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Induction Effects in Terrestrial Magnetism

Part III. Electric Modes
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It can be shown that the currents in the earth's core
which give rise to the externally observable magnetic field
do not form a complete set of solutions of the field equa-
tions. There exists a second set of solutions composed of
the modes of the electric type which produce a magnetic
field inside the metallic sphere, but appear at the outside
only through an electric field too weak to be measured,
For reasons of symmetry the most important terms among
the electric modes are the quadrupoles. The theory of
inductive coupling by Quid motion, developed previously,
is here applied to the interaction of the magnetic and
electric modes. The system again is non-conservative, and
work is done on the field by the Quid, or vice verse. It is
shown that the intei action betweeil the magnetic dipole

and electric quadrupole modes coiistitutes a basic amplifier
mechanism which amplifies the quadrupole mode until the
magneto-mechanical forces exerted by the 6eld upon the
Quid begin to slow down the motion, thus prohibiting
further increase of the field. This internal quadrupole 6eld
is likely to be much larger than the ordinary magnetic
dipole field. Further analysis leads one to interpret the
couplings between the magnetic and electric modes as a
feed-back amplifier whereby the field can be maintained
through the power delivered to it by the Quid motion.
A survey of possible sources of power for this process
indicates that the power for the maintenance of the field
is provided from the rotational energy lost by the earth
as it is slowed down through the action of the 1unar tide.

INTRODUCTION

HE analysis of Part I Rnd PRI"t II hRs led
to an interpretation of the geomagnetic

secular variation in terms of interactions between
Huid motions 1n the earth 8 metallic core Rnd

electric currents in the core that are the sources
of the magnetic field. This analysis suffers from
the shortcoming that the current modes which
give rise to a magnetic field outside the metallic
sphere do not represent a complete set of solu-
tions of the electromagnetic field equations.
There exists a second set of solutions, repre-
senting modes of the electric type, whose mag-
netic field is confined to the interior of the
conducting sphere. In the preceding parts these
modes have been disregarded on the assumption
that they cannot be excited. It has been found,
however, that in the theory of inductive coupling
by Quid motion there appear definite couplings
between the two types of modes and that, there-
fore, the electric modes are an integral part of the
field as described by this theory. It will appear
in the course of this paper that from this view-
point inductive coupling between the magnetic

* Now at Randal Morgan Laboratory of' Physics, Uni-
versity of Pennsylvania, Philadelphia, Pennsylvania.' W. M. Elsasser, Phys. Rev. 69, 106 (1946},designated
as Part I in the text.

~ W. M. Elsasser, Phys. Rev, 'N, 202 (1946},designated
as Part II in the text.

and electric modes is by far the n&ost important
feature of the earth's magnetic field.

FREE ELECTRIC MODES

lt is a known fact' that a sphere of macroscopic
dimensions and of a conductivity of the metallic
order has four distinct sets of electromagnetic
modes of free oscillations. There are two high
frequency modes, oscillations that correspond to
wave-lengths comparable to the radius of the
sphere. These modes are not of interest to us
here. There are two low frequency mades which,
in the case of a metallic sphere of macroscopic
size, are completely aperiodic. The free aperiodic
modes of the magnetic type have been exten-
sively dealt with in Part I. The present account
of the aperiodic modes of the electric type can
therefore be brief; the procedure and symbols
follow those of Part I. Ke first give a treatment
in which the displacement current is omitted
from the outset as has been done in the case of
the magnetic modes. 'I'his method is extremely
simple, but leads to an apparent inconsistency.
The essential correctness of the result will then
be demonstrated by deriving them from the
more general solutions that include the displace-
ment current.

' P. Debye, Ann. d. Physik 30, 57 (1909}.
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The relation of the magnetic and electric
modes may be described by saying that the
symmetry types of the field vectors are inter-

changed. If again T and S designate the toroidal
and poloidal vector fields defined. in Part I, we

have
magnetic modes: 8 S, E T
electric modes: 8 T, E S.

In analogy to (I, 26) we set now for the vector
potential of any individual free mode, inside the
sphere

A(') =cSe ~'

where all the pertinent relations of Part I,
namely, (I, 8), (I, 11), (I, 24), (I, 27) remain

unchanged. We quote the last-named

A =k'/bio. (2)

The field equations in the space external to the
sphere are fulfilled if we set

3&'&=0 E&'&=CAR"~(r " 'I' )e ~' (4)

The boundary conditions are the same as in the
case of the magnetic modes. They readily yield

the relation
2' pi(k„,R) =0,

which is to be compared to the condition (I, 16)
for the magnetic modes.

Again we wish to normalize these modes in

analogy to the normalization of the magnetic
modes which was given by (I, 21). Hence, we

require

I 8 ~ S*dV=1,

the integral extending over the interior of the

sphere. The calculation shows' that the normal-

ization of the spherical harmonics (I, 22) may

be left the same, but the normalized radial

functions are now, in place of (I, 23),

Z„(k,r) = 2'(2n+1)'R 'L(n+1)J„ i(k,R)

+nJ.+pm(k, R)] "'r V„+i(k,r). (7)

48y (I, 18); see also J. A. Stratton, Electromagnetic
Theory (McGraw-Hi11 Book Company, Inc. , New York,
1941},Section 7.13.

AVe ther& find readily for the field vectors in the
interior:

(3)

Since the tangential component of E is con-

tinuous, we can readily estimate the magnitude
of the external electric multipole field given by
the second Eq. (4). The electrostatic potential,
U, of this field is of the order

U=RB=RCA =Rcpt =8/ii, o. .

Taking the magnetic field to be 1 gauss=10 "

m. k.s. units, we find U to be of the order of 10-'
volt. Such a field cannot, of course, be detected
by electrostatic measurements at the surface of
the earth.

