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In the synchro-cyclotron (or frequency-modulated cyclo-
tron) the higher energies available are obtained at the ex-
pense of a decrease in the ion current compared with that
available from the conventional cyclotron. This decrease
results from the fact that during only a small fraction of the
frequency-modulation cycle is it possible for ions to be
captured into phase stable orbits that do not return to the
center during the first phase oscillation. By solving the
phase equation, it is possible to obtain a general expression.
f'or this fraction, which is defined as the capture eSciency.
At a constant dee voltage and varying rate of frequency
modulation, the capture eKciency has a maximum at an
equilibrium phase angle of 30' (corresponding to an energy

gain per turn equal to half the maximum available). For
larger equilibrium phase angles the efFiciency decreases as
a result of the smaller range of phase stability, while for
smaller phase angles it decreases as a result of return of
particles to the center. The maximum efficiency is pro-
portional to the square root of the dee voltage or alter-
natively to the square root of the rate of frequency modula-

tion, and depends on. the charge and mass of the ions only
through the ratio of charge to mass. Comparisons of the
theoretical expectations with available experimental data
show satisfactory agreement. Capture eKciencies for pres-
ent designs of synchro-cyclotrons are of the order of 0.1
to 2 percent.

l. INTRODUCTION

' 'N the conventional cyclotron, ' the maximum
~ ~ attainable energy is limited by the fact that
the ions ultimately fall out of step with the ap-
plied electric field as a result of the decrease of
angular velocity as the speed of light is ap-
proached. "V. Veksler' and E. M. McMillan'
have independently proposed a new accelerator
utilizing a cyclotron-like combination of electric
and magnetic fields in such a way that a theo-
retically infinite number of accelerations may be
accomplished. The theory of this accelerator has
been studied in some detail by Dennison and

Berlin, by Saxon and Schwinger, ' by Rabino-
vich, ' and by the present authors' in a paper
hereafter referred to as A. In all of these. papers,
the basic principles of the new accelerator are
discussed, and the equations of orbital motion
are solved, primarily with' reference to applica-
tions to the acceleration of electrons in a machine
which has come to be known as the synchrotron.

In the synchro-cyclotron (or frequency-modu-
lated cyclotron) the same basic idea is applied
to the acceleration of ions. One important new

problem arises in this connection, however, which
has not been treated in the previous papers.
This new problem results from the' manner in
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which the ions are started. In the synchrotron
the electrons are started at a large radius either
by direct injection from an electron gun or by a
preliminary operation of the device as a betatron.
In the present design of the synchro-cyclotron it
appears to be more practical to start the ions
from rest at the center of the magnet as in the
conventional cyclotron. However, in contrast to
the conventional cyclotron, there is only a
limited range of times in which ions starting in

this way can enter into stable orbits which never
return to the origin. This means, of course, that
ions are accelerated intermittantly so that for a
given dee voltage and gas pressure the average
output is correspondingly reduced below that of
a conventional cyclotron. We may define the
capture egciency, e, as just the ratio of the time
available during a frequency modulation cycle
for starting particles into stable orbits which do
not return to the center to the total time for
repetition of the frequency modulation cycle.
The calculation of e is the principa1 object of
this paper.

2. QUALITATIVE DISCUSSION OF FACTORS DE-
TERMINING CAPTURE EFFICIENCY

In the synchro-cyclotron the decrease of fre-

quency of ionic rotation accompanying the in-

crease in energy of the ion is compensated by a
corresponding decrease of frequency of the ap-
plied dee voltage with time. This decrease is
achieved by a periodic modulation of the applied
frequency by some means such as the use of a
rotating condenser in the oscillator circuit. One
may readily observe that there is always on=

way for a particle to be started into an indefi-

nitely accelerating orbit under these circum-
stances. It is only necessary that the ion start
at the instant when the applied- frequency is
equal to the ionic rotation frequency at the
center of the machine and that the phase of the
voltage'at the time that it crosses the accelerating
gap be such that the resulting energy gain per
turn causes a decrease of the ionic rotation fre-

quency which exactly matches the decrease of the
applied frequency with time. Such a particle will

gain energy steadily, never getting out of phase
with the applied voltage.

However, just because the applied frequency is
changing with time very few ion s can start

during the instant of time when their rotation
frequency matches the applied frequency. Fur-
thermor-, the ions will not, in general, start with
the ideal phase described above, which will

hereafter be referred to as the equilibrium phase.
The fundamental principle which makes the
synchro-cyclotron feasible under these circum-
stances is the fact that ions. in orbits whose fre-

quency and phase do not differ too widely from
that of the equilibrium orbit will execute stable
oscillations of phase and frequency about the
equilibrium values and so undergo an indefinite
acceleration. This property of phase stability of
the orbits has been discussed. in the papers re-
ferred to above in considerable detail,

For any given starting phase of an ion there
will, nevertheless, be a maximum discrepancy
between ionic rotation frequency and applied
frequency at the time of starting consistent with

phase stable oscillations. Thus ions starting too
late or too early will be subject to limitations on
the maximum attainable energy similar to those

applying in the ordinary cyclotron and will

consequently be lost. Hence the property of
phase stability is achieved at the expense of a
reduction in the length of time available for start-
ing particles into indefinitely accelerating orbits,
so that the higher energies attainable with the
synchro-cyclotron as compared with the con-
ventional cyclotron are accompanied by a de-
crease in the output current.

