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of p and the asymptotic expression (6) is best.
used for interpolation.

It is seen from the tables that. p(p) is very
close to a straight line except for small p. Fermi's
simple linear approximation'

q (p) = (1+&3')/(1+&3/2) (7)

has an error of 7.2 percent at p, =0, but for
~ E. Fermi, Ricerca Scient. 'E

I 2j 13 (1936),

p, &0.1 its error is below one percent throughout.
This has to be kept in mind when discussing the
more complicated approximations. ' '

' A. Unsoeld, Physi k der Sternatmosphaeren (Julius
Springer, Berlin, 1939).

7 J. LeCaine, Phys. Rev. "12, 564 (1947), Eq. (12}.
"G. Placzek, Montreal Report MT 16, 1944; reissued

by National Research Council of Canada, Chalk River
1947. See also Eq. (13) in LeCaine, l.c.' S. Chandrasekhar, Astrophys. J. 99, 180 (1944); 101,
348 (1945).
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The exact solution of Milne's integral equation is expressed as a real integral with non-
oscillating integrand. This expression has been derived from the Wiener-Hopi' solution for the
Laplace transform of the density. The integrand involves the angular distribution of neutrons
emerging from the surface, and the tabulation of this function by the Mathematical Tables
Project given by Placzek has been used in the numerical evaluation of the integral. The values
of the first three moments of the difference between the density and the asymptotic density,
and an expansion of the density for points near the boundary are also given. Various authors
have proposed or obtained approximations to the solution of this problem, and some of these
approximations are referred to and compared. with the exact solution.

1. INTRODUCTION

HE purpose of this paper is to determine the
neutron density in Milne's problem as

described by Placzek and Seidel ' Ke shall adopt
the notation and definitions of their paper and
make frequent references to its results.

The neutron density, fo(s), satisfies Milne's
integral equation

Wo(s) =l ~ A(s')&(Is —s'l)ds',
0

with E(x) = —&(—x). An expression for the
Laplace transform of the solution of this equa-

* Now at Los Alamos Scientific Laboratory, Santa Fe,
New Mexico.

**This paper, except for minor modifications, correc-
tions, and improvements in some of the numerical work,
was issued as a report of the Theoretical Division of the
Montreal Laboratory on April 15, 1944.

G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947).
Hereafter this paper will be referred to as PS.

tion has been obtaine'd by Wiener and Hopf. ~ '
A simplified derivation of their result is given
in PS.

The angular distribution of the emerging neu-
trons is, except for a factor, equal to the Laplace
transform of the density (PS, Eq. (19)), so that
the problem of determining the emergent angular
distribution is simply that of evaluating the ex-
pression for this Laplace transform; and an ex-
tensive and accurate tabulation of this is now
available. ' However, considerable difficulties
have been encountered in attempts to invert
the Laplace transform of the density in order
to obtain the density itself, and an exact yet
manageable integral for $0(s) does not seem to
have been given heretofore. In this paper it is

~ N. Wiener and E. Hopf, Berliner Ber. Math. Phys.
Klasse (1931),p. 696.'F.. Hopf, Mathematical Problems of Radiative Zqui-
Librium, Cambridge tracts No. 31, 1934.

4 G. Placzek, Phys. Rev. V2, 556 (1947).



shown that

A(») =3»+»o —-'J" (» '"dl~)/4(0 —~)L(1 —~ a«h~)'+~'~'/4]

2. AN EXPRESSION FOR Qo(»)

In PS the Laplace transform of the density,

~0(s) =Jt ~0(»)»--d»
0

(2)

is obtained in the explicit form (PS, Eq. (36))

A(~) = v3L(~+1)r-(~)/~'] (3)

where r (s) is defined in PS Eqs. (26) and (28).
To obtain Pz(») we may write the inversion
formula

p, (») = (1/2iri) t 40(s)e'*d», 0«; (4)
C—2«+

'G. Placzek and G. M. Volkoff, Notes on Digusion of
¹Ntrorls without Change in Energy, M.T. 4, obtainable
from Plans and Publications Branch, National Research
Council of Canada, Ottawa, Canada. .

where»0 =0.710446 (PS, Eq. (40)), and f(0, =- ii),
the angular distribution of emerging neutrons„
is related to the function p(ii) tabulated in the
preceding paper' by

~(~) = 0(0 —~)/i3.

$0(») has been evaluated by numerica integra-
tion of (1) with the help of the tabulation of
» (~).

In addition to the tabulation of the exact
neutron density for this standard problem, a few
terms of an analytical expansion of the density
function, valid for small s, have been included
(Section 5).The first neglected term is 0(»' log'»),
and the terms given represent the density with
an error of less than 0.1 percent over the range
0&a &0.1, where the mean free path is taken as
the unit length.

There are also included (Section 4) the values
of the zero, first, and second moments of the
difference between the asymptotic density and
the density itself: 3(»+»0) —$0(»).

In Section 3 note is made of the obvious fact
that one may approach this semi-infinite medium
problem through the formulae given by Placzek
and Volkoff' which apply to an infinite medium.

bu't to substitute lil this fi'onl Eq. (3) leads to
an immediate impasse because of the complexity
of the function r (s). We therefore consider sub-
stituting in (4) from PS (18),

J~ L~k(0, u)/(1 +~s)]dl.

On setting

1

dp, 1+ps

0

Jf LA'(0 I )/(1+1&)]du=g(&)

1 —-', )I dp/(1+its) =Z(s),

we have &0(s) =g(s)/X(s); and we now consider
the properties of these two functions.