The preceding derivation of the electric modes
suA'ers from a fIaw that might be stated as
follows. Since the radial component of E vanishes
when the boundary is approached from the
inside, there must be a charge on the surface of

'

the sphere (at least for any finite assumed value
of the dielectric constant on the inside). As this

charge must decay exponentially in time, there
should be a current to or from the surface, in

contradiction to the boundary condition for E
just stated. Closer scrutiny indicates that this
current is small of the second order in the
neglected displacement-current term. To show

this, we shall derive the aperiodic modes from
the more general case of the oscillatory modes.
The characteristic equation for the electric
modes is' (assuming p constant throughout)

P„'(k;R)/P. (k;R) =k;I-.'(k.R)/k;q. (k.R), (8)

where

P.(x) =xlJ„~i(x), I'„(x) =x''IX„+,&'&(x).

II"& being the Hankel function of the first kind.
The propagation constants, k; and k„have the
usual meaning and refer to the internal and
external space, respectively. Both are given
functions of the frequency. If now the right-
hand side of (8) is reduced to the first term of a
power series in k,R, one obtains

P (k;R) = —(Rk, '/n, k;)P„'(k,R)

which for small values of k, goes over into

P„(k;R)=0, identical with (5). If the roots of
this equation are designated (k,R)0 we have in

the next approximation

kP = (k;R) p(1 —k.'/nk, ') 0.

~ J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc. , New York, 1941), Section 9.22.
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The second term in the parenthesis now gives
rise to a small current normal to the boundary.

~ xB=pcrE+pov xB,

~ xE+88/Bt=0, ~ ~ B=O. (10)

Ke shall moreover require the energy integral.
Apply to (9) and (10) the conventional procedure
of deriving Poynting's theorem and neglect the
surface integral of the Poynting vector when the
surface over which the latter is taken tends to
infinity. After some simple transformations we

get

2(8/Bt)~-B'd V= "v ~ (B x (~ x B))d V

INDUCTIVE COUPLINGS

For the sake of completeness we start again
from the 6eld equations

of the complex vectors of the former papers;
the coefficients in (13) are then real, and the
norma. liza, tions (6) and (I, 21) are replaced by
real conditions (increasing the normalization
factor (I, 22) by v2, if mWO).

Equation (12) becomes now

4=—2 v-cp[V- BpxA.],
uP

(14)

which agrees with the former relations (I, 34) or
(II, 10) except for the fact that the summation
is now understood to extend over both types of
modes. The expression (11) for the magnetic
energy can be put in an analogous form. For
any individual mode we have

~ xB,=~ x~ xA, =k~'A,

and hence (11) may be written, on neglecting the
last integral,

dE „/dt =g v cpc~k~'[V ~ Bp x A~j. (15)

where the integral on the left extends over all

space, those on the right over the sphere only.
The last term is proportional to the square of
the total current as given by the right-hand side
of (9), and represents the ra, te at which heat is
generated. The 6rst term on the right-hand side
of (11) represents the change in the field energy
produced by the motional induction. As this
term does not, in general, vanish, the system is
non-conservative; work is being done by the
Huid on the field, or vice versa.

As we are primarily interested in the motional
induction we shall assume v and 0- so large that
the free decay terms (and diff'usion effects treated
in Part II) become negligible. The transition to
this limit does not involve any mathematical or
physical difficulties. Equation (9) can then be
written in the simple form

On substituting from (14) and integrating, we
find E,g

———,
' P, k, 'c„'.

Again, let F be the density of the magneto-
mechanical forces exerted by the field upon the
Quid. Let F be an orthogonal vector set; then

F=J x B= v(BA/Bt) xB—
= —ti ' Q cpc,k, '[F ~ Bp x A„gF

~Ps
(17)

the last equality by (1) and (2).
We now proceed to classify all the matrix

elements appearing in (14) according to the
types of vectors, T or S, involved. In the
"primary" mode (index P) the magnetic field
itself enters, in the "secondary" mode (index y),
the vector potential appears instead. We may
distinguish the following types:

BA/Bt =v x B= v x (v x A) . (12)
Interactions among magnetic modes:

Following the developments of earlier parts, put
[T ~ Sp x T,j, [S ~ Sp x T,]. (18a, b)

A=+„c,A„v=g v V (13)
Interactions among electric modes:

where the vectors with indices are of the orthog-
onal set, and where, moreover, the summation
extends over both types of vectors, T and S.
From now on, we shall use real vectors in place

[T, ~ Tp x S~], [S ~ Tp x S„]. (19a, b)

Magnetic mode primary, electric mode second-
ary:

[T- Sp Sv7x, LS. SpxSVJ (2oa. b)
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Electric mode primary, magnetic mode second-
ary:

(21)

In the case (21) there is only one type of inter-
action, since all matrix elements containing three
toroidal vectors vanish. A11 the preceding matrix
elements dilfer from the t.wo types (18) only by
permutations, with the exception of (20b). The
types (18) have been described in the preceding
parts and a table of all the elements containing
only dipole and quadrupole vectors has been
given. ' The type (20b) is new; a table of the
lowest elements will be found in the appendix.
This type appears to be of minor physical
significance, and we shall not encounter it later
on. From the tables, or the analytical expressions
given in the appendix, the values of all matrix
elements (18)—(21) can be obtained either di-

rectly or by suitable permutations of the vectors
or their indices.

Next, we try to simplify Eq. (14). We begin
by imposing two restrictions on the Quid motion,
namely, assuming rotational symmetry about
the earth's axis and symmetry about the equa-
torial plane. The first condition restricts us to
zonal vectors (m =0); this will later be somewhat
relaxed. The second condition requires that the
poloidal flow components, S„,must have even n,
the toroidal flow components, T„, must have
odd n. This is readily verified from the expres-
sions (I, 13) and (I, 14) for these vectors. In
Part I we derived certain selection rules for the
matrix elements; from the formulas of the
appendix these can now be generalized to apply
to all the elements (18)—(21): For the elements
(18b), (19b), and (20a), containing two vectors
S and one vector T, the sum of the three indices
e must be even; for the remaining elements
containing either one vector S and two vectors
T, or else three vectors S, the sum of the three
indices n must be odd. One finds now that under
the symmetry assumptions made for the fluid

motion, the entire set of electromagnetic modes
is reducible into two sets that are not coupled to
each other. One of these, the symmetrical set,
has electric currents or vector potentials which
have the same symmetry as the fluid motion,
i.e., for A=S„ the index n must be even, for

' Reference 2, p. 207.