Thus far, what has been said applies equally to
the synchrotron and synchro-cyclotron. The
additional complications in the synchro-cyclo-
tron arise from the fact that ions start from rest
at the center of the machine and consequently
may return to the center during the course of a
phase oscillation. The qualitative factors de-

termining whether or not the ion returns to the
origin can be seen quite easily with the aid of
our picture of the motion as an oscillation of the
actual orbit about an expanding equilibrium
circle. If the expansion of the equilibrium circle
is greater than the maximum inward swing of the
radius of an ion in a phase stable orbit during
the time when its phase becomes negative, the
ion will not return to the center; otherwise it
will. If it does not return to the center on the
first phase oscillation, it will not do so on any
subsequent oscillation because of the continual
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expansion of the equilibrium radius. Hence,
whether or not the ion is caught and indefinitely
accelerated is determined entirely during the
first phase oscillation. Normally the first phase
oscillation will not carry the ion far from the
origin so that the capture process is determined
only by the character of the oscillations near the
origin.

We shall show that the phase at which an ion
starts is not subject to external control and that
therefore the catching efficiency is determined,
for either fixed applied dee voltage or fixed rate of
frequency modulation, by the equilibrium phase.
If the equilibrium phase is too great, then the
catching efficiency is limited by the narrow range
of phase stability. On the other hand, if the
equilibrium phase is too small, the capture
efficiency is limited by the fact that ions return
to the center of the machine. There exists there-
fore an intermediate value of the equilibrium
phase for which the capture efficiency is a
maximum.

—KhE/E. = Ace/cv„

where E, is the total energy of the ion including
its rest energy, co is the frequency of rotation,

K = 1+nc'/v'(1 n)—
with c the velocity of light, v the velocity of the
iori and

n = rBH/HBr. — (2)

The subscript s denotes those values of the
quantities that correspond to exact resonance
with the applied frequency. H(r) is the vertical
component of the magnetic field in the median
plane at a radius r. Now, since the change in
frequency per turn is (2~/co. )d&o, /dt, the required
energy gain per turn is

AE/F. , = —(2rr/K(u, ')d~,/dt,

3. THE EQUILIBRIUM ORBIT

The first quantity that we shall need to know
is the energy gain per turn required to keep an
ion in the equilibrium orbit. In this orbit the
fractional change of energy, AE/E, correspond-
ing to a given fractional change of rotation fre-
quency, Ace/a&, is given by (A—15) as

and is also equal to eVsinp„where p, is the
equilibrium phase and V is the maximum pos-
sible energy gain per turn. (See A for exact
definitions. ) Hence the equilibrium phase is

given by

e V sin q, /E, = —(2'/K(ag) dko, /dt.

Thus eV sing, is the average energy gain per
turn of an ion in a phase stable orbit, and
p=sinq, represents the ratio of the average to
the maximum possible energy gain per turn for
such an ion.

Because the catching process is determined
only by the motion near the origin, it is possible
to express X with the aid of a power series for
the magnetic field H, retaining terms only to the
second order in r. With H satisfying Laplace's
equation, there can be no linear term in the ex-
pansion so we may write

H =Ho(1 —ttr'/2),

where IIO is the field at the center. From this we
obtain n~kr', and since n is small near the center.

we have

K = 1 +nc&/s 2 = 1 +kc2/&0 &

SinCe V, =res, .
This constancy of X occurs strictly only for

parabolic fields, and in most cyclotrons devia-
tions from the parabolic field occur even for
moderately small values of the radius so that K
has a higher order dependence on the radius.
During the first phase oscillation, however, as
has already been pointed out, these deviations
are not generally important so that X may be
regarded as constant during the catching process.
In Appendix II, the phase equation is derived
for the case that K is not constant, and limita-
tions on the deviation of H from parabolic form
for validity of our results are discussed.

4. PHASE OSCILLATIONS

The oscillatory motions resulting from devia-
tions of an ion from the equilibrium orbit are
discussed in detail in A; we shall merely quote
here the results which are needed in the solution
of the catching problem.

The equation of motion of the phase is given
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by Eq. (A—17) as

dt Z, de) eV eV—)+—sin@=—sine, .
dt ko).2X dt & 27r 2x

Kith the neglect of damping, a first order equa-
tion may be derived from the above by integra-
tion a,nd is given by Eq. (A—i8). However, the
constant of integration there has been expressed
in terms of q„, the maximum value of the phase
during the phase oscillation. For our purpose it
is more convenient to express it in terms of po,
the initial value of the phase q, and j0, the initial
value of p=drp/dt: We also approximate B, by
Mc' and approximate X by (5), thus obtaining

e'= eo'+ (~.'+hc')
x3IIc'

XL«»e —costa+(q —
v o)»nv. j. (6)

