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Relativistically invariant equations of motion for the electromagnetic field are set up in
quantized space-time. These equations are solved by a process similar to a Fourier analysis.

N a previous paper! it was shown that a
Lorentz invariant space-time is not neces-
sarily a continuum, and an example was given of
a discrete Lorentz invariant space-time. This
paper is a report on work done to determine
whether relativistically invariant field equations
could be introduced into quantized space-time,
and whether such field equations are solvable. In
continuous space-time the field quantities are
taken to be functions of the space and time co-
ordinates, and the field equations are partial
differential equations. In quantized space-time,
coordinates do not commute, thus one has diffi-
culty in giving a general definition of functions of
non-commuting variables. Also, since the space-
time is discrete, partial derivatives are not de-
finable in the ordinary sense. Now, in the transi-
tion from continuous space-time to quantized
space-time, the space-time coordinates which
were real variables become Hermitian operators;
therefore, it is reasonable to suppose that field
quantities which were functions of the space-time
coordinates will become operators on the Hilbert
space on which the coordinate operators operate.
I assume that this is the case.

The next thing which must be done is to find
replacements for partial derivatives. We note
that the displacement operators® p., py, Pz P
defined in [I] have the same transformation
properties as do 9/, 8/d,, /9., and 8/d., and
that their commutators with x, v, 2, and ¢ ap-
proximate, with the exception of numerical fac-
tors, those of the partial differential operators
with the x, y, 2, and ¢ of ordinary space. Conse-

! Hartland S. Snyder, Phys. Rev. 71, 38 (1947). This
paper will be referred to as [I] throughout the remainder
of this paper.

2 We will use the general forms for pz, py, Pz, pt, which are

By e (’15)
pe=RIf(T), o, = e (™
as given in [I], reference 3.
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quently, 1 assume that if A(x, y, 3, ¢) is a field
quantity of continuous space-time and if a term
of the form 34 /dx appears in the field equations,
this term will be replaced by #[p., 4] in the
transition to quantized space-time. It is evident
that if 4 is a Hermitian operator, then [ p,, 4]
will also be Hermitian, so that this replacement
of partial derivatives preserves reality conditions.
If we make the replacements suggested above
into the usual form of the vacuum Maxwell’s
equations, we obtain?® a relativistically invariant
set of equations,

ilp-, - E]=4mp, ey
i[pX, XH]—i[p,, E]=4xS, ()
ilp-, -H]=0, )
ilpX, XE]+i[p, H]=0, 4)

in which the symbols E, H, p, and S have their
usual meanings and transformation properties.
We are using a system of units such that =1
unit of action, ¢=1 unit of velocity, and the
vacuum has a unit dielectric constant.

Now, from the first two of Maxwell’s equa-
tions, (1), (2), one can show that

1:[{)5, P:|+i[P': -S]=0, ()

which is our analog of the differential equation
for the conservation of charge.

By taking the scalar product of Eq. (2) by E
on both right and left, the scalar product of Eq.
(4) by H on both right and left, and performing
other algebraic manipulations, one obtains

3ilpo E+H ] +3ilp-, - (EXH-HXE)]
+27(S-E+E-8)=0. (6)

This result is our analog of the usual differential

3In these equations [p-, ‘E]=p-E—E-p, [pX, XH]
=pXH-+H Xp, and the dot and cross products have their
usual meanings. The use of the double dot and double cross
notation inside the commutators helps to avoid confusion.
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power equation for the electromagnetic field.
Equation (6) is'independent of the commutation
properties of E, H, p, and S.

As in the case of the ordinary Maxwell equa-
tions, one can introduce scalar and vector poten-
tials in such a manner that Egs. (3) and (4)
become identities. We introduce the operators V,
and A and set

H=4[pX, XAl (®)

It is readily seen that if the values of E and H
given by (7) and (8) are substituted into (3) and
(4), then (3) and (4) are satisfied identically. If
we set V="V"—i[p;, \], A=A’+4[p, \], in which
\ is a scalar operator, we find that E and H are
expressible in terms of ¥’ and A’ in exactly the
same form as Eq. (7) and (8), with ¥’ and A’
replacing V and A. This result gives the gauge
invariance of Egs. (1), (2), (3), and (4). As we
can now see, all the derived relationships between
the field quantities (such as (5)—(8)) which do
not depend upon the commutation properties of
the fields, could have been obtained from the
relations derived from Maxwell’s equation by
replacing the operators d/dx, 8/dy, ---, 3/d, by
the commutators 5[ p,, 1, --+,4[ps, . Thus,
we find that the replacement of partial differen-
tial operators by these commutator brackets is a
consistent procedure, as well as a relativistically
invariant one.

