential character-
istic, more so than the absence of dissipation.
Actually, according to experimental evidence,
the superfluid flow may be associated with a
dissipation of the turbulent type as soon as a
critical velocity is exceeded.

The slip of the superfluid component of helium
II is most effectively demonstrated in the well-
known creeping of the Rollin film. ' This is,
however, a complex phenomenon for quantita-
tive discussion, corresponding to the fact that
the general hydrodynamic equations of helium II
are most unwieldy. It is satisfactory that the
boundary conditions (6) lead to some simple
conclusions which can be quantitatively checked
by experiment. This will be seen in the next section.

Finally, we have to consider the specific
entropy s of the system. According to our
classification of the excited states, s consists of
two terms

5 =Sn+Sphon

corresponding to the shear and compressional
modes of motion. As indicated by the subscript,
s„ is associated with the normal component p of
the liquid while the contribution spy, „of the
Debye phonons is associated with the liquid es
a whole.

III. HELIUM II AS A MIXTURE

The proper understanding of the heterogeneous
nature of helium II is made somewhat dificult
by the fact that it does not conform to the
terminology of the classical phase rule with its
clean cut distinction between "phase" and "inde-
pendent component. " In one connection it is
best to consider helium II as a two-phase system
and in another rather as a two-component sys-
tem. Both analogies have to be handled with
certain qualifications.

The two-phase point of view has been empha-
sized by London' in connection with the ideal
Bose-Einstein gas. Below the condensation tem-
perature this system can be considered as a gas
in equilibrium with a condensed phase, the
phase separation taking place in momentum
space rather than in ordinary space. The satura-
tion gas pressure P„=P„(T)is a function of the
temperature alone. In the liquid the situation is
complicated by the fact that in addition to the
gas pressure P„one has liquid pressure I'. The
relation between I' and P„can be better under-
stood in terms of the second analogy: the pressure
P„appears then as an "osmotic pressure" of the
normal component dissolved in the superfluid.
Because of the existence of semi-permeable mem-
branes, I'„ is subject to direct observation and
this analogy will serve us as a useful guide
throughout this section. Two qualifying remarks
have to be observed, however. In the theory of
solutions the total amount of each component
is constant. In helium II this is true only if
adiabatic conditions are maintained. In case of
heat transfer there is a transition of one compo-
nent into the other which has no analogy in the
case of ordinary solutions. This requirement of
maintenance of adiabatic conditions is of im-
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portance also from the experimental point of
view.

There is a second point in which E„di8'ers
from the conventional osmotic pressure. A gradi-
ent of the osmotic pressure in a salt solution,
for instance, gives rise to diffusion (second-order
effect). In virtue of postulate (c), however, a
gradient in I' gives rise to a current (first-order
effect) i.e. , in this connection I' has the character
of a gas pressure. This idea will be developed in
the next section.

The simplest and most direct experimental
method for the verification of the heterogeneous
nature of helium I I and of the boundary condi-
tions (6) consists in the measurement of the
moment of inertia of a rotating vessel containing
helium II. As the superfluid component will not
take part in the rotation, the apparent moment
Of inertia of the liquid will be

where Io is the moment of inertia above the
X-point. This effect was first predicted by
Landau, ' and the decrease of the moment of
inertia was experimentally demonstrated by
Andronikashvilli. ' This experiment constitutes
the most direct. , although not the most accurate
determination of the important quantity p /p.
The experimental results can be approximately
represented in the form

where r is a constant of value about 6. More
precise methods discussed below give r=5.5.
It should be emphasized that this is a purely
empirical relation which cannot be derived within
the framemorh of the quasi thermodynam-ic theory.

A related, though somewhat more involved,
case is the measurement of the viscosity by
means of the oscillating disk method. Although
the discussion goes somewhat beyond the scope
of the quasi-thermodynamic method, it should
be given here because of the special interest of
the problem.

As in the .previous case, the presence of the
superfluid component can be ignored. The results
can be understood in terms of the elementary
formula (2), valid for the kinetic viscosity pro-
vided the density p is replaced by p„. In order

'6 E. Andronikashvilli, J. Phys. U.S.S.R. 10, 201 (1946}.

to obtain the temperature dependence of q,
one has to realize that p l =const. This is
equivalent to the statement that the "molecules"
of the normal liquid collide only with each other.
The justification and meaning of this assumption
can be discussed only from the molecular point
of view. (Compare Section V.) It should be
mentioned also that in reference 4, the author
has used at this point the ad hoc assumption
pl=const. , which is in conflict with the funda-
mental assumptions of the theory. This was
pointed out to the author by Professor Onsager
to whom he is indebted also for the correct
interpretation of the experiments. The earlier
discussion of the viscosity measurements has
also been rightly criticized by Keesom. ' The
present assumption leads to the temperature
dependence g c T" for both hehum I and II.
This result seems to conflict with the measure-
ments of Keesom and MacWood" reproduced
in Fig. 2, according to which the temperature
dependence of the viscosity of helium II is
essentially given by it p„/p = (T/To)". An analy-
sis of the experiment reveals, however (compare
formula (I) in reference 17), that the quantity
actually measured is the viscosity multiplied by
the density which is qp„ in the case of helium II.
Keesom and MacW'ood have evaluated their
measurement under the assumption of having
obtained qp. Hence the curve in Fig. 2 has to be
corrected by multiplication with the factor p/p„,
which is in agreement with the above result of
the theory. Landau's interpretation of the vis-
cosity measurement" is in line with the present
discussion.