It should be noted that according to the defini-

tion of the pha, se given in (A-7), rp is just the
difference between the frequency of rotation and
the applied frequency,

librium. The result may be written

p eV y
~(~. +hem)

(s M'c')

X)costa+cosy. —(s —e, —e0) sineo] (8)

e T/'

((o,'+hc') Pg(e 0, e.).
mac'

6. DETERMINATION OF CATCHING
EFFICIENCY

Kith the results given above we are ready to
calculate the catching efficiency with the neglect
of return of ions to the center. According to the
definition given. in the introduction this is de-
termined by the range of times in which ions can
start in orbits which are phase stable and which
do not return to the origin. Since the rate of de-
crease of applied frequency is practically con-
stant over the first phase oscillation, this range
of times is determined by the corresponding range
of applied frequencies through the equation

at = a(o,/ ~
d(v. /dt ~,

5. RANGE OF PHASE STABILITY;
PENDULUM MODEL

(7) where her, is the range of co —cv, with which an
ion can start into an indefinitely accelerating
orbit. If 7. is the period of repetition of the cycle
of frequency modulation, the efficiency is given by

We shall be interested here primarily in the
behavior of the large phase oscillations since
these are the ones which may lead to loss of par-
ticles. In A it is shown that the equation of mo-

tion of the phase is exactly the same as that of a
pendulum acted upon by a restoring torque due
to gravity and also by a constant torque of such
magnitude that the position of stable equilibrium
of the pendulum is at q = y, instead of at p=o.
Such a pendulum will execute stable oscillations
about y=q, unless it reaches the point of un-

stable equilibrium @ =+—q„ in which case it
will go into accelerated circular motion. For any
given starting phase ego there will then be a
maximum starting angular velocity, jo which

will just bring the pendulum to the position

q =m —y, . For larger values of jo the motion is
unstable. The maximum jo corresponding to
phase stability can be obtained quantitatively
from Eq. (6) by setting j =0 and e =s —

&p.. This
gives just the condition that p rc-,.."h its maxi-

mum amplitude at the point of unstable equi-

The quantity r~d&u, /dt~ is independent of the
rate of rotation of the condenser which modu-
lates the frequency; hence for a given machine
it is constant and the efficiency is proportional
only to her, .

The range of phase stability has already been
calculated. According to Eq. (8) the maximum
initial discrepancy between rotation and applied
frequency consistent with stable motion is

a(eo),„. Consequently, since Aa&, is the total
range of co —co, during which capture in phase sta-
ble orbits is possible,

+&s = 2(e'o)max

eV
=2 — (co,'+hc') Fg(yg, p.) . (10)

m 3''
This formula depends upon the starting phase

po. In Appendix I, a discussion of the way in

which ions start in the cyclotron is given and it
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FK'. 1. Starting conditions for capture into stable orbits.
Points lying between the two branches of curve I cor-
respond to ions captured into phase stable orbits. Points
lying within curve II correspond to ions which are never
decelerated. Points lying below curve III correspond to
ions which do not return to the origin, while points lying
above curve III return to the origin during the first phase
osci11ation. The vertical arrows designate the range of fre-
quencies for several values of p for which ions are captured
into phase orbits and do not return to the origin. The
ordinate should be

ql ~ (ra,'+ bc~)

is shown that the starting phase is very close to
90'. Thus we shall replace q 0 by 90' in all subse-
quent work.

In Fig. i, curve 1, is plotted the maximum
deviation of co, from ~ consistent with phase
stability as a function of p =sing, assuming
go =90 . It can there be seen that the range of
starting frequencies corresponding to phase sta-
bility is zero for q, =90', the reason being, of
course, that with y, close to 90', the motion is
always near the limit of phase stability. As p,
decreases, the range of admissable starting fre-
quencies increases reaching its maximum at
q, =0'. It is also noteworthy that the range of
frequencies. leading to stable phase oscillations is
proportional to [V(cog+c'h)]&, which shows that
the range may be increased either by increasing
the dee voltage or by increasing the curvature
of the magnetic field at the origin.

Equation (10) could be used to calculate the
efficiency if one could neglect the fact that for
small q, some of the ions will return to the origin
and thus be lost.

'7. RETURN OF IONS TO THE ORIGIN

The question of whether or not a particle re-
turns to the origin can be studied qualitatively
with the aid of the pendulum model for the mo-
tion. In our case the pendulum starts at a phase
of 90'. If the equilibrium phase is also close to
90', a stable oscillation must remain within
positive phases even in the most negative part
of its swing so that the particle will never be
decelerated. Hence there will be no possibility
of loss of ions by return to the origin for large
values of y, . On the other hand the efficiency will
be low for large p, because of the small range of
phase stability, and it will certainly be advan-
tageous to reduce p, until loss of ions by return
to the origin begins to outweigh the gain in
range of phase stability.