A major question is whether such commutator
equations as the above can be given meaning,
and whether operators satisfying them can be
found. The quantities, E, H, S, V, A, and p, are
supposed to be operators on the Hilbert space on
which x, v, 2z, and ¢ operate. If we denote a vector
of the Hilbert space by the symbol, x, then the
scalar (inner) product of the two such vectors,
x and x/, is

dpdp;
s %) = f DX @ X2, O

if we use a wave number-frequency space (p, p:)
representation for the vectors of the Hilbert
space. The function D(p;, p) is a calculable rela-
tivistically invariant function of its arguments
which depends on f(54/7) and which makes x, y, 2,
and ¢ Hermitian operators. D~(p,, p)dpdp; is es-

sentially the volume element of the hyper surface
n?=constant. The asterisk on a function means
the complex conjugate. The meaning of all terms
such as orthogonal, Hermitian, unitary, etc., is
cetermined by the usual definitions, with (9)
giving the meaning to the scalar product of the
vectors of Hilbert space.

For the purpose of finding operators satisfying
Egs. (1), (2), (3), and (4), consider an operator,
Ay, with the property that

Aux(p, £) = [ duf(p, pu, )x(p 1, pi=) (10)

for every vector x(p, p¢) of Hilbert space, with
f(p, pu, k, w) an arbitrary given function of its
arguments which is independent of the function
x(p, p¢). It is not difficult to verify that the
operator, Ay, satisfies the commutation relation,

[p, Ax]=kA.. (1)

Conversely, one can show that the general solu-
tion of (11) is an operator whose properties are
given by Eq. (10). We note here that if two
operators have the property given by (11),
[p, Ax]=kAdy, [p, Bw]=k'By then the prod-
uct AxByw has the same property, [p, AxBw ]
= (k+k')AxBy. Also, operators satisfying (11)
necessarily possess complex adjoint operators. If
Ay is an operator with a complex adjoint operator
Ay, then

(Ax, x) =, Ax).

Now,

At (D, p) = f daf (@, po K, W)X @k, pita),

and

Akx(pr Pt) =fdwf(p) V2 ky w)X(P—“ky Pt-w)r

then Eq. (9) requires that

D(pv P‘)f+(p—kv Pt'—wyk, “7)
=D(p_kr Pt_w)f*(pv pu K, w).

This last equation is solvable for f*(p, p, k, w)
with the consequence that every operator satis-
fying (11) has an adjoint.

We will now suppose that all of the field oper-
ators entering the field equations can be written
as linear combinations of operators which satisfy
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Eq. (11). For example, we assume that

o= f dkps,

[p’ pk] = kpk-

This assumption is the equivalent of the assump-
tion usually made for field theories in continuous
space-time, that the field can be Fourier analyzed.
We will call the process exemplified by Eq. (12)
a wave number analysis.

If we choose the gauge of the electromagnetic
potentials, 7 and A, so that

[p'v 'A]=O,

and if we make a wave number analysis of A,
then it can be written

f12)

where

(13)

3
A = dk Z c)\kA Ak,

A=1

(14)

in which we take the ey to be three mutually
perpendicular unit vectors with es in the direc-
tion of the vector k. When we apply condition
(13) to A, we obtain

[p-, 'A]=fdkkA3k=O. (15)
This implies that As=0, whereas Aix and A

are, insofar as this condition is concerned, arbi-
trary operators satisfying :

[D, A)\k] =kA g,

This result corresponds to the usual result that
the Fourier coefficients of the vector potential
are perpendicular to the wave number vector if
the divergence of the vector potential vanishes.

If the vector potential A satisfies (13), then by
eliminating the electric field from (1) by the use
of (7), we obtain the analog of Poisson’s equation

(p-, -[p, V]]=4mp. (16)

If we make a wave number analysis of V and p,
we find for the components, Vi and pg, the
relation

=1, 2.

(17)

Equation (17) is identical in form with that given
for the connection between the Fourier com-
ponents of the potential and the Fourier com-

B2V =4mpr.
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ponents of the charge density. The solution of
(17) gives us the following solution of (16):

. dk
V=47rf ;a;pk'f‘ Vo, (18)

in which V, is an operator which satisfies the
condition [p, Vo]=0. The general form of V, is

Vo= f Vi,

VOwX(p» Pl) =g(p7 Pu w)X(pr Pl_w)-

The presence of the term V, in the solution of
the ‘“Poisson’’ equation corresponds to the fact
that in continuous space-time an arbitrary func-
tion of the time can be added to the scalar poten-
tial. This term V,in ¥V can be removed by a gauge
transformation which does not affect the vector
potential.
We now write