A =T„it must be odd. The other, antisymmetrical
set, is complementary to the symmetrical set;
the electric currents or vector potentials are
antisymmetrical about the equatorial plane. In
order to prove this we need only insert the
corresponding vectors into the matrix elements
(18)—(21); it rhen appears that the couplings
between the two sets vanish by virtue of the
selection rules just enunciated. Since these selec-
tiori rules do not depend on the magnitude of the
tesseral index, m, we can at once generalize the
result so that it applies to tesseral harmonics as
well: Let the symmetrical set of vectors be
composed of the S„where n is even and of the
T where n is odd; the antisymmetrical set is
complementary to this. Then, when the fluid
motion can be described as a linear aggregate of
vectors of the symmetrical set, the electromag-
netic field is reducible; modes whose electric
currents (or vector potentials) are of the sym-
metrical set are not coupled to modes whose
electric current are of the antisymmetrical set.

It is now furthermore found from (17) that the
magneto-mechanical forces engendered by any
one set of modes alone are vectors of the sym-
metrical set; the forces engendered by the inter-
action of a symmetrical and an antisymmetrical
mode are vectors of the antisymmetrical set. It
is clear that the primary mechanical forces acting
upon the fluid, at least so long as they have
rotational symmetry, must belong to the sym-
metrical set. This is evident for any forces
caused by pressure differences between the polar
and equatorial regions. The Coriolis force is of
the form ~ xv, where ~ is a vector of type SI
derived by (I, 14) from a generating function
P=(r/2R)co cos8 The deve. lopment of ~ xv in

terms of the fundamental vectors is then seen
to yield only vector components of the sym-
metrical set. Thus we see that the forces, veloci-
ties and electric currents pertaining to the sym-
metrical set form a self-consistent system. This
is not the case when the electric current modes
are of the antisymmetrical set, since the resultant
magneto-mechanical forces are symmetrical.
Observation shows that the magnetic dipole
modes, which are symmetrical vectors, are large,
while the quadrupoles, which are antisymmetri-
cal vectors, are very small. It will henceforth be
assumed that the symmetrical set of electric
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current modes is the one that preponderates in
the earth. This leads at once to the conclusion
that for the modes of the electric type the
quadrupoles must be large and the dipoles and
octupoles small.

On relinquishing our original requirement of
rotational symmetry for the field vectors, it will
be appropriate to retain the assumption that the
deviations from this symmetry are small. The
simplest such case is that of an axis of rotation
slightly inclined relative to the earth's axis. Let
e, P be the polar angles of the new axis in the
old system and let 8' be measured from the new
axis. From the addition theorem of the spherical
harmonics we get, up to terms quadratic in e,

P (cos8') =(1——', e) P„( cos8)

+eP~ (cos8)cos(p'—'IP)

+(e'/4)P„'( cso8) cos2(e —P)+ ~ (22)

where the P's are the ordinary (unnormalized)
Legendre polynomials. From this formula the
relations for the corresponding vectors containing
normalized spherical harmonics are readily de-
rived. In what follows, we shall confine ourselves
to first-order terms in e, that is to tesseral
harmonics with m =1.

In order to achieve further simplification of
Eq. (14) we shall now limit ourselves to the
dipoles of the magnetic modes and the quadru-
poles of the electric modes. We have, therefore,
the following six vectors for the electric currents
or vector potentials of the large modes

Ti, Ti', Ti', Se, Se', Se', (23)

where the upper indices c and s represent the
functions cos8 and sin8, respectively. Equation
(14) reduces now to six sets (where the members
of each set are distinguished only by the index
of the radial eigenfunction). In place of the
ordinary di&erentia1 Eq. (14) we could form a
set of parte'aL differential equations for the two
independent variables r and t; under the restric-
tion (23) these would reduce to six simultaneous
partial differential equations (or four simultane-
ous complex equations).

The assumption of rapid convergence of the
spherical harmonic series is, of course, justified
by the fact that the higher harmonic components
are quickly damped out by free decay. There is

no similar restriction on the components of the
fiuid motion. We can, however, limit ourselves
to the vectors

Tl) Tl y Tl j 82) 82 y 82 j Tey T3 ) TS (24)

as it follows from the selection rules of Part I
that, under the restriction (23) for the electric
current vectors, only the velocity vectors (24)
give rise to non-vanishing matrix elements.

AMPLIFICATION

We shall now study the individual interaction
terms that involve vectors of the types (23) for
the electric currents and (24) for the velocities.
First, consider matrix elements that have full
rotational symmetry. There are only four types
of these

[Se ~ 8, x T,], [S, ~ T, x 8,], (25a, b)

[T, ~ 8, xS,], [T, ~ S, xS,], (26a, b)

each element standing for an infinite sequence
distinguished by the indices of the radial eigen-
functions. The elements (25a) represent inter-
actions among the magnetic dipole components
which have been discussed at some length in
Part II. The elements (25b) represent inter-
actions among the electric quadrupole compo-
nents of a closely similar character. Our attention
will be centered on the elements (26) which
represent an induction from the magnetic dipole
as primary to the electric quadrupole as second-
ary. These four types of elements exhaust the
couplings of rotational symmetry among the
rotationally symmetrical magnetic dipole and
electric quadrupole modes. There is, therefore, no
reverse to the imteractiorts (Z6). This statement
holds more generally in the sense that there are
interactions of rotational symmetry between
magnetic modes as primaries and electric modes
as secondaries, but no interactions of rotational
symmetry in the reverse direction. The proof
can readily be deduced from the expressions of
the matrix elements in the appendix.

