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On the Lorentz Transformation of Charge and Current Densities
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The components of pv/c and ip must transform as components of a four-vector, so that if
measured in one coordinate system they are known in all coordinate systems. On the other hand,
any operational definition of p(r, t) must take account of the positions of all particles at the same
time t, that of the s-th particle being r, (t). Upon performing the Lorentz transformation these
will be r,'(t, '), and the transformed time 5,' will be different for each particle. Another observer,
in measuring p', would use r,'(t'), t' being the same for all particles. As particles are in motion
r,'(5,') Px,'(t'), and there appears to be no necessary relation between p(r, t) and p'(r', t'), opera-
tionally defined in each coordinate system. It turns out, however, that if in each coordinate
system the charge density is defined by p(I, I) Z„e.B(r—r, (t)), then relativistic equations of
rxansformation hold.

1. INTRODUCTION

' 'N classical electrodynamics one introduces the
~ - charge density and the three-dimensional
current density vector j =u/c, where u is the local
velocity of the charges, both p and j being func-
tions of position vector r and time t. It is then
shown that the general theory requires that the
four quantities

s =(j„j„,j„ip), u=1, 2, 3, 4

must form a four-dimensional vector, i.e., that
the four components of s must transform as the
four quantities

as satisfactory definitions of the current and
charge densities, respectively.

2. THEORY

Ke shall use the vector form of the I orentz
transformation equations:

r'=r+(P —1)v
—'(v r)v —Ptv,

t' =p(t vr/c')—
where p- (1—s'/c') &, v being the velocity of the
primed coordinate system relative to the un-

primed. We must therefore show thd, t if

(2) 1 (x t) =2 (s /c)u*(t)b(x x (t)) (&)
and

p'(r', t') =Q. e,b(r' —r, '(t'))
x =(x, y, r, ict),

respectively.
The question now arises as to ho~v one must

define p and j in order that s may indeed
transform in this way. ' The problem may be
stated more precisely as follows: How can each
observer write down p and j for his own coordi-
nate system, in such a way that they would then
be connected by the Lorentz transformation with
the corresponding quantities for other observers&

I intend to show that, if a charge distribution
consists of a system of point charges e, (s= 1, 2,

n; n =nu. mber of charges present), located at
points r, (t), and having velocities u„(t) =dr, (t) /dt,
t:hen we may take

are the current and charge densities defined in

the primed coordinate system, then. , in an
analogous manner to Eqs. (5) and (6)„

j'(r', t') =1(r, t) + (P —1)v-'v. j(r, t)v

pv P (x t) /c (9)
and

p(r', t') =pEP(r, t) —v j(r, t)/c J. (10)

iVIore explicitly, we have to show that the
equations

j'(r', t'}=Z, (e,/c) I u, (t)

+(P—1)s-'v u.(t)v —Pv I b(x —r, (t)) (11)
j j(r, t) g, (e./c)u. (t) b(r —r.(t))

Rgd
(3)

(4) i I r
p x, t =,e,p 1 —vu, t c' br —x. t), (12)

p= p(r, t) =g. s.b(x-r. (t))
( ) 2 { ()/ I ( ()

The difficulty involved in formulating this definition
was called to rny attention by professor Carl Ecirart. obtained by substitution into Eqs. (9) and (10)
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of 'tile values of 1 aild p fl'oni Eqs. (3) aild (4),
reduce to Eqs. (7) and (8).

In these equations, in which r and t are
arbitrary position vector and time, and r' and t'

the corresponding quantities connected with f
and t by Eqs. (5) and (6), r, (t) must be supposed
to be some known or measurable functions of t,
corresponding to the particle motion in the
unprimed coordinate system, while r, '(t') must
give the same motion as seen in the primed
system. A difficulty arises because of the fact
that if, with t fixed, we apply Eqs. (5) and (6)
to t and the corresponding r„ these will go over
into t,' and the corresponding r„', with t,' in

general not equal to t'. In fact we obtain

dr, '(t, ') =dr, (t)+(p 1)u 'v—dr.—(t)v pvdt —(18)

Hence

dt, ' =p$dt vdr, (—t) /c' j.

