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Non-Linear Invariants and the Problem of Motion
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The effect of adding quadratic invariants to the integrand of the usual variation principle
in general relativity is considered in the light of a new approximation method. The case in
which the quadratic invariant' is a constant multiple of the square' of the scalar curvature is
treated up to the Newtonian approximation, insofar as the problem of motion is concerned.
The Newtonian equations result for sufficiently large "distances" between particles regardless
of the order of magnitude of the multiplying constant. The requirement that the "force func-
tion" be finite everywhere places restrictions on the number of "particles" p, comprising the
system. When p=1, 2, the requirement is fulfilled. The less stringent requirement that the
"force function" be finite when all "particles" coincide restricts p less severely. If the absolute
values of the masses" are not all equal there is no restriction on p, but if they are all equal
p is restricted to certain integral values.

1. INTRODUCTION

Y means of an ingenious approximation
method initiated by Einstein, Infeld, and

Hoffmann, ' it has been shown that the motion
of matter, represented as point singularities of
the field, is sufficiently determined by the gravi-
tational equations for empty space. The four
differential identities make possible the equa-
tions of motion. The non-linear character of the
field equations is directly responsible for the
interaction terms present in the equations of
motion. It is possible, however, to construct an
infinite number of non-linear field equations
involving the metric tensor, all of which satisfy
four differential identities. The Hamiltonian
derivative' of any invariant involving the g&"

and their partial derivatives satisfies four dif-
ferential tensor identities, and the equations are
non-linear in character. It is a well-known fact
that the field equations for empty space can be
obtained by setting the Hamiltonian derivative
of the scalar curvature, R =gl'"R„„, equal to zero.
The restriction to the invariant R seems to be
dictated by the assumption that the field equa-
tions be second-order partial differential equa-
tions. This has engendered the use of phenom-
enological devices in subsequent generalizations
of the field equations in the presence of matter.

' A. Einstein, L. Infeld, and B.Hoffmann, Ann. of Math.
39, 65 (1938); A. Einstein and L. Infeld, ibid. , 41, 455
(1940). This method is referred to herein as the E.I.H.
method.

' A. S. Eddington, The Mathematica/ Theory of Relativity
(Cambridge University Press, England, 1940), p. 141.
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' C. Lanczos, Ann. of Math. 39, 842 {1938).

It is of some interest to consider the effect of
the addition of other invariant functions of the
metric tensors and their partial derivatives to
the scalar curvature on the equations of motion.
The simplest generalization of the scalar R
seems to be effected by the addition of terms
which lead to partial derivatives of the fourth
order of the metric tensor and quadratic terms
involving the curvature tensor. Lanczos' has
investigated quadratic invariants and has come
to the conclusion that only two independent
ones, namely, R' and R„„R&",exist. In this paper,
the effect of adding the additional term ~~a'R',

where a is a constant, will be studied up to, and
including the Newtonian approximation.

The addition of a linear combination of the
two quadratic invariants nR'+ pR„„RI'" to
may be thought of as representing the con-
tribution of matter. Now the above may be
written as (n —~~p)R'+~p(R' —3R„.R~"). It can
be readily shown that the Hamiltonian derivative
of the second part, when multiplied by g„„to form
a scalar, is identically nil. This, however, is a
property of the electromagnetic stress-energy-
momentum tensor. It seems possible, then, that
the equations of motion deduced from the scalar
R+nR'+PR„„RI"" may include interaction terms
of Lorentz' type. The details and the conclusions
to be drawn from these considerations will be
presented at a later date.
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2. HAMILTONIAN DERIVATIVES OF R'
AND R„pR""

The process of Hamiltonian differentiation is
equivalent to the determination of the coef6cient
of the variation, bg4„, when the invariant under
consideration is regarded as the integrand of a
variation principle. A straightforward application
of the calculus of variations leads to the result