For simplicity, let now the series of matrix
elements resulting from the different radial
eigenfunctions be represented symbolically by a
single element; then Eq. (14) reduce to

dce/dt = [Tl ~ 81 x Sefvlcl

+[T, ~ 8, x S,]sec~. (27)
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If we assume that v~ and va are constants, and
that the primary field is constant, the amplitude
of the electric quadrupole increases linearly with
time. The process (27) constitutes a basic mecha-
nism of amplification. In somewhat more physical
terms, this process might be described as follows:
The primary dipole field, S&, is in the meridional
plane, the velocity, T& or T3, is perpendicular to
this plane. The induced secondary current, being
the vector product of the two, must again be in
the meridional plane. The lines of magnetic force
of the quadrupole thus generated are circles
about the earth's axis. Hence, the secondary
magnetic field is parallel to the velocity and
there is no interaction between them which would
produce a tertiary field. This is the reason why,
in the presence of only the fields and velocities
appearing in (27), Eq. (14) is reducible to the
latter; the process of amplification of the quadru-
pole mode does not necessitate the simultaneous
generation of other modes.

Now Eq. (27) is symbolical in the sense that
in reality there is an infinite sequence of matrix
elements corresponding to the different radial
eigenfunctions of the primary as well as the
secondary mode. But it is seen from the preceding
geometrical consideration that on any circle
r=const. , 8-=const. the field of the secondary
mode increases linearly with time, although the
rate of increase will, in general, be a function of
r and 8. This linear increase must continue until
the magneto-mechanical forces exerted by the
field upon the fluid become so large that they
decelerate the fluid motion, thereby prohibiting
further amplificatio. Equation (15) gives the
amount of power delivered by the fluid motion
to the field in the process of amplification. By
(17) there corresponds to each matrix element a
force component whose direction is everywhere
opposite to the corresponding velocity compo-
nent. In Part II the critical field strength for
which the magneto-mechanical forces become
equal in magnitude to the purely mechanical
forces has been estimated. In view of (17), 'the
last equation of Part II (preceding the appendix)
may be modified to read

(BiBq)'~(2+p/0)' = l2 gauss, (28)

where B~ and 82 designate the primary' and
secondary field, respectively. For larger fields

than given by (28) the magneto-mecha, nical
reactions preponderate, for smaller fields, the
purely mechanical driving forces. 8& in the upper
layers of the core is about 2—3 gauss which
would make J32 about 50—60 gauss. The force
exerted upon the velocity components T& and T3
is, however, not the largest force exerted by
the electromagnetic field. It results from the
interaction of the secondary current with the
primary field; a larger force results from the
interaction of the secondary current with the
secondary field. The latter force component is of
the type S2. Whether or not this force influences
the fluid motions in such a way that it eventually
tends to decrease the motion of the types T~ and
T3 indirectly, could only be decided by a more
extensive analysis. In order to fix our ideas we
shall assume a specific figure for the mean value
of the electric quadrupole field in the core,
namely, 30 gauss. This is presumably fairly
close to a lower limit for reasons which will

appear later.
The e8ects just mentioned must have a rather

profound inHuence upon the hydrodynamics of
the motions in the core. Since the magneto-
mechanical reactions are large in certain direc-
tions, the problem is di6'erent from one of
ordinary hydrodynamics. Instead, we are dealing
with a system where the coupling between the
Huid motion and the magnetic field is extremely
close and their mutual interactions cannot be
neglected. It is interesting to note that, in the
case of sunspots, Alfvbn' has arrived at closely
analogous conclusions. He finds that in sunspots
the magneto-mechanical forces must be greatly
in excess of all mechanical forces; hence the
motion must be controlled by the former. The
ideas of Gurevich and Lebedinsky' on sunspots
are in substantial agreement with this view.

FEEDBACK

So far, we have dealt with interactions of
rotational symmetry and we have seen that there
is no feed-back mechanism whereby the large
field of the quadrupole mode could in turn serve
as the primary for amplification of the dipole.
In order to obtain feedback in this sense we

7 H. Alfven, M.'N. R.A.S. 105, 3, 383 (1945).' L. Gurevich an&i A. I ebedinsky, J. Phys. U.S.S.R. 10,
327, 428 (~946).
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must make use of interactions without rotational
symmetry.

1. There is a vast number of matrix elements
involving tesseral harmonics, and we shall not
try to undertake their classification and dis-
cussion. A simple relation between zonal and
tesseral harmonics is obtained by a tilt of
the rotational axis, according to (22). If in the
amplification process (27) the Huid motion takes
place about an axis inclined relative to that of
the earth, as is apparently the case in the
observed field, Eq. (27) will be transformed so
that it involves elements of type

[T,' ~ S, xS,'j [T,' ~ S, xS,'j, (29)

and two others where the upper indices c are
replaced by s.

The elements that provide feedback are of
type (21). Limiting the permissible vectors to
those indicated before, they are

[S, ~ T,'x T,'7, [S,' ~ T, x T,'j, (30a, b)

are of the order e' or smaller. This type of feed-
back mechanism is so complicated and artificial
that it would hardly seem convincing.

2. A more satisfactory feed bac-k mechanism can
be developed by taking into account the effect of
turbulence upon the distribution of the magnetic
field. It follows from general hydrodynamical
principles that Huid motion in the core must be
turbulent. From the viewpoint of the present
theory the irregular features on any map of the
magnetic field or its secular variation may be
interpreted as the result of turbulent motion.