As q, is reduced the maximum downward
swing of the pendulum corresponding to phase
stability comes closer and closer to y=0; and
for small enough q„negative phases will be
reached in which ions su8'er deceleration. The
value of q, for which the pendulum just reaches
q =0 can be calculated by finding the condition
that y =0 at y =0. If these values are substituted
into Eq. (6) we obtain, for &po

——n-/2

eU
((u, '+bc') ('-s sing, —1) . (11)

mac'

In Fig. 1, curve II, +P7r sing, —1j&=
A LFIE(p,) j&

is plotted against p=siny, . Curve II crosses
curve I at about p =0.7(qr, =45') indicating
that below this value of p, some phase stable
orbits involve deceleration of the ions. The fact
that curve II crosses the p-axis at p =0.63
(p, =39') means that for smaller values of y„all
phase stable orbits involve some deceleration.

As y, decreases still further, the maximum
amplitude of the negative swing increases and
particles suR'er correspondingly more decelera-
tion. There will finally be reached a critical
value of q, for which some particles within the
range of phase stability begin to be decelerated
all the way back to the origin so that they are
lost. Calculations which will be discussed later
indicate that this critical y, is about 30 . Below
this value (for constant dee voltage) more and
more particles are lost by deceleration to the
origin, so many in fact that the gain in range of
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phase stability is more than compensated by the
increase in number of ions lost by return to the
origin. Hence the maximum efficiency at con-
stant dee voltage is at y, =29'(p—0.5). The
range which can be caught below this point is
bounded by curve III of Pig. 1. It may be noted
that it goes to zero rapidly as p approaches zero.

It is helpful to obtain a more detailed quali-
tative understanding of the factors determining
the shape of curve III. As has already been
stated, a particle will miss the origin only if the
maximum inward swing of the radius occurring
when the phase goes negative is less than the
amount by which the equilibrium radius has
expanded while the swing is taking place. The
rate of expansion of the equilibrium radius is
proportional to d~, /dt which, according to Eq.
(3) is proportional to sing, . The total expansion
of the equilibrium radius during the time in-
terval t~ in which the swing takes place will

therefore be proportional to the product tj sing, .
Both t~ and the maximum amplitude of the

inward swing will depend on the starting phase
and on the starting value of q =~—~,. We are
interested mainly in the character of the motion
for small p, since we have already seen that for
large y, the particle is not even decelerated so
that the question of return to the origin does
not arise. From the pendulum model it can be
seen that when y, is small a stable oscillation
starting out at go=90' must reach a maximum
negative phase somewhere between a little less
than —90' and a little less than —180'. Hence

I,O'

0.4

0.5

0.2

the amount of deceleration experienced by the
particle and the maximum inward swing of the
radius will depend strongly neither on y, nor on
po as long as p, is small. For qualitative purposes
the amplitude of the swing may be regarded as
constant. Hence the question of whether or not
the particle misses the origin depends on whether
the expansion of the equilibrium radius is greater
than this constant. It is therefore adequate to
consider only the manner in which the product
t~ sing, depends on the variables involved.

Now tj is determined principally by the initial
value of j. If, for example, a particle starts with
negative jo, it will reach the negative phases
more rapidly than if j is initially positive, and
it will therefore begin to be decelerated sooner.
The more negative the initial value of j, the
greater is the deceleration and the greater is the
likelihood of striking the origin. Conversely, the
most favorable catching conditions occur with
the largest possible positive initial j consistent
with phase stability. For such particles will come
close to the point of unstable equilibrium at
p=m —p:, where they will spend a long time
thus allowing the equilibrium radius to expand a
great deal before their phase swings negative.

As y, is reduced, it is necessary that t& increase
if the product teasing, is to remain large enough
to result in an expansion of the equilibrium orbit
which exceeds the maximum inward swing re-
sulting from the phase oscillation. As has already
been stated, at y, =30' some particles begin to
be decelerated back to the origin; these will be
the particles with the most negative yo con-
sistent with phase stability. At p, =13'(p = 0.225)
calculations show that particles with F0=0 will

reach the origin and below this value only par-
ticles with positive jo can be caught. As p, ap-
proaches zero the range that misses the origin is
progressively narrowed to an ever smaller range
of positive jo near the limit of phase stability.
This explains the approach of curve I I I to zero
as q„approaches zero.

0.I
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FIG. 2. The function L(p) determining the capture eK-
ciency as a function of equilibrium angle for constant dee
voltage.

8. RESULTS FOR EFFICIENCY

The actual value of the efficiency taking ac-
count of return of ions to the center is calculated
in Appendix C. The results will merely be quoted
here:
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(a) Constant Dee Voltage

If one wishes to compare efficiencies at con-
stant dee voltage when p=sinq, is varied by
varying the rate of frequency modulation (p is
proportional to rate of rotation of the condenser),
the efficiency is most conveniently expressed in

the following form:

0.9

0.8
1. tP)

P II@

[eV(a&0'+bc')/7rMc']&L(p). (I2)
~
rd(o. /dt

~

The function L(p) is plotted in Fig. 2.

