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The expressions for the hyperfine structure separations and the relative intensities in the
ammonia inversion spectrum are derived with quantum mechanics under the assumption that
the splitting is caused by the interaction of an electric quadrupole moment of the N'4 nucleus
with the electric charge distribution in the rest of the molecule. Furthermore, w'e consider the
displacement of the absorption lines in an electric field Bof variable strength. General formulas
for the positions of energy levels for weak (B&B,) and strong (8)P,) fields (8, 500 volt/cm)
are given and the methods outlined for obtaining solutions of the secular equation for inter-
mediate fields (Z~E.). The intensities and selection rules for longitudinal and transverse
transitions are determined and one particular case (7=%=3) is worked out in detail.

1. INTRODUCTION
" 'T is well known that the NH3 molecule has the
& - form of a pyramid with the three H atoms at
the base of a regular triangle and the N atom at
the top. The fact that there exist two equilibrium
positions of the N-atom on either side of the base,
separated by a potential wi11 give rise to a
doubling of each energy level of the whole system
of rotational and vibrational states. ' The transi-
tions from one of the pair of energy levels to the
other for all the rotational states and the vibra-
tional ground state can be observed directly since
they give rise to a strong absorption in the region
of 24,000 megacycles. '

With improved techniques of radiofrequency
absorption measurements it has recently been
possible to separate and identify the lines which
arise from different rotational states. ' W. E.Good
observed for the first time the existence of a
hyperfine structure with a separation of the four
satellites from the main line of several megacycles
which was interpreted by various authors as due
to the electric quadrupole moment of the N'4

nucleus. 4 In this paper we shall treat the Stark
effect ef the inversion spectrum of the NH3

' D. M. Dennison and G. E. Uhlenbeck, Phys. Rev. 41,
313 (1932); D. M. Dennison and J. P. Hardy, Phys. Rev.
39, 938 (1932); H. Y. Sheng, E. F. Barker, and D, M.
Dennison. , Phys. Rev. 60, 786 (1941).' C. E. Cleeton and N. H. Williams, Phys. Rev. 45, 234
(1934).

'W. E. Good, Phys. Rev. 70, 213 (1946); W. E. Good
and D. K. Coles, ibid. 71, 383 (1947); D. K. Coles and
W. E. Good, ibid. '70, 979 (1946); C. H. Townes, ibid. 665
(1946); B. Bleaney and R. P. Penrose, Nature 157, 339
(1946).

'

B. P. Dailey, R. L. Kyhl, M. W. P. Strandberg, J. H.
Van Vleck, and E. B. Wilson, Jr., Phys. Rev. 70, 984
(1946); W. Gordy and M. Kessler, ibid. 71, 639 (1947).
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molecule. The hyperfine structure causes the
pattern for intermediate values (8, 300—1000
volt/cm) to be quite complicated and a general
solution of the secular equation does not seem to
be feasible although it could in principle be
obtained. It is possible, however, to give generally
valid expressions for all of the energy. levels for
very weak fields (Z((Z,) and very strong fields

(E))Z,). For these cases the intensities for both
the transverse and'longitudinal effects can also be
calculated. For intermediate values of the electric
field (8 Z,) one can obtain good approxima-
tions for each individual level system by nu-

merical or graphical interpolation. .

Although the theory resembles in many re-
spects that of the transition from the weak-field
Zeeman effect to the Paschen-Back effect in

atomic spectra, there is a characteristic difference
for the type of problem considered here. This is
due to the fact that a uniform electric field does
not interact with the spin of the nucleus (at least
not in the approximation considered here). For
this reason the spin is never completely decoupled
from the orbital angular momentum and thus a
splitting of the energy levels with different
orientation of the nuclear spin with respect to the
orbital angular momentum prevails even for
arbitrarily strong fields. This situation holds true
for other kinds of radiofrequency absorption
spectra as well.

One of the applications of these absorption ex-
periments is the measurement of nuclear spins. '

' I: am indebted to Dr. A. Roberts for numerous dis-
cussions on these questions. The electric field is used to
modulate the absorption frequency and thus to increase
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Since all nuclei with spin values equal to, or
greater than, unity seem to have an electric
quadrupole moment, it follows that such spin
values can be measured in the case of a strong
electric field, which simplifies considerably the
interpretation of the results.