The next special case to be considered is that
of a very thin capillary in which the flow velocity
of the normal component is negligibly small.
Such a capillary acts as a semi-permeable mem-

brane, being permeable to the superfluid compo-
nent alone; it can be used for the measurement
of I'„ in much the same way as the osmotic
pressure of a salt solution is measured. The
analogy with the osmotic cell leads to a qualita-
tive understanding of the well-known fountain
phenomenon in helium II.'

' W. H. Keesom and G. E. MacWood, Physica 5, 737
(1938};The theory of the measurement is given in G. F..
MacWood, Physica 5, 374 (1938}."L.Landau, J. Phys. U.S.S.R. 8, 1 (1944}.
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We proceed now to investigate the "osmotic
cell" with quantitative thermodynamic methods.
In order to avoid complications connected with
the liquid-vapor interface (evaporation and
consequently non-adiabatic transition of the
normal component to the superfluid state) an
osmotic cell will be constructed as follows: A
small part of a long cylinder filled with helium II
is compressed adiabatically by means of a semi-
permeable piston. (This can actually be realized
using a porous material. ) During the compression
the superQuid component Qows across the piston,
thus keeping the total density p constant while
the values of p„, P„, and consequently also of
the temperature T are increased over their values
in the helium bath. " Since p is constant such
compressions mill be called isopycnic.

The basis for the application of thermody-
namics to the isopycnic compression is the
assumption that the Qow across the piston carries
along no entropy and is reversible This a.ssumption
was first advanced by the author' who pointed
out also its approximate nature. ' In fact, as
indicated above, the phonon contribution to the
entropy s~h, is associated with the whole liquid
and is carried along in particular also with the
superQuid component. Hence the above assump-
tion means that

Sphon+(S~, S —S~. (9)

The following considerations depend essentially
on this assumption which will prove to be correct
for not too low temperatures.

The assumption of reversibility of the super-
Quid Qow implies that the flow across the capil-
lary should be slower than the so-called critical
velocity marking the beginning of dissipation.

Let us now compress the cell adiabatically by
applying the pressure dP on the semi-permeable
piston until the osmotic pressure difFerence bal-
ances the external pressure dP„=dP. The condi-
tion of equilibrium with respect to the superQuid
mass transfer is the equality of the chemical
potentials 2'

p(T, P) =p(T+dT, P+dP).
"The small thermal expansion is neglected throughout

this section.
"This follows from the principle of virtual work. It is

somewhat unusual. that the equality of chemical potentials
is obtained for states at different temperatures. In the
case of the true osmotic cell, the virtual process is the

Expanding the right-hand side and noting
that (8p/BT)p= —s= —s, (Bp/8P)v=v=1/p (v
is the specific volume), one has

(8P„/BT),=ps„.

Hence
d(ps„V) =p(s„d V+ Vds„) =0.

dp„/p„= ds./s. ,

or, on integration,

p„/p =s„/so~

mass transfer of the solvent which is, of course, associated
with transfer of energy (entropy). Hence, the equality of
temperatures follows simultaneously with the equality of
the chemical potentials. In the present case the superfluid
Row carries no entropy or energy in excess over the zero-
point value, thus the equality of the chemical potential
does not imply the equality of temperatures.

~' London's interpretation of Eq. (10) differs, however,
in several respects from that of the present author. London
did not distinguish between the pressures P„and P, and
assumed that the thermo-mechanical pressure depends
essentially on the proximity of solid walls. The present
interpretation is essential for the theory of second sound.
to be discussed in the next section.

The fact that the temperature difference is
associated with an osmotic pressure is referred
to as the thermo-mechanical efFect or fountain
effect. Relation (10) was 6rst derived by H.
London. '"

While the derivation of (9) was worded in the
terminology of the two-component system, an
interpretation from the two-phase point of view
is equally possible: Eq. (10) is then the Clausius-
Clapeyron relation. Clearly, it should contain
the entropy dg"eremce of the two phases, i.e. , s
rather than s.

The experimental verification of (10) is ren-
dered difficult because of the necessity of main-
taining reversible conditions. This seems to have
been achieved to a sufficient degree by Kapitza"
who found the relation (10) to be valid within
experimental error.

Another important relation can be derived in
connection with the osmotic cell. In the course
of the isopycnic compression the normal compo-
nent of the Quid and the entropy associated with
it are "trapped" within the cell. Denoting the
volume of the cell by V, one is thus led to the
following relations:

d(p V) =p„d V+ Vdp„= 0
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where so=s„(TO) is the entropy at the X-point.
This relation was obtained also by F. London. "

The function s„(T) plays the role of an equa-
tion of state for helium II and is of great im-

portance for correlating its different properties.
An analytic expression for this function will

prove useful, we will use the expression

s„=sp(T/To)" (13)

with so ——0.405 cal./g-deg. , r =5.5. It is seen from
Fig. 3 that (13) represents to a good approxima-
tion the entropy measurements of Kapitza. The
entropy values following from the Leyden specific
heat measurements seem to be a few percent
lower but have essentially the same temperature
dependence. Equation (13) has certainly only a
preliminary character and should be corrected
when new measurements become available.

Equations (12) and (13) confirm the expression
(8) for p„/p with a more precise value for the
exponent r.

