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which is about 0.16 percent, occurs for a value of
s a little greater than 0.1.

Eddington's approximation, "is

2+3s —IE2(s) ——,'E3(z) I-
p(z) = (s+17/24)—

2+3s —3 IE4(s) —-', E5(s) I

This seems to.be the best;i, pproximation avail-
able in previously published literature, although
it was done at a rather early stage. The error of
1 percent at the boundary, increases to 1..3 per-
cent at @=0.02 and is less than 0.5 percent after
s =0.3.

The expansion of Section 5 is also evaluated
in Table I. This has the correct analytical form
near the boundary and is a good approximation
up to a=0.05. By combining this with Lecaine s
approximation one would have a fairly simple
and very accurate representation of the density
over the entire range.

The author wishes to thank B. Carlson and
M. Goldstein for performing the numerical calcu-
lations and preparing the tables in this paper.

Note. Since the first writing of this paper,
Kick" and Chandrasekhar" have published ap-
plications to this problem of the method of ex-
panding the angular distribution P(z, p) in

Legendre polynomials in p. Chandrasekhar's
highest approximation, in which three exponen-
tials are used, still has a maximum error (near
s=0.1) of more than 3.5 percent, while even the
elementary approximation referred to 'above

which uses only one exponential has a maximum
error of about 1.6 percent. In the light of the
criteria which should be applied to approxima-
tions here, and the other examples already given,
it should be pointed out that the polynomial
method does not seem to be well adapted to the
problem we are considering. Of course, in more
complicated problems where simple iteration and
variation techniques are not available, the poly-
nomial method has had many very successful
applications.

"G. C. Wick, "I.!ber ebene Diffusion'probleme, " Zeits.
f. Physik 121, 702 (1943)."S.Chandrasekhar, Astrophys. ]. 101, 348 (1945).
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Application of a Variational Method to Milne's Problem
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An approximate solution of Milne's integral equation for the neutron density is obtained by
a variational method with high accuracy in simple analytical form. The extrapolated asymp-
totic density at the boundary is given by this Inethod correct to 0.4 parts in a million. The
density itself has a maximum error of 0.3 percent which occurs at the boundary and of less than
0.05 percent for all distances beyond 0.05 mean free paths. A simple expression for the angular
distribution of emerging neutrons is also obtained.

with

HE exact solution of Milne's integral
equation'

0

Eg(x) = Ei( —x) =)I (s —*"/v)dv

has been obtained by Mark' and evaluated by
numerical integration.

Ke obtain here an approximate solution of
this equation in simple analytical form by
employing a variational technique.

From the integral equation it is seen that

40(z) =z+a(s) (2)

where lim, „q(z)=so. From Eqs. (9) and (14)
* Report issued May 15, 1944.
' For literature, see references 2 and 3. ' C. Mark, Phys. Rev. '72, 558 (1947).
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of the paper by Placzek and Seidel, ' ~ve have:

~V(o, ~)dg

=2 '" A(s')E3(s')ds'

r~

=-', —,'+JI q(s')Eg(s')ds', ,

0

method of successive approximations is applied
to Eq. (4), beginning with q = so the next approxi-
mation is

q=.
'

so —lsoE2(s)+ sE3(s)-

We choose A and B such that F(q) assumes an
extreme value. In evaluating F(q) with q given
by (8) it is necessary to evaluate integrals: of the
form

Go Cg)

E(s)ds I , E„(s')E,(is —s'i)ds'
0 0

E~(x) = JI 8 "'v "t&

From (1) and (2) we obtain

q()=-'.
&I q(")E (I --"l)d"+-:F()

0

Ke then consider the functional"

(3').
E,( )s dsJ~ E„(s')Fi(s s')ds'—

0 0

+ i E (s)ds E„(s+s')E&(s')ds',

with m, I=2 or 3. By substituting from Eq. (3')
and interchanging orr]ers of integration, this can
be red~reed to