3. THE FIELD EQUATIONS DERIVED FROM
THE INVARIANT —R+ —,'a'R'

If one now considers the quadratic invariant

5= —(R+gaio'R'),

the field equations become, upon applying (1)
and recalling t;hat the Hamiltonian derivative of
—8 is R4"—~I g4"8,

I"'= 2R—R""+'g""R-'+2(g'g'" g"'g—" )R p (1) S»"=R»" 'g"—R-+ 'a'(2-RR»"~g 6+

for the Hamiltonian derivative of the invariant
R'. The symbol ( ); p. .. denotes co-variant dif-
ferentiation. The Hamiltonian derivative of the
invariant R„,R4" turns out to be

J —8 R"—g'R R +gR R

+(R'g""+R""g'—R"'g" —R" g"') '-p (2)

VA'th the aid of the Bianchi identities, it can be
shown that I4"; „and J4"; „are identically zero.

It will now be shown, as a check upon the
derivation of Eq. (1), that I"";,=0.

I"";
p
= —2R4"; „R—2R4"R;),

+g»"RR;,+2g~P(R; p, —R; „p).

—lg""R'—2g'g""R'-p+2g"'g" R -p) (6)

which will be assumed equal to zero. Upon
lowering indices and noting that on the basis of
the assumption 54"=0

g 54"=g t'R p+e 'R=O

Eq. (6) is 'equivalent to

S»p R»p og»pR+ 3s R»p

—u'gR»'/12+- ao'RR„= 0. (8)

(8) and (7) may be written as

5/g, —R»» —
og»g R+ 36 Ri»| —3G Ri~ {»p}

g4P, = g4Pg, u'g», R'/12+—',a'RR», =0, -(9)

g g""(R p
—R p)

=gPg""R R p —~ =R»"R

Consequently,

I"";p = —g4"RR;,—2R4"R; „

+g4"RR; „+2R4"R;„=0.

In a similar fash&on J"";,=—0.
Upon lowering the indices by tensor multi-

plication, (1) and (2) may be written as

I"= 2RR"+ og—"R'+2(g"g' 4~') R'-p—. (3)

J4, = —R"&8 p„„—g„pR ~84 +-',g„„R ~E. p

+g4P+ ~ Gp+g +4vi exp

g.pR".- g-—R' p (4)—

+g R»"' &p+ 2g ~g»&R' »p R' »»

Rlli R ri R10o+ii Rla{ {il } {oo}3

+a'fi PRi p a'Ii PRi, { —p}, (10)

where ( ) i„„... denotes ordinary partial dif-
ferentiation; the h's, the deviation of the metric
tensors from their Gailean values, and the Latin
indices take the spatial values 1, 2, 3, while
Greek indices range from 0 to 3. Upon making
transformations of the type h to y' as in E.I.H.
(reference 1), the field equations are equivalent to

—-';a'L{oo}+{ii}jRi-+ o&'R'

+ oa (C'oo+2&oo)R —oooo'R —os'vooR'

= C oo+2floo =o, (11)
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4'On+ 2Aon+ 32a Rlon oyonR 3—2a Rla {on }

'a—oy-o„R3+ 'a'(-40„+2k p„)R

=C'o +20o =0,

C'an+2~m'n 34n~ 3+ ~me~l/l+ 32~ +1mn

+ 3a bmnR100 37mnR 32a { {mn'}

a e
3 ' lmn {l l }+ 3 flmn {00 }]Rla pa ~mnR

+31ao(4 „+2k„„)—01aoy„„R3

(12)

The equation differs from the ordinary New-
tonian equation by the appearance of an addi-
tional term in the summand of (14). If a )0, it is
seen that for large "distances" between "par-
ticles" (r;0»a) (14) reduces to the ordinary
equations of motion irrespective of the order of
magnitude of a. It is believed that this result is
of importance in that it does not require one to
treat the additional term in the variation prin-
ciple as a perturbation.