Ke are now in a position to discuss the validity
of the condition (9). The contribution of the
phonons to the entropy can be tentatively
represented by the Debye formula, hence
s„i„„(T/8)'.One sees that (9) would certainly

~ F. London, Rev. Mod, Phys. 1'7, 31.0 (1945).

I LI 1.2 1.5 l.4 I.5 L6 I.7 1.8 l.9 20 2.l 22
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FIG. 3.Approximation of Kapitza's entropy measurements'»
(circles). with formula (13) (curve).

fail at sufficiently low temperatures provided
that (13) can be extrapolated to this region.
The temperature for which s~i„„=s„could be
determined if the Debye temperature 0 were
known. The sound velocity ( 240 m/sec. ) leads
in the usual way to 0=18'. Picard and Simon"
have actually found an approximate T' law for
the specific heat in the temperature range
0.2'—1.0' but their measurements correspond to
8=11'.24 This value of 0 may be too low, the
specific heat too high; actually Keesom and
Westmijze (p. 220 of reference 5) report a lower
value for the specific heat. While new measure-
ments of the specific heat at low temperatures
are desirable, it seems that the two contributions
to the entropy are of the same order of magnitude
for temperatures somewhere between 0.6' and
1'K. In the extreme low temperature region one
has s «soho„', the effect of the normal component
can be neglected and the liquid becomes essen-
tially homogeneous. The main characteristic of
this region is its superfluidity no longer compli-
cated by the viscosity of the normal component
and the thermo-mechanical effect.

IV. MACROSCOPIC HYDRODYNAMICS IN
HELIUM II

Ke will now derive the general macroscopic
(coarse-grained) hydrodynamical equations of
helium II in the range of temperatures for which
condition (9) is satisfied. Only the so-called first
approximation will be considered and dissipation
effects will be neglected.

The state of motion of the liquid will be
described by two vector fields g„, g, denoting the
displacement of every elementary mass of the
normal and superHuid liquids, respectively, from
a standard state of constant densities p„o, p, o.

The previously introduced velocities are v„
=dg /dt= g„, v, =dg, /dt=(, . Since we are con-
sidering processes in the first approximation,
the densities p, p, can change only by means of
the gow of the components and non-adiabatic

"G. L. Picard and F. Simon, Abstr. of papers comm.
to the Roy. Soc. London S21 (3 April, 1939); compare R.
Bleaney and F. Simon, Trans. Faraday Soc. 35, 1205
(1939)."Picard and Simon claim that their measurements
should be described by 8=15.5'. This value is 3& times
too high since they used the Debye formula valid for
solids, assuming two transverse waves for every longi-
tudinal one. The transverse w'aves are absent in helium.
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transitions from one component to the other
should be ignored. Hence separate equations of
continuity are valid for the two components:

Ap /p„+V ~ $„=0, (14a)

~p./p. +V 4.=0 (14b)

where hp„= p —p„o is assumed to be small com-
pared to p„o and similarly Ap, ((p,o. If Eqs. (14)
are differentiated with respect to the time, one
gets the equations of continuity in the conven-
tional form.

The Lagrangian of the system is an integral
over the volume

where L, is the Lagrangian density; i.e., the
diR'erence of the kinetic and potential energy
densities. The kinetic energy density is —,'p &

'
+—,'p, &,2. A potential energy arises because of
Ructuations of the specific volume and entropy
from their values in the standard state. Accord-
ing to well-known results of thermodynamics"
this potential energy is equal to the minimum
work required to bring forth the Ructuations
hv, Ls from the standard state. Its density is

given by
~
~pL(cl u/»') (»)'+ 2 (g'u/»gs) (») (gs)

+ (8'u/Bs') (hs)'], (16)

where I is the energy per unit mass.
New variables will now be introduced in terms

of which both kinetic and potential energy will

take a simple form:

4 = (p.4+p.(.)/t» (17a)

4= 4—K= (4—4)p./p (17b)

A simple calculation using (14), (17), and (11)
leads to the equations of continuity in 'terms of
)~and gp..

~p/p+V. 4= o (18a)

hs /s +V (,=0. (18b)

The physical meaning of the new variables is
apparent from (17) and (18). The "center of
mass" coordinate (~ corresponds to the net How

'5 Compare L. Landau and E. Lifshitz, StatisticaL
I'bye s {Oxford 7Jniversity Press, New York, 1938), p. 100.

&= )~2PLB +(P IP )4' (~P/~—p).(V (~)'

+(~T/~(1/s. ))(V & )'
aTs /c, (BP—IBP)r(V gq)(V gs)fd V. (20)

An alternative form for (19b) and hence for 2 is
obtained by noting that from (10) and (11)
one gets

(~T/~(1/—s-)) 0= (p./p) (~P-I~p.) p (21)

The equations of motion corresponding to (20)
are

BL—
l . l+vl

dt &8(g) &B(V (g)J 8(g
(22)

and similar equations in g2, or explicitly:

rf'gg/dtm (BPIBP),V (V' g—g)

d g,/dt'+(aT/a(1/s„)), V(V (,)
= ((nTs„)/c.) (BPIBP)r(p, /p„) V'gi. (23b)

A numerical calculation based on the observed
values of the quantities involved shows that the
right-hand sides of (23) are very small. These
terms representing a coupling between the
and g~ motions will hence be neglected. Equa-
tions (23) are then simply the Eulerian equations
in first approximation for the two Rows, respec-

of matter at constant entropy and the "relative
coordinate" g2 to the Row of entropy at constant
density. The possibility of the latter process
distinguishes helium II from ordinary homo-
geneous hquids for which one would have (&=0.