Eq. (7), while Eq. (12) bcxmmes:

1'(r' t') -Z.('/pc) fu. (t)+(p —1)e-'v u, (t) —pvI

b(r r (t))
X— —. (17)

1 —v u, (t)/c'

This may be further simplihed, however, by
introducing u, '(t'}. Thus, differentiation of Eqs.
(13) and (14) gives:

r.'(t, ') =r, (t)+. (p —1)e—'v r, (t)v ptv , (13—) u, '(t, ') =dr, '(t, ')/dt. '

t,'= p(t —v r, (t)/c'), (14)

so that the transformed time t, ' varies from
particle to particle and 18 equal to t only when

r, (t) =r.
It appears, therefore, that we cannot express

r, '(t') explicitly in terms of r, (t), r, and t. Fortu-
nately this also turns out to be unnecessary. To
see this, we note that the only events (r, t) for
which the right-hand members of Eqs. (11) and
(12) do not vanish are those for which

r = r, (t),

and that then

APPENDIX

Let F(r') be any function ofr', and let r —r, (t),
regarded as a function of r' and t', be R. Thus

Then

R=r r, (t) =R—(r', t'). (21)

u, (t)+(p —1)e-'v u, (t)v —vp
(20)

pL1 —v u. (t)/c'j

Substituting this rela, tion into Eq. (17) and
making use of Eq. (15), we 6nally obtain Eq. (8).

and r, '(t, ') =r. (t') =r', (15) ~~ I ~I F(r')b(r r, (t))dx'dy'—de'

as can readily be seen by comparison of Eqs.
(13) and (14) with Eqs. (5) and (6). These
events are, therefore, to be found among the
events (r', t') for which the right-hand members
of Eqs. (7) and (8) do not vanish. The converse
is also easily shown.

Thus the events for which the 8-functions in

Eqs. (7) and (8) do not vanish are the same events

for which the 8-functions in Eqs. (1'1) and (12)
do not vanish.

It is therefore possible to establish a relation
between 5(r' —r, '(t')) and 8(r —r, (t)). This is done
in the Appendix and gives:

8(r' —r, '(t')) =pL1 —v u, (t)/c'$5(r —r, (t)). (16)

I f'
I F(r') t'i(R)dh'dy'ds'

J Ja

{' I' {' ~(& y s)
,

I F(r')— b(R)dRQRQR.
B(R, R„, R,)

r3(x', y', s')
= F(r')

8(R, R„, R.) R-o

B(x', y', s')
= F(r')

8(R~, R» R~) r' re'{&')

g7ith this relation Eq. (11) obviously reduces to by Eq. (15). But, the last expression is also



t= p(t'+v r'/c4) (24)

Therefore
8(x', y', z')

~(r-r.(t)) = ~(r'- r.'(t'))
B(R., R„, R.)

where
= 8(r' —r, '(t')) / J, (22)

I F(r') 8(r' —r.,'(t'))dx'dy'dz'.
8(R., R„,R.)

Thus, we have, for example,

R,.=x'+(P —1)v '(x'v, +y'v„+z'v, )v,+Pt'v, x, (—t),

where x' and x,(t) are the x-components of r'

and r, (t), respectively. Therefore

aR./Bx' = 1+(P —1)v-'v, ' —(dx, (t) /dt) Bt/ax'

= 1+(P —1)v-'v. ' —x,(t)Pv./c',

J=8(R., R„, R,)/B(x', y', z'). the factor Bt/Bx' being obtained from Eq. (24),
while x, (t) is the x-component of u, (t).

In this way we obtain:
In calculating derivatives of the components

of R we must remember that r, (t) are some given
functions of t„specifying the motions of the
particles in the unprimed coordinate system
while

J=pI 1 —v u, (t)/c'j.

r = r'+(P —1)v—'(v r')v+Pt'v

2

Combining Eqs. (22) and (25) we obtain Eq.
(23)
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Recurrence relations connecting Coulomb functions for diQ'erent values of the angular'mo-
mentum I and the same value of the nuclear radius parameter p are summarized, and their
derivation is outlined.

HE Coulomb wave functions I I, and CI„as
defined by Yost, Wheeler, and Breit, ' are

solutions of the differential equation

d2Ii 2v L(L+1)
+ 1 ———— p

d p2 P P

which, for large p, have the asymptotic forms

FL, and 6& are the real and imaginary parts,
respectively, of the function

I+1
I I, = I"I.+iGI.=—

i(s2~2 1)(2I+1) (C

X (z i) ~+'&(z+—z) c '&e*&dz, -(2)

Z,.-sinI p ———v in2p+~, I,
2 )

I.x
Gt, -cosI p ————

2t ln2p+o J. I,
2 )

where sI. argI'(L+1+iv)
'F. L. Yost, John A. Wheeler, and G. Breit, J.Terr,

Nag. 40, 443 (1935); Phys. Rev. 49, 174 {1936).

L1+(0'/L')1' ' 'I 1+(2t'/1')3 2&2t
'2 —

, (3)
12.32. . . (2L+1)2 (j2r2 \)

and D is a contour in the complex s plane which
starts at (—~ i), encir—cles the point i once-
in the positive sense, and returns to the starting
point. The expression (2) may be derived by