We shall first prove two useful theorems.
Consider a surface of arbitrary shape, bounded
by a contour C, located entirely inside the
conducting Iluid. We then get' from (9) and (10),
on integration

(8/Bt) tB„dS=—
) E ~ dG

(v xB) ~ dC —(po) ' t(~ xB) ~ dC.
[S2 ~ T2~ xTij, (31)

and three others obtained by interchanging the
upper indices. (Note the different selection rule
for the upper indices as compared to (29).)
Only the elements of type (31) give a com-
ponent of the secondary magnetic dipole along-
the earth's axis. It follows that both the Quid
motion S2 and the quadrupole field T2 must
be inclined relative to the earth's axis. The same
should then be the case for the velocity compo-
nents, T~ and T3, producing the quadrupole field.
But the two vectors in (31) have a shift in phase
(i.e. in geographical longitude) of 90', hence
by (29) there should also be such a phase shift
between the Huid components of the T and S
types. In order to establish a concrete picture we
may imagine that this whole complicated system
precesses s1owly about the earth's axis, as the
inclined axes can hardly remain fixed. Now
estimate the angle of inclination by means of the
observed inclination of the dipole field, &=0.20.
Other things being equal, (31) is of the order e'

as compared to a rotationally symmetrical
matrix element, hence quite small. An alternate
feed-ba, ck mechanism derived from (30) is of the
same order, and other feed-back mechanisms
involving vectors that we have neglected here

Now, if the first integrand on the right-hand side
is written B ~ (dC x v), the integral can be given
a simple geometrical meaning: It becomes
—J'B„d5where the integration extends over the
strip that the contour C subtends in its motion
during the time dt. Since j'B„d5=0 for any
closed surface, we find that

(d/dt) ~B„dS=(d/dt) t A ~ dC=0( -') (32)

where the term on the right-hand side tends to
zero as the free decay effects are neglected. The
operator (oi/dt) has the usual signi6cance, giving
the rate of change when the surface and contour
move with the fluid. By means of (32) we can
understand why certain simple theories of in-
ductive amplification do not succeed. A theory
of such a type was proposed for the sun by
Larmor. "Apply (32) to a circle r =const. Any
rotationally symmetrical motion transforms such

9This theorem is due to T. G. Cowling who com-
municated it to us some months ago. The writer is par-
ticularly indebted for Dr. Cowling's generous permission
to reproduce it here and to use the results in the context
of this paper.' J. Larmor, Brit. Assoc. Adv. Sci., Bournemouth
Meeting, 1919, p. 159 (1920).
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a circle into a family of similar circles, and
eventually the circle will return arbitrarily close
to its initial position. Now (32) asserts that,
neglecting free decay, the fiux threaded by the
circle remains constant. This Aux is produced
by the modes of magnetic type, as may readily
be verified. On admitting that free decay can,
in the mean, only decrease the magnetic Aux it
follows that the magnetic modes cannot be
amplified by a stationary How of rotational
symmetry. This is an alternate proof' of Cow-
ling's earlier theorem. "

A second integral theorem is obtained by
extending the integration over an arbitrary
volume instead of over a surface. This gives, by
(9) and (10)

(8/Bt) ~Bd V= —
~I Ed V= —I EdS

~n x (v xB)dS—(po)
—'))n x (p' x B)dS

on this axis. Then (34) gives

(d/dt) Bd V=au x ~I re„dS.

Now apply the vectorial identity

~"rB„dS= I r(p' ~ B)d V+~I (B ~ p')rd V.

Using the particular properties of r and 8, we
find that the first integrand vanishes and the
second reduces to B. Hence

(d/dt) IBdV=~ x] Bd V

which shows that the magnetic field rotates
together with the Huid particle.

In order to study deformation, let the volume
be a cylinder with axis parallel to 8, bounded by
two plane surface of area 5 perpendicular to the
axis. Then, by (34)

~~vB dS Bv dS 0(—'), — (33) (36)

where d5 is an element of the surface bounding
the volume and n the normal to this surface,
pointing outwards. Equation (33) can be re-
written as

(d/dt) I Bd V= i vB dS —0((r ')
l

(34)

» T. G. Cowhng, M.N.R.A.S. 94, 39 (1934).

where we shall again neglect the second term on
the right-hand side.

This relation may now be used to determine
what happens to the field of a Quid particle
during the motion of the latter. Consider, in

turn, the three basic forms of displacement:
translation, rotation, and deformation. For a
pure translation, v can be taken out of the surface
integral in (34) and the latter vanishes. Hence,
if the Quid particle is displaced parallel to itself,
it carries the field with it unchanged, both in

magnitude and direction. Next, let the particle
rotate about an arbitrary axis, ~ being the
angular velocity and r the distance from a point

where v~ and v2 are the outward velocities across
the end faces of the cylinder. Relation (36) is
the integral theorem corresponding to the diAer-
ential equation (II, 6) and leads again to the
results derived in Part II: Convergence of the
motion in a plane perpendicular to the field
produces amplification, divergence of the motion
in this plane produces de-amplification.

It is a well-known fact that, with respect to a
scalar property of the Quid, turbulence acts like
a greatly enhanced diffusion. Now we know
that, in the absence of motion, the field equation
(II, 3) for B reduces to an equation of diffusion
for the vectorial property B, describing the phe-
nomena of free decay, skin eR'ect, etc. , with a
coeKcient of diffusion equal to (pa) '. From the
preceding results we can infer that turbulent
motion of the fluid acts so as to accelerate the
free decay to a value that corresponds to the
increased rate of diffusion measured by the
coefficient of turbulent mixing. The formal
analogy would seem to be as complete as in the
scalar case. We shall not dwell here upon the
mathematical aspects. The periods of free decay,
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dc,/dt= t v icB ~ Ti]. (37)

T& has only a p-component which may be written
a(r) sin8 where a(r) is normalized. Hence

dci/dt=Jt(v x8)„a(r) sin8d V.

formerly found of the order of 20—50,000 years,
may now be much smaller, of the order of the
more rapid periods of the secular variation, say
a thousand years or slightly less.