The three terms of the potential energy will
now be rewritten by using simple thermodynamic
transformations. One has

(~'ul»'). (»)'= (»/~p). L(~p)/p j',
(8'u/Bv8s) (») (hs)

=nTs/c, L(ap) Ipl H~s)/s j, (19b)

(8'u/Bs') (hs)' = —(8TIB(1/s)),L(hs)/s j', (19c)

where 0. is the coefficient of thermal expansion,
c, the speciFic heat at constant volume. Remem-
bering that s =s„and by using (18), the potential
energy is expressed in terms of V g& and V $2.

Finally, expressing the kinetic energy in terms
of g&, g~, one obtains for the Lagrangian:
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FIG. 4. Velocity of second sound. xxx-measurements of
Peshkov. 8 ooo-measurements of C. T. Lane and collabo-
rators. ' formula (28) of present paper. ———calcu-
lated by Lifshitz from Landau's theory. '

tively. In fact, by using (18) and (21) one gets:

dg /dt=BF. /Bt+(gi V)( = —(VP)/p, (24a)

d (i/dt = 8 (2/Bt+ (g~ V) g2

(V—& ) (~./pp ) (24b)

By making use of the vector relation V(V' g)
=V')+VX(VX (), taking the divergence of the
Eqs. (23) justified and replacing the total time
derivatives by partials (justified for small veloci-
ties), one obtains two wave equations:

g'(V g,)/gP ci2V'(V —g,) =0 (25a)

8'(V gg)/Bp —cpV'(V $2) =0 (25b)

The value of the first wave velocity is

ci = H~&/~l). )' (26)

and, by (21), the second wave velocity can be
given in either of two alternative forms:

&2 = L(~I'./~1 -)~./u]', (27a)

~2= t (~T/8(1/—s.)) „p,/p„g~. (27b)

Finally, by using (12) and the empirical relation

(13), one obtains c2 as a function of temperature:

c2 ——26L(T/TD) (1—(T/To) ")]& m/sec. (28)

Jag=0, $2~ ——W//Ts p, (29)

where 8' is the amount of heat absorbed by the
liquid across a unit area per unit time.

The very existence of the temperature waves
bears out the fundamental assumptions of the
theory. " A more quantitative check of the
theories is obtained by comparison of the theo-
retical expressions of c2(T) with the observed
values, as shown in Fig. 4. The agreement is seen
to be very satisfactory. It should be noted that
formula (28) contains no adjustable constants.

The figure also shows the function cq(T) com-

puted by Lifshitz' on the basis of Landau's

'6 Recently E. G. Richardson, Nature 158, 296 (1946)
expressed the view that the temperature waves might be
explained within the ordinary theory of heat conduction
simply by a large value of the coefficient of heat conduc-
tivity x, and without assuming any wave equation for the
temperature. Although the parabolic equation of heat
conductivity actually possesses wave solutions, these waves
are strongly damped (independently of the value of g)
and show a strong dispersion, their velocity of propagation
being proportional to co& (co is the frequency). The criterion
of dispersion for distinguishing between the wave solutions
of a parabolic and a hyperbolic differential equation has
been pointed out previously. ' The experiments decide the
question without ambiguity in favor of the hyperbolic
equation. It may be also mentioned that the true heat
conductivity in helium II is proportional to the viscosity
and is of the same order of magnitude in helium I I as in
helium I. Its presence is completely masked by the presence
of the internal convection.

The physical meaning of the two waves is
apparent from Eqs. (18), (8), (11). It is seen
that V (i is equal to the fluctuation of the den-

sity p and hence also of the pressure I'. The cor-
responding wave has the properties of ordinary
wound waves. The gq waves consist of fluctua-
tions in s„, p„, I'„, and T. The two waves can be
conveniently referred to as pressure and tem-
perature waves, 4 or simply first and second
sound. The terminology of temperature waves
is suggestive of the simplest way of generating
these waves by periodic heating, which has
actually been carried out by Peshkov' and by
Lane and his collaborators. '

In the case of heat transfer between the liquid
and its surroundings, the continuity equation
(18b) has to be supplemented by "sources" for
the normal component. If the heating occurs
across a solid wall, this source can be conveni-
ently accounted for by the boundary conditions
for the perpendicular components of gi and (2.
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theory. The reason for the discrepancy will be
discussed in Section VI."

The agreement between (28) and the experi-
mental points is not complete. This is believed
to be due mainly to inaccuracy of the empirical
relation (13), rather than to any inadequacy of
(27). It is true that the neglected dissipation
effects will give an absorption and dispersion of
the temperature waves and hence a modification
of (27), but these effects seem to be small since
Peshkov failed to find any dispersion from 30 to
10,000 c.p.s.

The discussion of the dissipation effects is
beyond the scope of this theory, but the various
effects should now briefly be listed.