= C „„+20„=0, (13)

where 0„„ is accordingly defined. The I 's and
A's are defined in precisely the same manner as
in the E.I.H. paper. If one compares (11), (12),
and (13) with the transformed field equations
treated there, it is readily seen that the new
approximation method is applicable to the
present equations with little change. The equa-
tions involving the A.„„in E.I.H. have simply to
be replaced by the Qn„ implicitly defined in (11),
(12), and (13). The equations to be solved at
each stage of the approximation are similar, with
the exception of the additional inhomogeneous
wave equation (10).

4. EQUATION OF MOTION IN NEWTONIAN
APPROXIMATION

5. ON RENDERING "FORCES" FINITE

The appearance of the arbitrary constants rok,

associated with the kth particle in the equations
of motion, leads one to speculate as to the pos-
sibility of rendering the "forces" finite every-
where in this order of approximation. To carry
out this investigation, it is only necessary to
examine the "potential function" corresponding
to the equation of motion, namely,

U—= g Pm;mo V,p+aoro, rooW;0/12]. (16)

If one defines

51k=Pky k) Pk = + ~ )

and assumes

(a'rop'/12) ) = qopp, lI(„~1;Upon introducing the E.I.H. expansions for
the field quantities and proceeding in a somewhat
similar manner, the equations of motion in the then (1$) becomes
Newtonian approximation turn out to be

( Oio)q (n)

m, {
Eolto) 3

LT= p p,yo(p,poV;0+q, gpW10).
jgk

p;pk+QjQk=0, 2/k
g, k=1, 2, .

, p,

Thus, in order that U be finite everywhere for
y arbitrary IM's

+ P (m,m1 V;0+a-"rp;ro~„.W,1/12), „. (14)
jgk (20)

where p denotes the number of "particles"; the
mo their masses; (&0"', &3"l, $0"') the cartesian
coordinates of the kth particle; the rok arbitrary
constants associated with the kth particle; and

( ), „denotes partial differentiation with respect
to $0'"'. The V;3 and Wp, are given by

It is possible to satisfy these conditions only when
P=2.

The imposition of the requirement that the U
be finite when all "particles" coincide places no
restriction on the number of particles p if the
p, 's are not all equal. In this case, it is only neces-
sary that

V;1=1/r;1, —TV. —= V e—""jk= jk )

(21)
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Q (p;pg+g, qg) =0.

However, if the p's are all equal, (21) de-
generates into

(22)

Other solutions may be generated by inter-
changing n+, n, p+, and p in a suitable fashion.
For these cases ~u~ —u

~

and ~P+ —P
~

yield any
positive integer.

ap m'——+n'+m p „=m. '+6'+n
a m'=+n' m,—p =m'+N' n, —
p = 2(m' jn') m, m =0, 1, 2,

(23)

for p even. If p is odd

ap =m'+n' —n,
0, =m'+n' —2m —n+1,

P = m+e' —m —2n+1, (24)
P = 2(m'+n' m —e)+—1, m, N =0, 1, 2,

Since the p's and g's take on values of +1 only,
it is clear that (22) will not hold for abitrary P.
Simple calculations show that if a+,and o, .

denote the number of positive and negative p's,
respectively, and P~ and P the number of
positive and negative q's, respectively, then in
order that (22) hold,

6. CONCLUSION

The E.I.H. method seems to be applicable to
the field equations derived by the procedure of
adding the invariant 6a'R' to the integrand of the
usual variation principle. It is found that insofar
as the Newtonian approximation is concerned,
for sufficiently large "distances" between "par-
ticles, " a reduction to the ordinary Newtonian
equations ensues regardless of the order of mag-
nitude of a()0). The investigation regarding the
condition for the existence of finite "forces"
between particles may be of physical significance
to the theory of nuclear structure assuming, of
course, that the invariant studied possesses
physical significance. It is hoped that this study
at least increases the conceptual possibilities
insofar as field theories are concerned.