2. THE HYPERFINE STRUCTURE OF THE
INVERSION SPECTRUM

The rotational state of the NH3 molecules is
given by the well-known formula for the energy
levels of the symmetric top. ' Each level is
characterized by three quantum numbers J, X,
M, corresponding to the three degrees of freedom
'of a freely rotating rigid body. The inversion
doubling introduces a new quantum number
(s = +1) which is essentially the symmetry char-
acter of the wave function of the molecule under
reflection on the base plane. For the energy of a
rotational state we have therefore an expression
of the form

E&x,=J(J+1)/22+ ', (1/C 1/A-)IC'—
—-', sh(J, X). (1)

Here A and C are the two principal moments of
inertia A(JX) is the term for the inversion
doubling. The frequency of a particular line in
the inversion spectrum is then given by h(J, X).
The quantum number J represents the value of
the total angular momentum and X is the pro-
jection of the angular momentum in the direction
of the figure axis. Owing to the rotational sym-
metry the energy is independent of M, the pro-
jecti'on of J in a fixed direction in space. The
numbers E. and M are restricted by the in-

equalities

—J~&M~&+J, —J~&X~&J.
We consider now the case in which the nitrogen

nucleus has an electric quadrupole moment. Let
i represent the operator of the nuclear spin
vector and J the angular momentum vector of
the rotational motion of the molecule. The vector
F=i+J represents then the total angular mo-

the sensitivity of the absorption measurements. See also
R. M. Hughes and E. B. Wilson, Jr., Phys. Rev. 71, S62
(1'947).

~ C.f. D. M. Dennison, Rev. Mod. Phys. 3, 311 (1931).
~ We use here the units A =c= 1 and cm. The energy is

then expressed in wave numbers cm ' and the dimension
of A and Cis cm.

mentum of the system. The energy for the electric
quadrupole interaction is given by'

X{3(i J)'+-,'(i J) —z(1+1)J(J+1)I. (2)

In this expression Q is the nuclear quadrupole
moment and the quantity q' represents the
expression

g'=(Q (3 cos'6 —I)/r')z, ~g=z, (3)

(4)

where 0 is the angle of the figure axis with the
3-axis. Introducing the normalized wave func-
tion" for the rotational states

UgxM(e, @, p) = 0gxM(8)e'—
27r

0~ gx~ ——C(i+cose) '&~+x&

X(1—cose) l&~ x'.

with the normalization constant given by.

C' = (2J+1)!/2'~(J+Z) '(J—Z) '.

'H. B. G. Casimir, On the Interaction between Atomic
NNclei and Electrons (Taylor's Tweede Genootschap,
Haarlem, 1936).

See the similar calculation given by A. Nordsieck,
Phys. Rev. 58, 310 (1940).

' R. de Kronig and I. I. Rabi, Phys. Rev. 29, 262 (1927).

where the summation is to be extended over all
the charges in the molecule other than the
nucleus under discussion and the expression thus
obtained to be averaged over the rotational state
J, 3IIq ——J. The angle 8 is the angle of the radius
vector with the fixed 3-direction in space. The
expression eg' represents simply the gradient of
the 3-component of the electric field in the 3-
direction. The expression for q' is not a constapt
characteristic of the molecule since its value mill„

in general, still depend on the rotational state of
the molecule. We can separate this latter depend-
ence by introducing the characteristic molecular
constant q which when multiplied with e repre-
sents the gradient of the electric field in the
direction of the figure axis. The relationship be-
tween q and q' is then given by'
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We obtain for the average of —,'(3 cos'8 —1)

(-', (3 cos'8 —1))z, sr'-z=!, O'j (1+cos8)~+x

X(1—cos8)~ e(3 cos'8 —1) sin8d8. (6)

This integral can be reduced to three integrals of
the type

1

it x&(1 —x)&dx= p!q!/(p+g+1)!

by introducing the substitution x=-', (cos8+1),
dx = ——, s»n0d0.

(cos8+1) (cos8 —1)e(3 cos'8 —1) sin8d8

1

=2~+~)I x (1 —x)e(6x' —3x+1)dx
0

(~+2) 'P! (~+ )1!P! ~!3!
=2'~ 6— —3 +

(~+f3+3)! (~+!3+2)! (~+!3+1)!

n!P I

I (~+0)' (~+«—f3+I) }
(~+0+3)!