If the elements of turbulent flow rotate, the
magnetic field vector rotates with them. For the
electric quadrupole mode, 8 is perpendicular to
the meridional plane. By rotating the fluid

particles we get at once a component of 8 in
this plane. In order that the average component
in this plane may be finite, it is clearly necessary
that the axes of the turbulent rotations be not
entirely random in direction, but have some
correlation either with the axis of the earth, or
with the axis'of the magnetic field. In order to
visualize such a correlation in a very crude way,
we may simply assume that a rotational compo-
nent in the same sense as the earth's rotation is
more probable than a rotational component in

the opposite sense (or vice versa) If th. e magnetic
held is small, the motion is controlled by the
Coriolis forces, if it is large, the motion is con-
trolled by the magneto-mechanical forces. It is
therefore quite likely that the turbulent motion
exhibits a correlation with the axis of the earth
or with the axis of the electric quadrupole field„

as the case may be. These qualitative considera-
tions do not determine the sign of the correlation
coe%cient which must be assumed such that, in

the mean, regenerative feedback results, We can
now attribute the observed rapid change of the
magnetic dipole terms, referred to above, to a
turbulent feed-back mechanism of this kind
rather than to a mean motion of the fluid. Since
the observed dipole moment decreases, it appears
that feedback is degenerative at the present time,
at least in the surface layers. If the field main-
tains itself in the long run, the average feedback
must, of course, be regenerative.

This concept of turbulent feedback can be
expressed more precisely as follows. The rate of
change of the dipole field is

This form of the equations of motion brings out
more clearly the significance of the matrix ele-
ments as coefficients of correlation for the turbu-
lent motion and field. If v and B in (37) are
developed in series of the orthogonal vectors,
the right-hand side becomes a linear combination
of matrix elements, ag in (14), the first term
being precisely the element (31). But there will

now be an entire series of such elements involving
higher harmonics. It should be pointed out that
this feed-back effect, like any other, is a second-
order effect in the sense of perturbation theory,
but on purely physical grounds it would appear
far more likely than the one sketched in the
beginning of this section.

There is a lower limit to the size of the turbu-
lent elements which can effectively contribute
to changes of the field. By (I, 30) the lowest
mode of free decay of a spherical particle is
poR'/ir2, or numerically, 0.138' when .R is in

meters. According to the evidence from the
secular variation, significant changes of the field

take place in periods of the order of a thousand
years=3 ~ 10"sec. Equating to the decay period
just mentioned, this gives R =500 km. For
turbulent elements of smaller size we can expect
the effects of free decay to outweigh the turbu-
lence so that the field is smoothed out before
the correlation required for feedback becomes
established. The large turbulent vortices, evi-
denced by the major traits of the secular varia-
tion, are several thousand km in diameter, and

they will be quite effective in producing the
phenomenon of feedback.

We are now in a position to estimate the
magnitude of the electric quadrupole field. A

statistical mechanism of feedback, as described,
must involve a large amount of cancellation of
random components and cannot be highly effi-

cient. The magnitude of the dipole held in the

upper strata of the core is 2—3 gauss; a value
of 30 gauss for the quadrupole field would then
keep the rate of feedback below 10 percent. The
quadrupole field might of course be larger than
this value. We shall, later on, derive an upper
limit for the field.

Before leaving this topic, we. might point to
the unusual degree of statistical fluctuation that
can be expected in a coupled magneto-mechanical
system of this kind. Not all the fluctuations are



830 %ALTER M. ELSASSER

rooted in properties of the fluid motion. The
theory of motional inductance might be said to
be the theory of the differential Eq. (12). If one
asks for the possible eigenvalues and eigenfunc-
tions of this equation (for stationary v) he will

assume solutions of the form A(r, 8, q) exp(7t),
where y is a complex constant. We know of one
case where such a solution exists, and y is purely
imaginary. This occurs wh. en the sphere rotates
as if solid, and the field rotates with the sphere.
But this is a trivial solution. The studies of the
present writer have given little support to the
hope that eigenvalues exist for more general types
of stationary fluid motion. The operator appear-
ing on the right-hand side of (12) is in general
skew, being neither purely symmetrical nor purely
antisymmetrical (see Part I). If a set of eigen-
values exist, they must therefore in general be
complex numbers. The solution given by the
amplifier mechanism (27) is not in the nature of
an eigenfunction, since the primary field remains
unchanged. If the presumption of the writer,
namely, that the operator in (12) does not, in
general, have eigenvalues, is correct, then one
would expect fluctuations of the field of macro-
scopic magnitude, even if a system of feed-back
amplification could be constructed on the basis
of a stationary motion of the fluid. It seems
questionable, however, whether the mechanism
of feedback by turbulent correlation can be
expressed in terms of strictly stationary motion;
we have not investigated this point. We need
hardly dwell on the familiar dynamical insta-
bility of fluid motion in large dimensions, giving
rise to large-scale turbulence. One can therefore
not be too surprised at the extraordinary amount
of fluctuation, both in space and in time, which
is exhibited by the observed field.

ENERGETICS

In the present theory the power required. to
maintain the field is much larger than one could
have expected heretofore, from a consideration
of the magnetic modes alone. An exhaustive, or
even fairly complete analysis of the possible
sources of power is beyond the scope of this
paper. A satisfactory answer to the questions
raised wi11 no doubt be dependent upon a study
of the features of the existing field and its
variation, Inasmuch as the observed secular

variation permits inferences about the character
of the fluid motion, it might be possible to
arrive at a decision as between the mechanisms
outlined below.