(b) Constant Rate of Frequency Modulation

For the case where the rate of frequency modu-
lation is held fixed and q, is varied by varying
the dee voltage, we write U, = U sing, so that
U, is the actual voltage gain per turn and is
determined by the rate of frequency modulation
through Eq, (3). It is thus a constant for con-
stant rate of frequency modulation and from (12)
it follows that

e =- -t s V(a& o' +h c') /m Mc' jl
(

rdcu, /dt[,
&&L(~)/~' (&3)

In Fig. 3, L(p)/pi is plotted against p. It should
be noted that the maximum efficiency now occurs
at p in the neighborhood of 0.34. It must be
remembered when considering this formula that
the operation of the ion source is affected by the
dee voltage so that the output current will de-
pend upon the dee voltage both through the
variation of the capture efficiency and through
the ion source efficiency.

It should be noted that the maximum eAiciency
available with a particular rotating condenser is
proportional to the square root of the dee voltage
or alternatively to the square root of the rate of
frequency modulation. If for a particular ma-
chine, one is limited as to the voltage that can
be applied to the dees, then the maximum effi-

ciency is obtained by adjusting the rate of rota-
tion of the condenser so that the equilibrium
phase is about 30'. lt may be remembered that
according to Eq. (3), the actual average energy
gain per turn, eUsinq„ is determined solely by
dry. /dt and does not depend on the dee voltage.
Hence the statement that q, =30' means that

0 0,1 0.2 OB 0.4 05 0.6 Q7 QS Q9 1.0

P = sing

Frc. 3. The function L(p)/p& determining the capture
efficiency as a function of equilibrium angle for constant
rate of frequency modulation.

the average energy gain per turn is half the maxi-
mum available with the given dee voltage. On
the other hand, if for a particular machine, one
is limited as to the maximum rate of rotation for
the condenser, then the maximum efficiency is
obtained by adjusting the dee voltage so that the
equilibrium phase is about 20', or that the ratio
of the average to the maximum available energy
gain per turn is 0.34.

(c) Efficiency with Diferent Ious

In comparing the efficiency of the same ma-
chine for operation with different ions, we may
consider two cases; operation with the same ro-
tating condenser and oscillator circuit for both
ions and operation with different rotating con-
densers for the two ions. In the first case
~rdcu, /dt~ is the same for both ions, and since
the applied frequency must be the same, the
field H must be adjusted so that rao eII/Mc is-—
the same for both. Hence with the same dee
voltage and equilibrium phase in the two cases,
we see that the efficiency is proportional to
(e/M)l. Thus

en(e/M) &

Hence the efficiency depends only on the ratio
e/M for the two ions. The efficiency should
therefore be the same for alpha-particles and
deuterons but higher by a factor of V2 for protons
than for these ions.

In the second case where different condensers
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are used, it is probably fair to assume that the
condensers will be built so as to give a change of
frequency with angle of rotation proportional to
the total shift in frequency required in the ac-
celeration. Now the fractional change in fre-

quency during the acceleration is equal to the
fractional change in energy during the accelera-
tion. If the ions are accelerated to the same
radius, then the latter quantity is given for non-

relativistic energies by H'e'r'/2M'c', where r is

the radius attained. Since the frequency is pro-
portional to eH/Mc, it follows that

~
rda&, /dt

~

will

be proportional to H'e'r'/2M'cs, and the effi-

ciency to

(M/e) "'[(eH/Mc)'+ Itc' j&, (l3)

for the same dee voltage and equilibrium phase
angle. Again the efficiency depends only on

e/M, but in this case is proportional to (M/e)"',
if the decrease in magnetic field with radius- is

primarily responsible for the decrease in angular
velocity, and to (3f/e)& if the increase of mass
with velocity is primarily responsible for the de-

crease in angular velocity with radius. The
efficiency for Q.-particles and deuterons is again
the same, but is lower in this case for protons.
It should be noted in this comparison that the
actual output current will depend not only on
the catching efficiency but on other factors

(source efficiency, loss of iona by scattering and
striking the dees, deflector efficiency, etc. ) as
well, which will in general be different for dif-
ferent ions, even. in the same machine.

9. COMPARISON WITH EXPEMMENT

In this concluding section we shall attempt to
compare our results with the small amount of
experimental data on the California 37-inch
synchro-cyclotron and the California 184-inch
synchro-cyclotron.

(a) California 37-inch Synchro-Cyclotron

This machine was intended as a model for the
$84-inch synchro-cyclotron. In order to simulate
the large relativistic increase of ion mass occur-
ing in the larger machine, the magnetic field was

designed to decrease approximately parabolically

by a factor of about 15 percent between the
center of the magnet and the radius of the final

orbit. In this machine the magnetic field is very
accurately parabolic near the origin and from
field measurements there was obtained the value
A=0.000138 cm '.

While no systematic study was made of the
absolute value of the catching efficiency, on a
typical run a value of about 2 percent was ob-
tained. The conditions on this run were V=23
kev, ( d&0, /dt)—/a&0 =1380 sec ', r=0.00053 sec
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and fp=cop/2n =11 Mc/sec. At the best phase
of 30', the theoretical value for these conditions
is 1.8 percent which is in satisfactory agreement
with the rough experimental value.