F(q) =
J" q(s) q(s) ——,'Jf q(s')E, (is —s'i)ds'ds

0

00 -2

q(s) E3(s)ds

Xl Qo

J
s ' +" log(l+s)ds v "(s+v) 'dv

J j

~
Go 00

+ s—&"+'& log(1+@)dv ' s "(s+v) 'ds,

When q=q(s), F(q) becomes, using (4) and (3), which can be evaluated for any m and e. Thus

Oo - —1 Qo 00

F(q) 2 I q(s)E3(s)ds = (4so/3 —) ~. (6) J
E2(s)ds Eg(s )By( i

s s
i )ds

0 0 0

Also F(q) is a minimum of F(q). 6

If we let q=constant, F(q) =9/4 and from (6)

sp ——17/24.

=-', +s'/l2 —(4/3) log2,

E,,(s)ds I E,(s')E,(is —s i)ds
00 JD

= 3 log2 —jg,

q = L1 —AE2(s) BE3(s)jso —(8). = (56/45) log2 —79/360 —s'/l8
This form is suggested by the fact that if the

Ke no% assume as an approximation to q, a
function q of the form E3(s)ds E3(s')Eg(

i
s —s'

i
)ds'

~O ~0

—,'+A-', (log2 —1) —s~B+AB-', (1 —log2) +A' I-' —s'/24 }+B' I s'/36 —(2/9) log2 —13/144 }
(9)

i-',—-,'A —B-,'(2 log2 —1) }'
' G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947).

For tables see G. Placzek, The Functions E„(x), MT-1, obtainable from Plans and Publications Branch, National.
Research Council of Canada, Ottawa, Canada.' R. E. Marshak, Phys. Rev. 71, 688 (1947).

6 B. Davison, Phys. Rev. 71, 694 (1947).
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Now, solving the equations

8F/BA =0, 8Ji/88 =0,

A =0.3428949, 8 = —0.3158704,

and F for this value of A and 8 is 2.235831.
From (6),

2.235831=: 1/(-', 4so ——',),

so='. 0.7104457.

The function of form (8) which best approxi-
mates g(s) is

qg(s) = 0.7104457(1—0.342894982
+0.3158704E3). (11)

This procedure is designed to give an approxi-
mation to the value of F. Since s() is related to F
directly, whereas g is related only through an
integral, the accuracy of the approximation to
zo will be better than that of the approximation
to g(s). The true value of so is 0.71044609,' the
error in the approximation (10) being thus
4)& 10 percent. The approximation (11) has
been tabulated and compared with the exact
solution by Mark. ' The maximum error in

s+q~(s) is 0.3 percent and occurs at the bound-
ary. Beyond 2,'=0.05 the error is less than 0.05
percent.

Another method of approximation has been

discussed by Placzek. ' Although that approxirna-
tion is better at the boundary, the present one is
an improvement for a~0.05, and has the further
advantage of a simpler analytical form.

The emergent angular distribution implied by
(11), normalized to unit density is

y(p) =0.501362+0.671543'+ I 0.210927'
+0.194303''g log(1+1/p), 0~& p&~ 1. (12)

Comparison with the table of the exact func-
tion shows that the maximum error of (12) is
0.3 percent at p, =0 and decreases quickly as p,

increases. The analytical form of (12) is however
not much simpler than the form of Placzek's
approximation (reference 7, Eq. (18)):

p(p) =0.52414+0.43301p —0.02414(1+op) '

+ j 0.30763~+0.43301&'
—0.04916@(1+Q.p)

—'
I log(1+ 1/g), (13)

t

where o.=2.62032, which gives the correct value
for p = 0 and represents the true function through
the whole range with an error of less than 0.1
percent.

The variational method has also been used for
the treatment of a generalization of the present.
problem to capturing media. The results will be
given in a separate paper.

7G. Placzek, The Neutrori Density Near a Plane SNr-
face, I. MT-16, obtainable from Plans and Publications
Branch, National Research Council of Canada, Ottawa,
Canada.

8 G. Placzek, Phys. Rev. V2, 556 (1947).