If the mean field in the core is assumed to be
30 gauss, the energy density is 3.6 joule/m'.
This amount of energy must be supplied once
during the time of free decay, say every 1000
years. Although we might expect large fluctua-
tions in the magnitude of the field it is, in the
absence of other information, perhaps best to
assume that a field of this magnitude has in the
mean existed throughout the geological history
of the earth. If the matter in the core is taken
to be mainly iron and its specific heat as 4R per
mole (somewhat in excess of the Dulong-Petit
value in order to allow for a contribution of the
conductivity electrons at the high temperatures
involved) the heat generated by the field is
readily computed. Over a period of 5.10' years,
comprising most of the known geological past,
the rise in temperature of the core owing to this
cause is 0.3 degrees.

We may now first assume that the power for
the maintenance of the field is produced by
thermal sources, for instance through radio-
activity, inside the earth. It is possible to esti-
mate the total heat required for this purpose. A
hydrodynamical theorem states that hydrostatic
equilibrium obtains when the surfaces of constant
temperature coincide with the surfaces of con-
stant mechanical (gravitational plus centrifugal)
potential. Only the deviations, AT say, from the
mean temperature of an equipotential surface
can be utilized to generate motion. Since the
fluid motion itself continually redistributes the
heat throughout the core, AT can hardly amount
to more than a few degrees, whatever the origin
and shape of the varjations. If an amount Q of
heat is converted into energy of motion, the
amount QT/hT must flow irreversibly from the
regions of positive d T to the regions of negative
AT, by the second law of thermodynamics. T is
certainly of the order of several thousand degrees,
so that T/AT should be at least 10', in practice
the ratio of irreversible to reversible thermal
effects is more likely to be about 104. Hence, the
thermal sources must be of such magnitude as
to be capable of heating the core by several
hundred degrees in the course of 5 10' years.
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Evidently this line of reasoning is not too
attractive, even if it should prove possible to
admit of radioactive sources of this magnitude.
We shall not pursue the question further since a
more plausible source of power for the Quid
motions and the magnetic field can be found.

In this alternate view the power is a by-
product of the change in the earth's speed of
rotation caused by the lunar tide. " From
astronomical observations

did/dh= —2.5 10 "sec. '

corresponding to a lengthening of the day by 1
second in 120,000 years. The accuracy of this
figure may be estimated as about 10 percent.
The angular momentum lost by the earth reap-
pears in the orbital motion of the moon, as the
latter gradually recedes from the earth. The
power required for removal of the moon is small,
and the existing theory" indicates that most of
the kinetic energy of the earth's rotation is
dissipated by tidal friction in the oceans. For
the core alone, the average kinetic energy lost
per unit volume is

pdEk; /dt]p„(8/ V)~d did/dt, —— (38)

where U and 8 are the volume and moment of
inertia of the core. Numerically, V= 1.75.10"m'
and 8=8.4 10"kg. m' obtained from the known
density distribution. '3 Then (38) is equal to
2.7 ~ 10 ' joule/ma per year, an amount large
enough to maintain an average field of 80 gauss
against a mean decay period of 10' years. On
the hypothesis that all the kinetic energy of the
core instead of being dissipated by the tide,
can be converted into magnetic energy, the
figure may be interpreted as an upper limit for
the magnitude of the internal field.

Since the retarding torque of tidal friction
attacks the solid mangle of the earth, the central
parts of the core will have a tendency to rotate
faster than the mantle. In the stationary state
there will be an increase of angular velocity with
depth in the core, and the distribution of angular
velocity will be sich that angular momentum is
carried from the inside out by frictional shear at
a rate prescribed by the slowing down process.

"H. Jeffreys, TheEart'h (The Macmillan Company, Ne~~
York, 1929), second edition, chapter 14."K. E. Bullen, Bull. Am. Seismol. Soc. 32, 19 (1942}.

This condition of inhomogeneous rotation is a
sufficient prerequisite for the functioning of the
amplifier (27). Mathematically speaking, it is
only one of two possible solutions. If the core is
inhomogenous, as seems indicated by seismic
observations, " the density increasing rather
rapidly below a radius of 0.4R, then the central
part of the core can itself be subject to a rather
large tidal deformation owing to the direct
gravitational influence of the moon. If this tide
slows down the central part of the core at a rate
more rapid than that at which the solid mantle
is slowed down by the oceanic tide, the velocity
distribution would be the opposite of the one
just described: the angular velocity would de-
crease with depth in the core and the transport
of angular momentum by frictional shear would
be towards the central part where the main tidal
deceleration would take place. Without entering
into details, it may be remarked that there are
certain qualitative indications in the observed
secular variation to the effect that the fluid core
rotates somewhat slower than the solid body of
the earth. Specifically, the local features of the
magnetic field and the foci of the secular varia-
tion show a mean drift motion from east to west,
well beyond the limits of observational errors. "
Whether this effect can be interpreted along the
lines sketched, could only be decided by an ex-
tensive study of the dynamics of these motions.

Next we can estimate the kinetic energy of the
fluid motion. Let the velocity of a point in the
core be written as ao xr+v, where v=0 if the
core rotates synchronously with the solid mantle.
If the fluid moves, the density of kinetic energy
relative to the state of synchronous rotation is

E~ -= (p/2)(~ »+v)' —(p/2)(~ »)'
(39)

p(r x v) ~ 6i+ (p/2) v'.

Assuming a typical value, v=0.01 cm/sec. as
inferred from the secular variation, "the second
term on the right-hand side is about 10 'joule/m',
exceedingly small compared to the magnetic
energy density. The first term, however, is of the
order of 150 joule/m', and thus is ample. Now
the first term is nothing but the angular momen-

'4 Reference 2, Appendix.
'5 See the maps by E. H. Vestine et al. , Carnegie Inst.

of Washington Publ. 578 {1947).
"Reference 2, p. 209.



turn of the Quid particle about the earth's axis
multiplied by +, hence its integral over the
sphere does not vanish when the motion is a
zonal flow of type T„, as required by (27), and
as provided by the mechanism of tidal decelera-
tion just described.