Ia addition to dissipation caused by viscosity
and the true heat-conductivity, there are effects
characteristic of helium II. The first of these is
due to non-adiabatic transitions between the
two components which lead to deviations from

(18b).
A second effect is due to the Debye phonons

which should give rise to an absorption and
dispersion of the relaxation type. This can be
expected to be of importance for the second
sound at low temperature (T(1'K) and should
eventually (at suKciently low temperatures)
lead to a complete attenuation of the tempera-
ture wave within one wave-length. In case the
"molecules" of postulate (c) should have internal
degrees of freedom (vortex model), another
relaxation phenomenon should be expected. Con-
siderable dissipation arises if the flow velocity
exceeds the so-called critical value. This seems
to be of a turbulent character. "

A quantitative refinement of this theory
should take into account the small coupling
between the g~ and $2 motions and also the fact
that p„/p and s„/so are functions of the pressure
and not only of the temperature.

This section will be closed by a brief outline of
the qualitative discussion of the experiments on
heat conductivity and capillary How.

'7 It may be noted that (27a) was first given by the
author. 3 Also (28) was then given except for an undeter-
mined constant of the order of unity. A formula similar
to (27b) was derived by Landau, ' but he obtained s=s„
+spho in place of s . Expression (28) was first given by
F. London in a review paper to be published in the Proc.
Phys. Soc. The a&thor is indebted to Dr. London for
communicating his paper before publication."P. Kapitza, J. Phys. U.S.S.R. 4, 181 (1941).

Let us first consider the heat conductivity.
Two heat reservoirs of temperatures ri, T2 are
connected by a capillary completely filled with
helium II precluding any net How of the liquid.
Hence gi ——0. The temperature difference AT
=Tj.—T2 gives rise to a difference of osmotic
pressure AI' and thus to a circulation in the
capillary ($2&0), whereby the normal component
Hows towards the cold reservoir. The current is
closed by a transition of the superfluid compo-
nent into the normal at the warm reservoir while
absorbing the heat given by (29). The reverse
process takes place at the cold reservoir. The
efficiency of this heat transport is about T/hT
times larger than ordinary convection. This
factor may reach very high values of the order
of 1000. In the steady state the How is limited by
dissipation effects neglected in the above discus-
sion. If the dissipation were due to the viscosity
of the normal component alone, the heat current
should be proportional to VE„and hence to VT.
Assuming tentatively Poiseuille's law for the
internal convection, one gets for the heat How

W= (ar4s p~p, )/(8rlp„) TV T, (31)

where r is the radius of the capillary. Actually
the heat current increases rather like (AT)&,
(reference 5), which makes it likely that the
dissipation is partly of a turbulent character.
This is supported by a series of experiments
carried out, by Kapitza. 8

The situation is even more complicated in the
case of capillary How. In the limiting case of
very thin capillaries only the superfluid compo-
nent can How under the inHuence of a pressure
head, say caused by gravity. Thus a temperature
difference is set up between the two ends of the
capillary, the outflowing liquid being colder than
that staying behind. "- The How should thus be
stopped by the osmotic pressure difference which
arises. Actually the increased temperature will

lead to vaporization of the liquid with a corre-
sponding cooling and transition of the normal
component to the superfluid with a continuation
of the flow. In somewhat wider capillaries the

"This was one of the first conclusions of the theory
which was readily verified by experiment. J. G. Daunt
and K. Mendelssohn, Nature 143, 719 (1939). The out-
flowing liquid is never at absolute zero as it still contains
the phonon entropy, and, at least a small fraction of the
normal component.
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riormal How velocity also becomes appreciable
and both fiows are complicated by turbulence.
Consequently, the thermo-mechanical pressure
will be smaller than that expected from Eq. (10),
which was derived under the assumption of.

strictly semi-permeable capillaries. In summing
up, it is clear that the complexity of the results
obtained with all but; the narrowest capillaries
is not surprising and the disentanglement of the
various effects from these measurements is
hardly feasible.

It would seem advisable to study the dissipa-
tive effects by measuring the absorption of first
and second sound whereby the complications of
turbulence are avoided. On the other hand, the
study of turbulence could best be carried out at
low temperatures, where the concentration of
the normal component is negligible and the How

is no longer complicated by the thermo-mechan-
ical e8ect and the viscosity of the normal
component.

V. OUTLINE OF A MICROSCOPIC THEORY
OF LIQUID HELIUM

The conclusions drawn from the postulates
(g)—(d) are in good agreement with experiment;
practically all the peculiar kinetic effects finding
either a quantitative or at least a qualitative
interpretation. Thus the task of a microscopic
theory is reduced to providing a quantum-
mechanical foundation for these postulates.
There is at present no question of deriving the
postulates from first principles, and the following
discussion has only an intuitive character.

No special discussion is required for postulate
(a) since the presence of van der Kaals attractive
and repulsive forces always assures its validity.
In contrast to the universal nature of (a), the
validity of postulate (b) is most exceptional.
Systems satisfying both postulates have been
called quantum liquids in Section II.

It would be desirable to find criteria for the
interatomic forces which assure that the macro-

' scopic system built of these atoms will be a
quantum liquid. Although this does not seem
possible at present, one can point out a peculi-
arity of the repulsive forces in liquid helium
which seems to be at the root of this question.
In an ordinary (classical) s stem beth attractive
and repulsive forces betwee the atoms are of the

van der Kaals type. In helium, however, an
additional repulsive force appears which origi-
nates in the quantum-mechanical zero-point
energy. It blows up the volume of the liquid to
about three times the value one would expect
from the atomic diameter. The importance of
the zero-point energy was first recognized by
F. Simon, "and the idea has been developed by
F. London. '" For further details we refer to
these papers.