This gives finally for Eq. (6)

(-', (3 cos'8 —1)).I, rv~=z

-1 . (7)
2J+3 J(J+1)

The eigenvalues of the expression in brackets in

Eq. (2) are known, ' and we have

I3(i J)'+ ', (i -J) i—(i+1)J(J+1)}
43K(X+-1) i—(i+1)J(J+1)

E= F(F+1) i—(i+1) J(J+—1)

and F= J+i, J+i 1—, , ~
J i —~. We finally

obtain for the quadrupole energy

( 3E'
E, (J, K, F) = egQ

I

—1 }
L. J(J+1)

4N(N+ 1) i (i+1)—J(J+1)
X (8)

2(21+3)(2J—1)i(2i—1)

with q defined by Eq. (4). This is identical with
the formula given by Dailey et a/ in reference 4.

The intensities and selection rules are obtained
from the well-known formula" for the matrix
elements of the electric dipole vector P in the
representation scheme (J, i, F, M).

Since we shall use later the dependence of the
intensities on M, we shall give the intensities for
the transition to diferent values of M although
they are of course unobservable as long as we
have degeneracy with respect to M.

(a) Longitudinal transitions, electric field par-
allel to the 3-axis. Selection rules: AF=O, &4,
AM=0. The transition probabilities A are pro-
portional to the squares of the matrix elements
of I'3

AF= 0 (center line)

E' [J(J+1) i(i+1—)+F(F+1)]'
A = 2IP

J'(J+1)' 4F'(F+ 1)'

F~F+1 (satellite)

Q2 (F+1 i+J)(F+1—+i J)(i+J+2—+F)(i+J F)—
[(F+1)' —M2$

J'(J+1)' 4(F+1)'(2F+1)(2F+3)

(b) Transverse transition, electric field perpendicular to 3-axis. Selection rules: hF = 0, &1,hM = &1.
In this case the transition probabilities are proportional to the squares of the matrix elements of P».

1 E', [J(J+1) i(i+1)+—F(F+1)]'A=- (FwM) (FaM+1)-
4 J'(J+1)' 4F'(F+1)'

"Condon and Shortley, . The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1935).
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F—+F+1, M—+M&1

z' (F+1 i—+J)(F+1+i J)(i+J+2+F)(i+J —F)
(F&3f+1)(FwM) (12)

4 J'(J+1)' 4(F+1)'(2F+1)(2F+3)

In addition to the above selection rules we
have for the inversion spectrum of course for all
transitions AJ=O, AK=O.

We shall now specialize these formulas for the
case of the ammonia inversion spectrum. For this
case i = 1. Furthermore we shall sum over all the
initial and final states which have the same
energy in the field-free case. Making use of the
formulas

P M'=-'F(F+1)(2F+1)

we obtain for the total transition probabilities:

Center line:

A J g = LE'(2J+1)/3J'(J+1)'JQ(J)
with

Q(J) = (J+1)'+J'+CJ(J+1)—1j'.
Satellites:

F J—1-+J Aq i g=X'(2J —1)/3J'(J+1)',
F: J-+J+1, Ag, g+i =E'(2J+3)/3J'(J+1)'.

TABLE I. Ratios of the intensities of the hyperhne com-
ponents to the main lines for different values of J.

1
2
3

5
6

7.4X10-2
4.42
2.5
1.56
1.06
0.769

9.3X10 '

2.53
1.58
1.07
0.769

The magnitudes of these quantities for diAerent
values of J and E have no direct relation to the
relative intensities of the diA'erent absorption
lines since they must be multiplied with the
statistical weight factor, (= 1 for X= 1, 2, 4, 5,
and =2 for %=3, 6, 9, ) and the Boltzmann
factor expt' —Z(J, X)/kTj. Since we are pri-
marily interested in the relative intensities within
one and the same hype rfin structure-level

'system we calculate instead the ratios of the
intensities of the satellites to the intensity of the

3. THE STARK EFFECT OF THE INVERSION
SPECTRUM, WEAK FIELD»

We consider now the modification of the
hyperfine structure when the absorbing molecule
is brought into a uniform electric field E. Let the
field direction be the 3-direction of the fixed-space
coordinate system. The total Hamiltonian for the
system is then

JI—IIp+ IIq+ II
where IIp is the energy for the rotational levels

(we disregard the vibrational-level system and
consider only the vibrational ground state) given

by Eq. (1) including the inversion splitting (last
term of Eq. (1)).II, is the quadrupole energy of
Eq. (2) and II' is the interaction energy of the
electric dipole moment with the external electric
field.