This source of power for. the maintenance of
the magnetic field would appear to be character-
istic of the earth's core; it cannot readily be
generalized to apply to other celestial bodies. If
it should be undertaken to explain the magnetic
field of the sun by a mechanism of feed-back
amplification, the inhomogeneous rotation must
be produced by thermal effects and the energy
required for amplification must ultimately be of
thermal origin. Clearly, the thermal energy
available in the sun is so vast that no direct
comparison with the conditions in the earth' s
core is possible.

separates the iron from the heavier metals
below. "For the sake of the present calculation,
we shall idealize this by a well-defined boundary.
The matter to both sides of the boundary will be
assumed a good conductor; the differential e.m. f.
then produces electric currents that How froni
the pole to the equator in the upper stratum and
from the equator to the pole in the lower stratum,
or vice versa. Such a current system can be
represented by a linear aggregate of vectors 8„
(n even). We shall consider a single harmonic
component of this field.

Let r=rj be the inner boundary, r=R the
boundary of the core, and let the three regions
be distinguished by the indices (1), (2), and (3),
counting from the inside out. The electric field

is a vector of type 8„, but in the static case it
can as well be represented by

ELECTROMOTIVE FORCES

%'hile the theory of feed-back amplification
indicates how a magnetic field can be increased
from smail beginnings until the magneto-me-
chanical reaction prohibits further growth, it
does not tell us how large the initial field can be.
The theory would no doubt be more satisfactory
if it could be demonstrated, on physical grounds,
that such an initial field is likely to exist, and
that it need not be too minute. We shall now

proceed to show that electromotive forces acting
in the core (for instance thermoelectric forces)
can produce a small internal magnetic field of
the electric quadrupole type.

According to the theory of the earth's figure
the eccentricity of the core's boundary is nearly
the same as that of the earth's surface. " It is
therefore conceivable that a slight temperature
difference exists between the polar and equatorial
regions of this boundary, giving rise to a differ-
ential thermoelectric potential between its pole
and its equator. As the electric conductivity of
the solid mantle is likely to be much smaller
than that of the core, this will not give rise to an
appreciable current density, but merely to an
electrostatic charge at the boundary. Now as-
sume that a similar differential thermoelectric
force exists a,t the internal transition layer or
boundary located just below r=0.4R, which

By means of (I, 10) we can then write for the
magnetic field

8=)(a(n+1) '(E xr) for P=r" F„, (8, q),

B=))&rn-'(E xr) for P=r " 'F (8 y),

thereby fulfiliing the field equation

~ xB=paE.

In region (3) the magnetic field vanishes, since
o-=0.

We now set in the three regions

The boundary conditions at the inner surface
require

P(2) —P('& =const

where p is the impressed electromotive po-
tential. They require, moreover, continuity of 8,
which also provides continuity of the radial
component of the current. At the outer boundary
8 must vanish and the tangential components
of E are continuous. We shall confine ourselves
to writing down the solution for region (2). If
o( and 02 are the conductivities of regions (1)



and (2), we find

(n+1) (r/R)" + (2n+1) (R/r) "+'(o2/oi) ~ yiq "+'
(2)—

(2n+1)(o'/oi)+(n+1)(1 ao—/oi)(ri/R)'"+' &RI

Now assume for simplicity 0 ~ = 0 ~. 1 f r & and r
are not too close to R, we can neglect the first
term in the numerator and the second term in

the denominator, and get
|tr(2) —

(y /y)n+lg

valid in the region just above the inner boundary.
For the magnetic field of the quadrupole mode
we find at r=r~

3= —()io/2) sin6 (f&

If we put p = 1 millivolt, sin8 = —,', wc get a field
of about 3 gauss. Thermoelectric potentials are
of the order of a few microvolts per degree
temperature difference. Taking the acting e.m. f.
to be 10 microvolts, we require an over-all
amplification of about a thousand from the
initial field to the final magnitude of the electric
quadrupole mode.

APPENDIX

The following expressions for the matrix elements
simplify and generalize those of Part I. Let Z(r) designate
a normalized radial eigenfunction. Ke define the following
integrals where the prime denotes diA'erentiation with
respect to r.

Ii =R Z ZpZ~rdr,

G =R'f (rZ )'ZpZ~dr,

H =R'f7 (rZp)'(rZq)'r 'dr

We furthermore define integrals over the sphere

./~ =- V Yp Y~d5,

~ Y„8Fp 8 Y~ iJ Vp d Y~I = ———=-——- d')'
sin8 r'M ()p r3y

We may write this /. , for short, since

I. =Lp=L~.

The last relation may be proved by means of integrations
by parts. If now, as in Part I, the product of the normal-
ization factors of the spherical harmonics is designated by
N we obtain, by (I, 13) and (I, l4)

LS{ ) ~ T(P)XT(y)j=n (n +1)NFL,

I 8( ) 8(P) XT( )j
dna(na+ 1)&np(np+ 1)+nq(n~+ 1)—n~{n~+ 1)jNGpX

+—,'np(np+1) t n„{n +1)+n&(n&+1)—np(np+1)]NG~E,

|:8( ) '8{P)XS( )j
= fn (n +1)H +np(np+1)IZp+n7(n~+1)H& jNL.

As a supplement to the tables in Part II, p. 207, we give:
below all the non-vanishing matrix elements containing
dipole and quadrupole vectors of the type 8 only. To
conform with the previous tables we use complex notation:

LS 8 'x 8 'j= —4 i(2/3)N(H +Hp+H' ),
1 Sl ~ S2'X 82 'g = —4mi(2/5)N(H~+3Hp+3H~),
I 8 ~ S X 8 'g= —4 i(4/5)N(H„+3Hp+3H ),
t 8&' ~ S2 X 82 j=47rz(2/5)N(H~+3Hp+3H&) &

ll + 821 X 82-'j —4xi (2/5)N(H~+3Hp+3&~)