The inference from these considerations is that
the absence of microscopic rigidity as postulated
in (b) might be due to the quantum-mechanical
nature of the repulsive forces. Whereas in an
ordinary liquid the potential barriers opposing a
shearing motion (isopycnic rearrangements of
the molecules) break down under the impact of
thermal agitation, in helium this happens as a
result of the zero-point motion. No proof of this
statement has been given so far but the following
remark may prove relevant.

Consider a particle in a cubic box of volume V.
The box is slightly deformed into a rectangular
parallelepiped of volume V+hV. The zero point
energy appears here as the lowest eigenvalue I';0

of the particle. It can be easily shown that,
neglecting quadratic terms in the deformation,
one has

S&o/&o = —& &/& (30)

Hence, for a shearing deformation (AV=O),
the energy is in first approximation unaffected.
More generally, (30) holds for an energy level
of the cubic enclosure if, and only if, the corre-
sponding P function is invariant under the cubic
rotation x—+y~s.

Although this case is altogether too simple to
be applicable to the many-body problem of
liquid helium, it is hard to suppress the feeling
that this selective behavior of the zero-point
energy with respect to shear and compression
might be of more general validity.

Ke turn now to the discussion of the postulates
(c) and (d) from the point of the Bose-Einstein
model.

As first suggested by London, ' individual
helium atoms might exist in liquid helium in

"F.Simon, Nature 133, 529 (1934)."F. London, Proc. Roy. Soc. A153, 576 (1936); J.
Phys. Chem. 43, 49 (1939); compare also T. Nagamiya,
Proc. Phys. Math. Soc. Japan (3), 22, 492 (1940).
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excited translational states associated with a
definite energy and momentum in much the
same way as the electrons in metals according to
Bloch's theory. The Bose-Einstein statistics im-

plies a "condensation in momentum space, "
hence postulate (d) appears as a theorem on the
basis of this model.

The incorporation of London's hypothesis in
the present theory considers only the shear
modes of motion, and otherwise the system has
the liquid. characteristics as discussed above.
Such a system can be conveniently called a
Bose-Einstein liquid. ' It is assumed that its
P-function in a state of weak excitation can be
written as

Ãe~c

, =g II. exp[iit; r;].

The function $0(l., 2, Ã) .s essentially the
eigenfunction of the lowest state. It depends o~
the coordhlates of atl the atoms. The Nr are the
longitudinal normal modes of the system also
involving the coordinates of all the atoms. In
contrast to this situation Pg„depends only on
the coordinates of the excited atoms. (The
assumption of weak excitation implies N,„,((X.)
The symbol g~ represents the summation over
all the permutations of the particles.

The form (41) for the P-function has not been
derived from first principles, and it is hard to
see how that could be done at present. All we
intend to point out is that it is conveivable to
think of a system of strongly interacting particles
where the f-function corresponding to certain
modes of motion can be factorized nevertheless.
This is an important point in view of the numer-
ous objections which had been brought up
against the Bose-Einstein theory.

First, it should be pointed out that Keesom~
was justified in rejecting the interpretation of
the viscosity measurements given in reference 4.
This objection concerned, however, only an
erroneous application of the theory, not the
theory itself. After removal of this error (see
this paper, Section III and the discussion of
the free path given below) the viscosity measure-
ments of Keesom and MacKood give a particu-

larly striking support of the theory. Apart from
this instance, most of the criticism seems to stem
from some mise. nderstanding the main source of
which is in the failure to appreciate the difference
between a real Bose-Einstein gas and a Bose-
Einstein liquid. Several attempts have been made
to replace the ideal by a reo,/ Bose-Einstein gas
by introducing a self-consistent potential. This
method fails to account for the correlations
between the states of the individual particles
which are all important in the case of a liquid.
They are taken into account to a large extent by
our postulates. " the gaseous nature of the system
is restricted to the shear modes of motion
(lsopycnlc rearrangements), its compressibility
is that of a liquid. This remark disposes of the
numerous attempts which tended to prove or
disprove the theory by means of the "critical
opalescence" arising from the large density
Huctuations in a condensed Bose-EinsIein gas. 32

In a Bose-Einstein liquid the density Huctuations
are determined by the liquid-type compressi=-

bility (observed, for example, in the first sound),
which shows no significant anomalies around the
A.-point.

The fact that the Hose-Einstein liquid allows
one to take into account the correlations between
the excited atomic states to a satisfactory degree
is due to the artifice of formulating these corre-
lations macroscopically rather than in quantum-
mechanical terms. In other words, the difficulties
of the quantum-mechanical many-body problem
are not solved, but by-passed in the present
theory.

Another source of misunderstanding is that in

the Hose-Einstein liquid one has to distinguish
"collisions" of the excited atoms from "inter-
actions" of the atoms in general.

All atoms are strongly interacting through the
mechanism of the zero-point energy precluding
large Quctuations of density. In other words,
the factor 1[4 ln (31) ls not separable ln the
coordinates of the particles. In contrast to this
interactl. on, one speaks of a collision" if two
or more atoms in definite translational states
interact to make a transition into different
states. In such processes translational energy

"L. Goldstein, Phys. Rev. 5'7, 241, 457 (1940); L. I.
SchiG, Phys. Rev. 5'E, 844 I'1940); V. L. Ginsburg„J.
Phys. U.S.R..R.. V, 305 (1943).
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and momentum are conserved. Obviously double
collisions between excited and non-excited atoms
are excluded by these conservation principles
which assure an apparent independence of the
two components. This is the basis for the
assumption p t=constant, which was advanced
in Section III regarding the mean free path. The
mechanism for the establishment of thermal

equilibrium is given by multiple collisions. These
tend to maintain the value appropriate to the
temperature.

