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Note on Angular Distributions in Nuclear Reactions*
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A proof is given of the physically plausible theorem that in a nuclear reaction produced with
an unpolarized beam of given orbital angular momentum incident on an unpolarized target, the
angular distribution of the outgoing intensity cannot be more complicated than that of the
incoming intensity.

HE purpose of this note is to give a simple
proof, based on symmetry arguments, of a

conjecture made by Critchfield and Teller' con-
cerning the angular distribution of the outgoing
particles in. a nuclear reaction, This conjecture,
which is at the outset very plausible, may be
stated as follows: In a, nuclear reaction produced
with an unpolarised beam of given orbital angular
momentum incident on an unpolarized target, the

angular distribution of the outgoing intensity cannot
be more complicated than that of the incoming
intensity. The statement appears plausible since
the spins of the incident particle and target
nucleus are unpolarized so the only angular
eRects which can occur are those produced by
the incident wave. However, it seems worth while
to give g rigorous proof because, in complicated
cases, it is not a trivial matter to see how the
angular dependence of the incoming wave fixes
that of the outgoing intensity. '

The statement is obviously correct if the
reaction is produced by an incident S-wave
since then there is no fixed direction in space to
which the angular distribution of outgoing par-
ticles could refer. It is also obvious if only two
particles are produced in the reaction and if
both initial and both. final particles have zero
spin. Then the incoming and outgoing relative
orbital angular momenta must be equal.

When the particles have spin, compound states
can be formed with J, the total angular mo-
mentum, larger than I, the orbital angular
momentum of the incident wave. These states,

in general, give rise to outgoing orbital angular
momenta, /, larger than L,. The content of our
theorem is that, although l &I., the highest
spherical harmonic required to describe the
angular dependence of the outgoing intensity is
of order 2L, rather than 2l as might be expected.
The proof follows.

First a remark on notation. f; will be used
to represent a function which transforms under
rotations like a wave function with angular
momentum, j, and magnetic quantum number m.
The function is' otherwise unspecified. Because
of the appearance of sums over uncorrelated
spins in the expressions to follow, a special
notation for such a sum, P, is introduced. The
implication is that

The wave function of the incident particle
will, in general, contain terms corresponding to
many orbital angular momenta. If the energy
of the incoming particle is not too high, only the
terms of low angular momentum will contribute
to the reaction. Ke consider, in particular, the
case for which the only term contributing appre-
ciably corresponds to an orbital angular mo-
mentum, I.. This I. may be greater than zero as
a consequence of a selection rule.

For an arbitrary coordinate system the spatial
dependence of the incoming wave is given by
some linear combination of the pc, let us say,

Z a-4c".

The spin dependence of the incident wave is

given by
~ This work has been carried out under the auspices of

the Atomic Energy Commission. It was completed and
submitted for declassification on June 9, 1947.

'C. L. Cri'tchfield and E. Teller, Phys. Rev. 60, 10
(1941).

An implicit proof is contained in the literature, R. D.
Myers, Phys. Rev. 54, 361 (1938), but the direct proof
given here appears to be somewhat simpler.

6

S~N, ~l O'N QI

where the wave function f~ " is that of the
target nucleus with total angular momentum, N,
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and the wave function Pr"' is that of the incident
particle with spin I. The angular momenta N
and Imay be combined to form a total spin angu-
lar momentum, S, where S=N+I, . lX—Il.
Then, as shown by Breit and Darling, ' the
function (2) may be replaced by

Ss,msgs &.

Combining this with (1), the incident wave
function is found to have the form

p;=P a„Ss,ms Pl,"Ps"'. (3)

The products f&Ps appearing in Eq. (3) may be
expressed in terms of the wave functions
associated with the total angular momenta J.
Thus,

P, =Pg Ss,ms g„a„
&&(L, m, S, msl J, m+m )p "+" s(4)

where (L, m, S, msl J', m+ms) are the usual
transformation coefficients.

That term in Eq. (4) with a given total angu-
lar momentum, J, will interact' only with those
states of the compound nucleus with the same J.
Thus each such term will contribute to the
nuclear reaction to a different extent. The out-
going wave is then similar in form (insofar as
transformation properties are concerned) to the
incoming wave, Eq. (4), except for a change in
the relative amplitudes of the terms with differ-
ent J values. These relative amplitudes will be
indicated by p J. The intensity Io of the outgoing
wave is proportional to the absolute square of
the outgoing wave function or

Io Ps, msl+J p~
——P a

x (L, m, S, ms
l I, m+ms) g q"+"'

l

'. (5)

This expression contains terms of the type
Q'z"+"')*p~"'~s or, since (p~")*=+&~ ", of
the type pz & +»pz ~~'+ s~. These products
transform under rotations like a linear combina-
tion of f,' where j may have any value from
j = lI—I'l to I+I' and p=m' —m. However,
nz and m' both range from —I to +L so p ranges
from —2L, to +2L. Since we are using an arbi-
trarily oriented coordinate system, the coordi-

' G. Breit and B.T. Darling, Phys. Rev. Vl, 402 (1947).

nate system can be chosen in such a way that
each possible value of p occurs for a given value
of j. In particular, the value p=j will appear
for every j. Since p, is never greater than 2I., it
follows that j cannot be greater than 2I..

If there are only two products of the reaction
and they both have zero spin, the last statement
constitutes a proof of the theorem, since then the
orbital angular momentum, l, of the products is
equal to J, and their angular distribution is
determined by the P,+. If one of the two particles
has a spin, s, then the PJ~, with M =m+ m s,
must be analyzed into products f~~'P, ~ ~', and
the spatial dependence of the outgoing intensity
is determined by terms of the form P~~'P&

These products transform like a linear combina-
tion of P;.&' and we wish to show that the
largest value of j' which can occur is j'=2L.
To demonstrate this, we note that the product
PP'f~ ~" in the outgoing intensity is multiplied
by a spin factor P,~ ~'P,—&~ ~"&. The latter
product may also be analyzed into a linear com-
bination of P;.&". Then the over-all transforma-
tion properties of the outgoing intensity are
given by a combination of terms of the form

and these may be analyzed into a
series of p, ~ with j =j'+j", lg' —y" l. This
final series is identical with our analysis in the
preceding paragraph which was made without
reference to the distribution of angular mo-
mentum between spin and orbit. Therefore,
j&2I.. But j=j, '+j,„"always occurs in the
series4 where j,„' is the largest value of j', so we
must have j „'+j,„"&2I.or finally j „&2I
as was to be proved. It is to be noted thatj, "&2L also but it does not appear to be
possible to attach a simple physical significance
to this result.

The proof for any number of product particles
with arbitrary spins follows in similar manner.
In general, one comes to a result of the form

j--'+j--"+j-"'+ . . &2L

so that j,„'&2L.

' jm, x'+jmag, occur only once so there can be no can-
cellation of this term as there may be for the lower values«i '+i".