The relative efficiency was measured system-
atically as a function of p at constant voltage. "
The results are plotted in Fig. 4; the ordinates
are the efficiencies and the abcissae are p = sing, .
Because the absolute values of the efficiencies
were not known, the theoretical curve was ad-
justed to agree at y, =30'(p=0.5). The agree-
ment between theory and experiment is quite
satisfactory from p=0 to p=0.85. In particular
the appearance of the maximum at p=0.5 is a
direct confirmation of the basic assumption of
the theory that losses by return of ions to the
origin limit the efficiency at small equilibrium
phase angles.

It should be noted that the measured efficiency
does not approach zero as p approaches unity
but instead actually has non-zero values when

p is greater than unity. This seems to indicate
that particles are being indefinitely accelerated
even though they do not gain enough energy per
turn to allow the rate of decrease of rotation fre-
quency to keep up with the rate of decrease of
applied frequency. By pulsing the ion source and
examining the output current from the cyclotron
with an oscilloscope, it was determined that some
of the ions which left the source during one fre-
quency modulation cycle did not strike the probe
until two or three frequency modulation cycles
later. It thus appears that some ions which can-
not gain enough energy per turn to remain in
synchronism with the applied frequency are
accelerated out to some radius. When they there
fall out of step with the applied frequency they
successively lose and gain energy but on the
average remain at about this radius until at the
appropriate instant during a succeeding fre-
quency modulation cycle they may again be
picked up and further accelerated to a"'high
energy.

(h) California 184-inch Synchro-Cyclotron"

In this machine the magnetic field is parabolic
only near the center. From a radius of about 8

' J. R. Richardson, K. R. MacKenzie, E.J.Lofgren, and
B. T. Wright, Phys. Rev. 69, 669L (1946).

"The measurements on the j.84-inch cyciotron were
made by a group under the direction of Duane Sewell.

inches the field then drops off linearly almost to
the edge of the pole faces. The radius reached
during the first phase oscillation is about 9 inches
as calculated for typical operating conditions so
that the theory developed here is approximately
valid (see Appendix II). The acceptance time
for ions was measured under typical operating
conditions by applying pulses of voltage to the
ion source and measuring the current by means
of.a probe as a function of the time at which the
voltage pulse was applied. From the speed of
rotation of the condenser it was thus possible to
obtain an experimental value for the capture
efficiency.

In order to obtain the theoretical capture
eSciency, one would in general have to know the
dee voltage. No accurate measurements of this
quantity are available at present. To obtain the
maximum efficiency at a fixed dee voltage, how-
ever, it suffices to know the rate of frequency
modulation only. Hence in the measurement the
rate of rotation of the condensor was adjusted to
give maximum yield. Under typical operating
conditions for the acceleration of deuterons
(HO=14, 760 gauss, &=1.57X10 ', coo=7X10'
radians/sec; dao, /dt =8.8 X10' radians/sec',
=0.0114 sec) the vs.lue 0.33 percent was ob-
tained for the theoretical efficiency. The meas-
ured acceptance time was 35 microseconds which
combined with v=0.0114 sec, yields an experi-
mental value for the efficiency of 0.31 percent
in satisfactory agreement with the predicted
value.

Because of the change in the field from para-
bolic to linear dependence on radius at about 8
inches, it will be seen from Eq. (2) that Z will be
a decreasing function of the radius beyond this
radius. As a consequence, if the dee voltage and
frequency modulation- rate do not change during
the acceleration period, it follows from Eq. (3)
that the equilibrium phase will increase with
radius. This will result in a loss of captured
particles, since as the equilibrium phase increases,
the range of phase stability decreases; hence ions
which were initially in phase stable orbits near
the limit of stability will pass into unstable orbits
and be lost. This effect can be 'very serious if the
equilibrium phase should increase to a value
close to 90' since there the region of phase
stability is very narrow. Actually, in this ma-
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chine, the dee voltage is known to rise somewhat

(about 15 percent) during the acceleration pe-
riod. This tends to prevent the equilibrium phase
from rising quite so far. From plots of the mag-

netic field, the variation of dee voltage with

frequency, and the (slight) variation of frequency
modulation rate with frequency, it was possible

to calculate the required energy gain per turn as
a function of radius under typical operating
conditions. The result is shown in Fig. 5. It will

be noted that the rise in required energy gain

per turn is not too serious. Its decrease again at
large radii is due to the fact that at these radii

the magnetic field again falls off more rapidly
than linearly with the distance. The rise in

equilibrium phase could, of course, be prevented

by continuing the parabolic field dependence to
the edge of the pole pieces. The resultant gain

in output current, however, would then be ob-

tained at a loss in the maximum energy to which

ions could be accelerated, since the initial rate
of parabolic decrease is determined by, vertical
focussing considerations and cannot be appre-
ciably lessened without the sacrifice of particles
due to their striking the dees.
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APPENDIX I. MOTION DURING FIRST FEW TURNS

During the first few turns several of the

approximations leading to the phase equation

(A—17) are not valid. In the first place the mo-

tion is not close enough to circular that it can be

described as a circle with small deviations.

Secondly, the energy gain per turn is not. equal

to eU sing, as this requires that the diameter of

the orbit be greater than the spatial extent of the

accelerating held.