II'=(E P) =BFg. (14)

Here P3, as before, is the 3-component of the
electric dipole vector of the molecule. Since the
symmetry character of P is odd under a reflection
of the molecule on its base (the dipole moment
has the direction of the figure axis) the matrix
elements of the form (s ~P

~
s) are zero. We shall

write for P3= p, cos8, mhere p, is the strength of the
electric dipole moment and cos8 is the operator
mith the squares of its matrix elements in the
(J, i, F, M) representation given by (9), (10).

Two methods of solution suggest themselves:
(a) In the case of sufficiently weak field the

splitting due to II' mill be small compared to the

~ I wish to express my appreciation to Professor J. H.
Van Vleck for correspondence and a discussion on the
content of this and the following section.

center line, mhich is given by

&J—1, / +J—i, J'/+ J', 1
= (J+1)'(2J—1)/(2J+1)Q(J)

&J, .1+1=+ J, Z+ I/~ J, J
=J'(2J+3)/(2 J+1)Q(J).

In Table I we summarize these ratios for some
values of J.



AM MON IP INVERSION SPECTRUM

splitting due to H, . In this case one should choose
the representation (J, i, F, M) which makes H,

iagonal and treat H' as a perturbation.

is more important than the quadrupole s litt'e spi &ng

we start with the representation (J,i, MqM~)
for which H' is diagonal and treat II, as a
perturbation.

4

In this section we shall discuss case (a).
The perturbation matrix is then a 6 &(6

~ ccording to the foregoing remark on the matrix

elements of 8P3, H will be, with respect to the
symmetry character s, a matrix of the form

s,e. the only matrix elements different from zero
j. erentare those which connect states with diff

which, for each value of (X, J, M), has the follow-

ing non-vanishing matrix elements (see Eqs. (9)

6,0

5.0

FIG. 1. Energy levels in units
e'gQ for the ammonia inversion
line J=X=3 as a function of
the parameter

~ =~-'&'/L~(J &)&'aQj.
The numbers at the right-hand
edge denote Mg, M;. The num-
bers in the figure give P, DID
for each line.
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M~ M„

is
3 0

[i -ij
I 0

Fro. 2. Coordination of energy
levels in the Stark effect of the
ammonia inversion line J =: X=3
for weak and strong fields. Upper
state (schematic) ~

Weak Field Strong Field

0 0
0 I

and (10)): the application of Van Vleck's transformation"
after which the hamiltonian has the form

Gz 1, J' x= pEKM/J'
Gz g, z=Gg g y=iJE(K/J')
XL(J+M) (J—M)/(J+1) (2J+1)7I

fMi ~& J
G, ,=&EKM(Z(J+ 1) 17/J~(J+—1)~

G.y~i, J =Gg, Jpi =pEK(M/(J+1)')
XL(JISM+1)(J—M+ 1)/J'(2 7+1)7I

IM~ &J+1
G z+ g, z+ y

= pEK M/ (J+1)

The eigenvalue problem leads to a secular equa-
tion of the sixth degree. The fact that the separa-
tion of the unperturbed levels with different
values of s is very much larger than the hyperfine
structure splitting (the ratio is about 105), allows

where

II=Hp+II, +H,

and where 1' is a 3X3 matrix given by

I' F p~ = (1/6(J, K)) g p~ Gyp«Gp ~p'.

Here h(J, K) according to (1) is the energy
difference (taken positive) between upper and
lower state. The secular equation for the eigen-
value problem is now of third degree. The 1 gp

are functions of M as seen from (15).
In the following we shall find it convenient to

introduce e'gQ as unit of energy Further, . we

F Weak f ield M

0

StrOng Field M~ M~

0 0

0 I

[-'
I 0
0 I

(
I -II

FIG. 3. Coordination of energy
levels in the Stark effect of the
ammonia inversion line J=Z=3
for weak and strong helds. Lower
state (schematic).

--I'I lj

(s &j

"See E. Kemble, PrinciPles of Quantum Mechanics (McGraw-Hill Book Company, New York), p. 395.
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TABLE II. The Stark effect of the inversion line X=X=3
for an electric field 8~300 volt/cm in units of e'qQ.

TABLE III. Stark e8ect of inversion. spectrum
for E~300 volt/cm.