Finally, we conclude that the Bose-Einstein
theory furnishes a self-consistent although hypo-
thetical molecular model for the postulates
(a)—(d). It is, of course, of importance to know
whether there is another molecular model with
the same properties. This wi11 be discussed in the
next section.

VI. DISCUSSION OF LANDAU'S THEORY

No attempt mill be made here to analyze the
logical connection between Landau's microscopic
quantum hydrodynamics on the one hand and
his macroscopic relations on the other. These
relations will be considered rather from the
point of view of our quasi-thermodynamic theory
and the question to be answered is: What
changes and additions have to be applied to the
postulates (a)—(d) in order to obtain Landau's
results&

Postulates (u) and (b) are made tacitly by
Landau. In particular, the validity of (b) is
essential if the Hamiltonian of the system should
depend on the density alone as is implied by
formula (1.10) of reference 6.

In Landau's theory, the excited atoms of the
Hose-Einstein theory are replaced by "rotons. "
A divergence from the present theory arises in
connection with postulate (d). There is agree-
ment inasmuch as helium II has to be considered
as a mixture of a normal and a superAuid compo-
nent, but Landau defines the normal component
as a "gas of phonons and rotons, " leaving the
superfluid component with rigorously vanishing
entropy.

It is seen that the theories agree sufficiently
closely to account for the similarity of the results.
The difference in the role attributed to the
phonons leads, however, to several observable
discrepancies.

In the first place, Landau fails to get the
condition of validity (9) for the thermo-mechan-
ical effect. Accordingly Kapitza" suggested a
cooling method which would a priori permit us
to approach infinitely near to the absolute zero.
The investigation of this effect at low tempera-
tures should allow us to test the importance of
condition (9).

A second point concerns the expression (27b)
for the second sound velocity. The function
c2(T) depends very sensitively on the manner

p /s„depend on temperature. Equation (12)
implies generally c2 T& for T +0. La—ndau, in
contrast, concludes that so far as phonons are
concerned, p„N„T4 where I„ is the phonon
energy, while the corresponding entropy is
s„T. This is a violation of (12) and leads in
the limits of low temperatures to c2-+c~/3'=130
m/sec. Thus the discrepancy between Landau's
theory and the experiments (compare Fig. 4)
originates in the violation of Eq. (12)."

Landau's discussion of phonons can be rejected
already from the point of view of the quasi-
thermodynamic theory. The question of rotons
is more dificult since the macroscopic theory
remains unchanged if the "elementary excita-
tions" of postulate (c) are interpreted in terms
of "rotons" rather than excited atoms. The
merits of this interpretation have to be judged
from more specific results. Ke find two results
of this kind in Landau's theory. First, the
exponential temperature dependence of p„and
s, and second, the high value of about 100 m/sec.

"After this manuscript had been completed, Landau
published a note (J. Phys. U.S.S.R. 11, 91 (1947) where,
in an attempt to account for this discrepancy, he suggested
a new expression for the energy spectrum of helium. This
expression was obtained by adjustment of three arbitrary
constants. Apart from the unsatisfactory nature of this
procedure, it tends to modify the theory in the wrong
direction. Originally Landau failed to notice that every
vortex element can be associated with a definite mass
contained in the volume in which the vorticity is different
from zero. It is a consequence of the hydrodynamic
equations that this mass is an integral of the motion. In
contrast to this situation, phonons are associated with the
liquid as a whole.

Only elementary excitations associated with definite
masses can make it understandable that the liquid breaks
up into two components as required in postulate (d).
Landau introduced such a mass by his device of the
rotating vessel for rotons and phonons indiscriminately.
This argument is not convincing as it tends to obtain
information on a kinetic coefficient (viscosity) from equi-
librium considerations. Thus Landau had ignored an
important difference between phonons and rotons. In his
latest paper this difference is even more blurred.
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for the critical velocity. Both results are in
conflict with experiment; they follow directly
from Landau's assumption of a "gap" in the
vortex spectrum. If this assumption is dropped,
new di6.culties arise, the discussion of which is
beyond the scope of this paper.

Summing up, it may be said that the vortex
model is in a rather unsatisfactory state. In some
respects, however, the situation is not unlike
that encountered in the Bose-Einstein theory.
A rigorous proof or disproof of the theory seems
equally -difficult. Under such circumstances, it is
of interest to see whether the question could be
decided experimentally. Even this approach is
rather difficult, since one has to consider second-
order hydrodynamic effects which are at present
little understood. A distinguishing feature of the
vortices compared with the excited atoms of the
Bose-Einstein theory is the existence of an
internal rotational energy which should manifest
itself in an absorption and dispersion of the
relaxation type for first and particularly for
second sound.