(19)

where

A= | dk Y ex(axtax®), (20)
x

=1,2

E=1]dk Z exk(axk—m\k*’) ~—'L[p, V:]y

A=1,2

(21)

in which equations eyt is the complex adjoint to
ang, and in which V is given by (18). The ayy'are
taken to satisfy [p, aax |=kane with the conse-
quence that [p, axst]= —kayet. These particular
forms for A and E guarantee that E, A, and H are
Hermitian operators if p is Hermitian. The value
of the magnetic field may then be computed by
(8) using the above properties of an, and ant
and is

H=13fdk kX exk(ank—ani™). (22)

If we make a wave number analysis of S, and if
we substitute the values of E and H given by (21)
and (22) into Eq. (2), we find that

dk Y ek (anxtonh)

=12

k[P, ark— okt ]—4rS} =0.  (23)

That part, the longitudinal part, of the current
arising from Ss is canceled out of the right-hand
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side of Eq. (2) by that part of —i[p,, E], on the
left-hand side of (2), which comes from the term
—1[p, V] in E because of the charge conservation
Eq. (5). If we choose ejx= —e1_x, esx =23k, Eq.
(23) is satisfied by

k2a)\k+k[pt, a)\k] = ZTS)‘k (24)
klont — k[ p1, ant ] =27(— Sk (25)

Equations (24) and (25) are complex adjoint
equations of each other and require that Syt
= (—)*Sx—x, which is just the condition for the
current operator S to be Hermitian.

When S$=0, then Eq. (24) states that the
operators axx have the property

lekX(PyPt)=h(Pv Pu k)X(p_ky Pt+k), (26)

with &(p, p:, k) an arbitrary function of its argu-
ments. This result is essentially the same as if an
electromagnetic wave had a wave number vector
k; its frequency is k for empty space.

If we make a frequency analysis of anx and Sy,

axk=fdwam, Sxk=fdw5ka, (27)

in which [, aake ] =wonks and [p4, Shkw]=0S\ke,
we obtain from (24) and (27)

k(k+w)arke = 2mSrkw- (28)
When we use (27) and (20), the solution of (28)
gives the following for the vector potential:

A=27r]dk Y ex

A=1,2

dw—
k(k+w)

f Sako+ Sk’

+ | dk Z Sxk(axko‘i‘a)\kw).

A=1,2

(29)

In (29) the integral over w is taken in the sense
of its principal value for the neighborhood of
w= —k. The operator ax® is as follows:

a)\kOX(pv Pt) =h(p! b k)X(p—k: Pt'*"k)

for arbitrary vectors x(p, p¢) of the Hilbert space,
and A&(p, p:, k) is an arbitrary function of its
arguments.

As a summary of what we have obtained, it
may be said that in quantized space-time, rela-
tivistically invariant field equations may be

written. In these equations the field quantities
are treated as operators, and partial differential
operators 9/dx, 9/dy, d/9z, and 9/3¢ of continu-
ous space-time are replaced by the commutators
[Pz, 1, -+, 4P, . It has been shown that
this replacement process is a consistent one.
Operators satisfying the commutator field equa-
tions have been found. These operators are ex-
pressed in terms of wave number-frequency com-
ponents of the operators, a process which is quite
analogous to the usual Fourier analysis of fields.
When the solutions of the Maxwell equations are
expressed in terms of the wave number-frequency
analysis, the solutions are of exactly the same
form as those obtained by the Fourier analysis in
the case of continuous space-time. In fact, the
general procedure which we have used here ap-
plies equally as well to continuous space-time as
it does to quantized space-time. However, in the
continuous space-time case additional limitations
are placed on the field operators. The wave
number-frequency components Ag, of an oper-
ator, A, are restricted for this case so that

Aka(pv Pt) =f(k9 w)X(p "iks PV—“’),

as compared with the more general form we have
used,

Aka(P: Pt) =f(pr ph kv “’)X(p_kv pt—w)'

The above restriction guarantees for the con-
tinuous space-time case that the operator 4 may
be written as a function of x, v, 2, and ¢. I am not
certain what restriction should be used in the
quantized space-time case, although it is prob-
ably connected with the normalizing function
D(p¢, p). The essential differences between con-
tinuous and quantized space-time lie in the

“change of definition of the scalar products of the

vectors of the Hilbert space, and in the value
regions of wave number-frequency four-vectors.

Although we have dealt in this paper only with
the vacuum Maxwell equations with given charge
and current distributions, the same procedure can
be applied to the Klein-Gordon equation, the
Dirac equation, the Proca equation, and others.
At the present time work is being done to deter-
mine appropriate limitations on the field opera-
tors, and to determine whether field operators
can be quantized.