Level
F M

3 3
2
1
0

2 2
1
0

Upper state

0.771
0.563
0.390
0.270
0.232

—0.167—0.404—0.526—0.562

0.991
0.666
0.539

Lower state

—0.355—0.101
+0.010

0.150
0.181

—1.127—0.904—0.745—0.687

0.090
0.380
0.479

Initial
F M

4 3
4 2
4 1

3 3
3 2
3 1

4 3
4 2
4 1
4 0

Final
F M'

4 3

4 1

3 3
3 2
3 1

2 2
2 1

3 3
3 2
3 1
3 0

Energy
(arb. units)

1.126
0.664
0.334
0.120

0.960
0.500
0.219

0;926
0.286

1.690
1.294
1.0)5
0.919

Relative
intensity

0.563
0.316
0.141
0.035

0.473
0.210
0.053

0.444
O.i 11

0.0117
0.0201
0.0251
0.0268

introduce the parameter

o = L(~~)'/~(~ K) j1/&'aQ

which is a measure of the relative strength of the
electric field. o. is about equal to unity for a field
Z 300 volt/em=1 e.s.u. If we assume for the
dipole moment the value @=1.45&(10—"e.s.u.
=2.58&(10 ' cm. Ke may treat the upper and
lower states simultaneously by letting 0.&0 for
the upper and 0 (0 for the lower state.

The formula for the perturbation theory gives
then in general an expression for the level dis-
placement due to II, and II'.

o(J, F, 3f)
,F@pal'p~ p.

=o,(J, F)+oI'pp+o' Q&'~«.(~) —o~(J")

—
g o+ ~(&)+~(~) (17)

The general formulas for these eigenvalues are
rather complicated. It is more convenient to
evaluate them for each level separately. It may
be noted however that for some special values of
iV the cubic secular equation degenerates into a
quadratic and a linear term which can be easily
solved. This is the case for M =J+1 and 3I=J
and also for 2II=O.

Thus for the line J=X=3 there will be twelve
levels of which six can be calculated by solving
merely a quadratic equation. For the other six
the formula (17) must be used for o ( 1. The
case J=E=3 is treated explicitly and the results
are plotted in Fig. 1 for o. ranging from 0 to 10.
For the special value o = 1 the energy values are
also given in Table II. Figures 2 and 3 show the

3 2
3 1
3 0

2 2
2 1
2 0

3 3
3 2
3 1
3 0

2 2
2 1
2 0

3 2
3 1
3 0

4 3
4 2
4 1
4 0

0.494
—. 0.906—1.041

1.895
1.411
1.226

—0.066—0.414—0.676—0.743

0.0198
0.0317
0.0357

0.0198
0.0317
0.0357

0.0117
0.0201
0.0251
0.0268

coordination of the levels for weak and strong
field.

The general expressions for the intensities for
longitudinal and transverse absorption spectrum
are given by the formulas (9), (10) and (11), (12).
In Table III the weak-field spectrum is given for
the case of longitudinal transition for the line
J=X=3.

4. THE STARK EFFECT FOR A STRONG FIELD

In the case of strong electric fiel (o)&1) we
diagonalize first the operator II in Eq. (16).The
representation which makes II diagonal is the
(J, i, Mz, M;) representation. For in this system
the matrix G has the simple form

Gw, ~ = ~(K/J(J+1))u S~ ~ ~

and

F~g3r g o(K'/ J'(J——+ 1)') Mg'b~g~g

Since 3f=3fg+3SI;, 3IIg may assume for any
given M the values, Afar

——3f+1, 3E, 3f—1. The
quadrupole interaction in this representation
may best be obtained by using the form of H, in
terms of the operators Jandi given by Casimir. '
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TABLE IV. Longltudlnal spectrulll of the J=E= 3 NHq
inversion. line for strong electric heMs (o&&1).

TAaLE V. Transverse spectrum of the J=X=3 NH~
inversion line for strong electric 6eld (tr5&1).

Transitions Transitions
Initial

3 +1
3 0

2 +1
2 0
2

Final
MJ' M

Relative line
position

Relative
intensity

Inltlal
Mg Ms

Final
Mg' M' Relative line Relative

posltlon intensity

g13tr+ 15/4

g13o —15/8

{+1 —
1) .

1 +1
(+t —

1)

+ The two states {22) are distinguished by a + sign.

H =A. I (JS2 —-' Jp —-' Jg') (ip —-',iP —-', im')

+ s [Js(Jr+i%)+(A+i&)Js]
X [ig(ig —ii2) + (ig —ii2)iaaf
+-', [Js(J) iJ2)—+(J'g iJs)—Js]
X [$3('»l+Z$2) + ($1+112)$3)
+-', (Jg+iJ2)'(ig —ii2)'

+ 8 (A —iA)'(i~+ii2)' (1s)
with

3.=2[3%'—J(J+1)]/J(J+1) (2J—1)(2J+3).