Interesting crucial experiments would be pos-
sible if the H' isotope obeying Fermi statistics
would be sufficiently enriched to make flow

experiments possible. Such experiments should
show conclusively whether the Bose-Einstein
statistics are of any fundamental importance for
the phenomenon of superfluidity. If liquid He'
should not be superfluid, this fact could be
actually used for the enrichment of this isotope
as has been recently suggested by J. Franck. "

VII. CONCLUSIONS

In the discussion of the properties of liquid
helium, it is useful to distinguish three ranges of
temperature in which the liquid shows essentially
different characteristics. In addition to the well-

known modifications helium I and II, separated
by a sharp X-point, there is a gradual transition
between a low temperature and high temperature
domain in helium II. The transition region is
somewhat below 1'K, but its location needs
further experimental study. In the low tempera-
ture region, the entropy is due mainly to the
elastic phonons (elementary excitations of the
compressional modes), whereas in the high tem-
perature region -the phonon contribution is negli-

34 J. Franck, Phys. Rev. 70, 261 (j.946).

gible compared with that of the elementary
excitations of shear modes (isopycnic rearrange-
ments of the liquid). This contribution is re-
sponsible for the anomaly in the specific heat and
has a "gaseous" nature. The main properties of
the liquid are as follows:

Helium I
From the macroscopic point of view, this

modification shows a "normal" hydrodynamic
behavior; its coefficient of viscosity is, however,
rather remarkable. In ordinary liquids the vis-
cosity has a negative temperature coefFicient
because of the "microscopic rigidity. "This type
of viscosity can be called dynamic viscosity, to be
distinguished from the kinetic viscosity which is
observed in gases and which has a positive
temperature coeS.cient. The qualitative under-
standing of the properties of liquids is greatly
facilitated by the concept of microscopic rigidity.
However, the difficulties of giving to this notion
a quantitative formulation seem to be responsible
in no small degree for the lack of a satisfactory
kinetic theory of liquids. Hence it seems to be
of interest that helium I has a kinetic and mo

dynamic viscosity revealing the complete absence
of microscopic rigidity. The comparison of ordi-
nary liquids with helium I should be useful for
the disentanglement of the gas-like and solid-like
properties of liquids.

Helium II. Low Temperature Regions
(0(T 1'K)

The main characteristic of the liquid in this
temperature range is its superfluidity which im-
plies that the liquid can slip along solid walls.
This is demonstrated in the spectacular creeping
phenomena. Beyond a certain critical velocity,
the superfluid flow may be' associated with
dissipation, apparently of a turbulent character.

Helium II. High Temperature Region
(1' T(2.19'K)

In this "anomalous" region the liquid is a
mixture of a normal component (like helium I)
and a superfluid component (like the low temper-
ature form of helium II). The main object of
the present paper was to develop the macroscopic
thermo-hydrodynamic properties of such a two-
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fluid system. The results are in excellent agree-
ment with experiment. Minor discrepancies may
well be due to small inaccuracies in the caloric
measurements, although the theory will have to
be refined to include small effects neglected at
present, like dissipation and the dependence of
p„/p on pressure. The formalism developed seems
to furnish valuable criteria for the consistency
of measurements and might possibly be used to
establish the thermodynamic temperature scale.

The principal problems for further experi-
mental and theoretical research seem to be as
follows:

(i) The derivation of the postulates of the
quasi-thermodynamic theory from first princi-
ples. In particular, establishing the correct mo-
lecular model which would lead to these postu-
lates. At present the choice seems to be between
the Bose-Einstein liquid and possibly the vortex
model (modified Landau theory). The experi-
mental approach to this problem has been briefly
discussed at the end of Section VI.

(2) The darification of the nature of the pure
superffuid Hquid (helium II near absolute zero).
This problem has not been discussed in the

present paper. According to Landau, the super-
fluid state is characterized by the condition
curlv, =0. The question has been further dis-
cussed by F. London" and by Onsager. "So far,
superfluidity (capillary fiow and the creeping
phenomenon) has been studied experimentally
only above 1'K where the eff'ects have been
greatly complicated by the thermo-mechanical
effect and the viscosity of the normal component.
Experiments below I'K where these effects prac-
tically vanish would be greatly desirable. Of
particular interest is the investigation of the
dissipation arising above the critical velocity.
This seems to be of turbulent character; hence, a
unique opportunity is offered for studying turbu-
lence in the absence of viscosity (no boundary
layer). On the other hand, this turbulence will

be influenced by quantum e8ects.
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Using the crystal structure determination of rochelle
salt made by Beevers and Hughes, a theory of the ferro-
electric effect and clamped dielectric constant has been
worked out using the displacement of the hydrogen nucleus
in the 1-10 hydrogen bond as the ferroelectric dipole.
This theory has only one disposable constant, p, the
factor of proportionality between the polarization and the
Lorentz internal field. Taking the oxygen separation found

by x-rays, the dielectric constant for electrons and atoms
found by experiment, and the number of molecules per
cubic centimeter found from the x-ray cell determinations,
the value of P becomes 4.07 which agrees well with the

theoretical value 4x/3 for an isotropic substance. This
theory accounts for the clamped dielectric constant at low
field strengths, which as shown by measurements presented
here, has maximum values at —18'C and +24 C, the
Curie temperatures for the free crystal. This shows that
the anomaly must lie in the clamped dielectric constant
alone and not in the interaction of the clamped dielectric
constant" and the piezoelectric effect. This model also
accounts for recent measurements of W. A, Yager which
show that the dipole dielectric constant is relaxed at a
frequency of about 5)&109 cycles.

I. INTRODUCTION

~

~

LL measurements of the properties of
rochellt' salt indicate that the piezoelectric

and elastic properties are normal and that all the

anomalies reside in the "clamped" dielectric
constant, i.e., the dielectric constant measured
in the absence of strain. The piezoelectric stress
has been found to be directly proportional to the