M*- = —(eHp/c) j. (17)

Here Bo is the electric field at the center, which

may also be regarded as essentially uniform in

this region, and n represents a d.c. bias which

may be applied to the dees to improve operation
of the oscillator. The quantity 0. is seldom larger
than —,'.

The initial conditions are x =i =y =j= 0 at
f = $0. The solution may be written in the form

eEp
cx —cz cosG)0(t to)

~02

cosQlqtp cosklp(t to)
0)0+Catt

2eZp
+

M((op' —a), ')

(COO CO,)
Xcos co,t+ (t to), (18)

2

Since co, is always close to coo, it is clear that the
last term on the right will become large; that is,
it is the "resonant" term. After only four turns,
for example it is about 25 times larger than the
remaining terms. This means that the main part
of the motion corresponds to an.expanding spiral
with an almost constant fractional increase of
radius per turn. As soon as the radius reaches an

appreciable size the relative increase becomes
small and the motion becomes nearly circular.
The remaining terms contribute only small

perturbations causing the motion to differ

Just after the particle starts, the motion con-

sists of an expanding spiral within the region of
the accelerating electric field. By the time the
orbit becomes appreciably larger than the ac-
celerating region, however, the above approxi-
mations will apply. It is therefore necessary to
integrate the equations of motion without these
approximations only over the first few turns.
During this time co„co, and II change so little
that they may be set equal to their initial values.
The equations of motion then take the form

Mj = (eIIO/c)~ eZO(—since, t+0.), (16)
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can then be solved only by numerical integra-
tion. Fortunately, the magnetic field is nearly
parabolic near the origin in most cyclotrons
although it does deviate fram parabolic form at
larger radii. In order to decide whether these
deviations will affect the catching process it is
necessary to estimate the range of radii covered
during the first phase oscillation. This will be
done after the derivation of the phase equation.
An approximation will also be given for treating
the case in which the first phase oscillation car-
ries the particle into non-parabolic regions of the
magnetic field.

We begin with the well known relation be-
tween ionic rotation frequency and energy

0
0

I I I I I I I
IO 20 50 40 50 80 TO 80 90

(u = ecH(r) /E. (20)

RADIUS (INCHKS)

FIG. 5. Variation of energy gain per turn as a function of
radius for 184-inch synchro-cyclotron.

slightly from circularity, but in a way which
cancels out over a turn. When (~o —~.)(t—to)/2
is small, as it will be during the first few turns,

y is proportional to cosa', t. This means that the
ion will cross y =0 when co,t = (m+2')~ or when the
accelerating force is a maximum. Therefore the
phase as defined in A is v/2 and the effect of the
accelerating force is always to start ions in a phase
close to that at which they gain energy at the
maximum rate.

APPENDIX II. PHASE EQUATION AT SMALL RADII

In A the phase equation was derived with the
aid of the approximation that the fractional
change of energy, momentum, and radius oc-
curring during a phase oscillation is small. Be-
cause the particle starts at zero radius and from
rest in the synchro-cyclotron, this approxima-
tion will break down at the start just when the
catching process is taking place. In this section
we shall derive the phase equation without this
approximation and show that for a parabolic
variation of magnetic field with radius, the exact
phase equation is the same as the approximate
equation obtained in A. If the magnetic field de-
viates from a parabolic form the phase equation
becomes much more complex and, as we shall
see, no longer possesses an elementary first in-
tegral analagous to (5). The catching problem

r = v/co =c[1—(Mcm/E)']&/co,

so that
(22)

(Mc'/E)'
dr/rdt = da /~dt+ — (dE/Edt).

1—(M'c'/E) '

Equation (21) then yields

(d(o/&ddt) (1+—rrtH/HBr)

(3lc'/E)
= (dE/Edt) 1 —(rBH/HBr)

1 —(3Ec'/E) '

Writing (cVc'/E)'=1 —(v/c)-'and using (20), we
obtain

2x der

Z Eco' dt
(23)

where K is defined in Eq. (5). To obtain the
phase equation we express co with the aid of Eq.
(7) and write DE=eV sing:

2x d'y XeV
+

cv2 dI'~ E
2m des,

siny = ———.
co2 dt

(24)

If the magnetic field is parabolic so that X is
constant, the phase equation may (with the aid
of a little algebra) be shown to be exactly the
same as Eq. (A—17).

From this we calculate the energy gain per turn
which is AE = 27r(dE/dt)/cu. Differentiation of
(20) yields

d&u/codt = dE/Edt+ (8H—/HBr)dr/dt. (21)

To eliminate dr/dt, we write
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If Z is not a constant, it may, in general, be
expressed as a power series in r with the aid of
the expression for H as a function of r. This
yields an expression of the form, X=Ep+Kyr
+Kpr'/2+. . . ; similar expansions can then be
obtained for E and co. These latter, however, will

normally vary so slowly with r near the origin
that the neglect of this variation over the first
phase oscillation is permissable. However, if K
varies appreciably over this distance, it will be
necessary to eliminate r in terms of co = co,+ay/dt,
with the aid of Eqs. (20) and (22). This will

introduce terms involving (co,+dy/dt)siny into
the phase equation and then a first integral of
this equation can no longer be obtained. If X
does not change too much during the first phase
oscillation, a rough value of the efficiency may
be obtained simply by averaging X over the
range of radii covered during the first phase
oscillation. Since the eAiciency does not depend
critically on K, such a procedure will probably
be adequate for a rough estimate even if K
changes by as much as a factor of 2 or 3 during
the first phase oscillation.