$r—2 5/2
)a+1 5/2

a+13/3 3/2

0 —2/3 3
tr+1/3 6

0 -11/3 3/2

element of the perturbation energy (18) but must
be calculated in the usual way by solving the
secular equation of that submatrix which co'ntains

all the elements connecting the same energy. If
we denote the two states mentioned above for
short with n and P, and an eigenstate of the
eigenvalue problem with

Explicitly written out, the matrix elements are
the following (we use the abbreviation (MgMz')
for A'(H )~~a~').

f=xn+yP,

then the eigenvalue problem 18

(21)

(M+1, M+1) = -,' t 3(M'+ 1)' —J(J'+ 1) }
{M, M) = '2IBM' J(J+1)}

(M 1, M 1)=-',—I3(M——1)'—J(J+1)}

s3'= ~3'

The secular equation for e is

(M+1, M) = (M, M+1)
= —V2-', (2M+ 1)

X [J(J+1)—M(M+1)]»
(M+ l. , M —1) = (M —1, M+ 1)

= —;[J(J+1)—M(M+1) j»
X[J(J+1)—M{M—1)$»

(M, M —1) = (M 1,M)—
=v283[J(J+1) M(M 1)j»(2M —1)J— —

~l WS& ~2 8

Kith this matrix one can apply perturbation
theory in the usual way for any level except the
case 3f=0. In this case, as is easily seen from

(19), the zeroth-order energy levels are degener-
ate for the two states 3IIJ =+I, 3f;, = —1» and
Jig = —I, 3f;=+1.The first-order correction in
the energy is thus not simply the diagonal matrix

FIG. 4. Stark spectrum of the inversion line J=X=3
for a 6eld 8 1000 volt/cm. Upper lines: longitudinal
spectrum; lower lines: transverse spectrum.



The corresponding solutions for x and y are:

(22)

There are four other transitions corresponding to
the states

lgg=+1~ ~j Oy +1 j ~J 1) M'j Oy

The eigenstates which represent the zeroth-order
wave functions are thus the symmetrical and
antisymmetrical combinations of the states
Mg ——+1, 3'; = —1; 3SIg ———1, M;= +1.

The transition probabilities in this case are
given by the square of the matrix elements of P3
and P~ for longitudinal and transverse transitions
respectively. In the coordinate system charac-
terized by the quantum numbers (J, M./) we
have the matrix elements

(M, ~P, ~M,) =KM,/J(J+I), (23)

(M, ~P, ~M, +I)=(K/2J(J+I))
XL(J—M~)(J+M~+1)]&. (24)

Together with the selection rules 635;=0 these
matrix elements determine the strength and
character of each transition uniquely. In the
longitudinal case we have for each

~
M~~ )2 six

functions corresponding to the six states
M= ~3IIg+1, ~M g, ~3fg —1.

The total. intensity of these transitions is thus
given by

A=[KM~/J(J+1)j -' lor ~3II~'~)2

For
~

3II~
~

=1 we have the two states P+, P
determined by (21), (22). It is readily seen that
only the matrix elements (+~P3~ —) and
(—~P3~+) are diferent from zero and are given
by

(+ IPSI —) =(—IPSI+) = L&!J(J+1)7.

The total transition probability for these is then

A = L2K/J(J+ I)]'.
The transitions for the longitudinal spectrum to-
gether with their intensities are given in Table IV.

The transverse spectrum is somewhat more
complicated. The transitions and their relative
intensities are calculated with the matrix ele-
ments (11), (12), and (24) and are tabulated in

Table V. In Fig. 4 the longitudinal and transverse
spectrum is plotted for a strong field (Z 1000
volt/cm). For the transverse case only half of the
transitions (those with M~ = —1) are given. The
others are symmetrically situated with respect to
the origin (i.e. the undisplaced position of the
line).

It is peen from Tables IV and V and also in

Fig. 4 that for arbitrarily strong 6elds there
always remains a hyperfine structure with a
constant separation. The pattern is particularly
simple for the longitudinal case in which only
the last component (Mz ——1) has a hyperfine
structure in the form of two satellites on either
side of the outer line with one-fourth the in-

tensity of the center line. The transverse spec-
trum is more complicated and may be not so
suitable for an investigation of nuclear spins
since it may be difFicult to separate all the
hyper6ne components.