In order to know whether X varies much

during the first phase oscillation and to correct
for such variation by averaging It, it is necessary
to estimate the range of radii covered during the
first phase oscillation. To obtain this estimate,
we first assume that II varies parabolically and
see what radius the particle would reach with
such a variation. In the first phase oscillation
the non-relativistic approximation for the energy
can be used;

E,= Sic'+435m' = 3fc'+-'3')'r'
~Mc'(1+ cop'r'/2c'), (25)

where cop is the angular rotation frequency at
the center. With the expansion (4) for H, we

get, up to second order in r, with co=co,+dy/dt

tion and hence a rough estimate may be obtained
by setting co, =constant = cop.

We eliminate dt in (26) by differentiating (25)
and setting (2s /co)dE/dt = Mco p'rdr/dt = e V sin y.
VA obtain

eU d cosy (' ~p'i r'
-=] a+ c') 22m3Aop' dr

Integration over r with the boundary condition,
yp ——pr/2, yields

2prMcop' ( cop') r4
cosy=

i
Ic+

eV ( CP)8

The maximum value of r occurs where cosy=1,
whence it is

4eU 0

rmax.

APPENDIX IIL CALCULATION OF EFFICIENCY

(27)
orMcop'(i't+ cop'/c')

As explained in Section 2, our objective is to
solve for the range of Ace, corresponding to phase
stable motion which never returns to the origin.
The range of her, corresponding to phase sta-
bility is already given in Eq. (10). Let us refer
to tEis range as

(hco, /2co, ) c = (yo) ~.

Now it has been pointed out that there will be a
critical value of jp for which the ion barely re-
turns to the origin. Let us call this value (yo)p.
It is convenient to express (yp)p in terms of

(yp) c through a dimensionless parameter )c de-
fined as follows

(yo)p=&(yo) c

=7cDeU/7rMc')(cop'+Ice')Fc(yp y,) j~, (28)

dy / coo'q r'—=.. 1+~ I+
dt E c' ) 2

(26)

Now the range of radii covered will depend on
the initial value of dcp/dt; as a typical case we

shall take (dy/dt) p 0, or cop=co, .——Furthermore,
for small y„ in which we are most interested,
co, will not change much during a phase oscilla-

where it will be noted that X may take on values
ranging from —1 to +1.For ) = —1, the range
of (yo) for phase stability and that for particles
failing. to return to the origin just coincide.
This will occur at the intersection of curves I
and III in Fig. 1. As X~+1, only particles with
positive (yp) near the limit of phase stability will

miss the origin.
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—,(~o'+bc') ~(qo, q.)

frdoo, idti or3Ec'

~(qo, oo.) =o(1—&)[+i(qo, q,)]'. (30)

Since (yo) o is the initial value of o'o correspond-
ing to a particle just returning to the origin, we
may obtain a formula for j at all times for such
a particle by replacing qo in Eq. (6) by (o'oo)o, a,s
given in Eq. (28). We obtain, taking qo=or/2:

(q)'= (ooo'+bc') [cosq+IN' cosoo,
mac'

+ I q
—(V+1)or/2+X'qo. I sinoo, g (31)

= (s V/oretc') (coo'+bc')P(q g, oo., X).

The efficiency can then be written from Eq.
(28) as

(1—X) eV
(coo'+bc ') F.,(qo, oo,)

%e wish to obtain the time tj required for a
particle to reach its minimum radius in the first
phase oscillation. This may be obtained from
Eq. (32) by noting that the minimum radius is
reached when y returns to zero from the nega-
tive side. Ke thus set y =0 as the upper limit and
keep in mind the range o'f values of y actually
covered ln the integration. Th.e limiting particle
will have r =0 at t to=—ty. From Eq. (7) we see
that at r=0, dqo/dt=ooo oo,—=qo —(t to)d—oo,/dt=
(po —h]dN /dt. Expressing j o with the aid of (28)
we obtain for the value of dqp/dh at r=r;:

des, orildc' ' (o doo

dh sV(oo '+bc') ~ P

From Eq. (31) we can obtain another value of
dq/dt at r=r;, by setting q =0. We must
choose the positive square root of doo/dt. because
p will be increasing from negat;ive values when

Integration of this equation yields

(t —to) = [oretc'je V(ooo'+bc') j~

(doo.) s V
(ooo'+bc')P(0, oo„II)

&dt ) r=r;, or%'co

Setting the two expressions for (dq/dt)r r

equal, and using Eq. (3) we obtain

where the path of integration must include all
values of q covered by the particle in its motion.
If qoo is negative (X negative), q will decrease
directly to a minimum value, then increase, etc.
If qoo is positive P, positive), q will erst increase
to a maximum, then decrease to a minimum,
again increase, etc.

which implicitly defines X as a function of q, .
The quantity X was obtained from this equation
by numerical solution.