From this second form of E(s) it is obvious that
X(s) has a double zero at s=0; and it may also
be easily seen that X(s) has no other zeros in
the s-plane cut from —~ to —1 and from 1 to
~. A proof of this is given by Placzek and Vol-
koff' (or one can show that the imaginary part
of the second integral in (7) is unequal to zero
unless s lies on one of the axes in the s-plane).
X (s) has branch points at s = &1,and is regular
in the cut plane. We use that branch of X(s)
which is real for —1 &s & 1.

For g(s), we note that this function has a
branch point at s=+1, and is regular in the
plane cut from +1 to + ~. We use that branch
of g(s) which is real for real s(1.We have

g(0) =Jt u4(o, u)dp,

6 Appendix 8 of reference 5.

&(&)=1—
» t d~/(I+~~)

l.

= —s'Jt Lp'/(1 Ii's'}]—dp (7).
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From (6) it follows that g(s)/K(s) = 0(1/
~
s

~ ) as

~

s
~

~~ so that there is no contribution to these
integrals from the small parts of paths (t)) and

(f) to the right of the imaginary axis. For the
rest, we set s = Re"(R ~~), so that e'*=e'r( ""
ge"~ ""',and since, for the integrals considered„
0 is in t:he 2nd and 3rd quadrants, cos0 is nega-
tive and hence, for R infinite,

(b)

I (c) (d~ [(o)L ~
I

(e)
~(&)

FIG. 1. Contour for the
integration of Eq. (9).

which, as in PS, we take to be —1, thus normaliz-
ing the current.

We may now state that +) =0.
) (f)

A(s) =g(s)/K(s) (8)
Thus (11) reduces to

Lg(s)e'*/K(s) ]ds . (12)

Along path (c), where —~ &s & —1,

is regular. in the s-plane cut from —~ to —1,
except for a pole of the second order at s=0. 0'0(s) =3(s+eo) (2«) '

JI Lg(s)e'*/K(s)]
(The regularity of &0(s) in the positive half- (c)

plane follows from the definition (2), and the
fact that, as in reference 3, we are seeking solu-
tions $0(s) of OLexp(as)], a &1.)

Now substituting from (8) in (4) we obtain

c+soo

A(s) =(2«)- " Lg(s)e */K'(s)]ds, (9)
C—XQQ

K(s) = 1+(2s) ' log(s —1/s+1) —(i)r/2s)
=1—s ' cth 's —iw/2s, (13)

whereas, along path (e),
and to handle this integral we close the contour
as in Fig. 1. It is shown in PS that for small
values of s

K(s) = 1 —s ' cth 's+i7r/2s.

Using (13) and (14) in (12) and then setting
s= —t gives4o()=g()/K()=3 '+3 "+ (1o)

~ 00

where so is the number 0.710446. From Eqs.
& ( ) 3( + )+x

(10) and (9) we obtain J,

BIO(s) = (2«) ' ~ Lg(s)e'*/K(s)]ds
(~)

=3(s+so) —(2«)—' f + f + f
~ (~) (&)

tL(1 —&-' cth-'&) '+~'/4t']. (15)

To put (15) 'in a convenient form we use the
result (not explicitly stated in PS but immedi-

ately available from PS Eqs. (31), (32), and
(35)

g( —~) = —~3 r+( —t)/(1+s),

J ] ) and the further fact, which may be verified from
(e) (f)

Eqs. (28) and (29) of PS, that
In Eq. (11) we note first that

since the branch point at —1 is a zero of the
integrand. We next consider

r (—~) =1/ -(~).

Combining these with Eqs. (36) and (19) of
PS we obtain

g( —(') = —3/PV(0 —1/s) ].
Substituting (16) in (15) and then setting t = 1/p
gives relation (1) for $0(z).

The integral in (1) has been evaluated. The
results are included in Section 6 where tables
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of the function p(s) =-'pfp(s) and also of the
quantity s+sp —p(s), which is the deviation
from the asymptotic form, are given, and the
method used for the integration is described.

The results of this evaluation of Pp(s) may also
be used to give the neutron density when the
scattering is not isotropic but is represented by
a linear expression in the cosine of the scattering
angle. For, if b represent the average cosine of the
scattering angle, the neutron density for such
linear scattering differs from the neutron density
for isotropic scattering only by a term linear in
z~; in fact,

0o"'(s) =0o"'(s) —»'
3. AN ALTERNATIVE DERIVATIVE OF EQ. (15)

The Milne problem for a half-space may also
be interpreted as a problem in an infinite medium.
For this one would imagine an infinite non-

capturing medium with a uniform current from
infinity in a direction parallel to the z axis and
with an anisotropic plane sink at z=0 which
absorbs ug(0, u)du neutrons for negative u. be-

tween p and @+de.
Using the one-dimensional form of the for-

mulae given by Placzek and VolkoK (reference 5,
Section 5), taking u'f(0, u')8(u —u')6(s), u(0,
for the "source" term, and taking r as Fourier
transform variable, one gets

y, (r) (1—r 'artr }-

Appendix 8, may be applied to obtain (15)
directly.

4. NOTE ON THE MOMENTS

s"
t 3(s+sp) —Pp(s) }ds= iV

0

We give the values of Mo, Sf', 3f~. These are
obtained from the relation

e-'*[3(s+sp) —Pp(s)]ds = 3s-'+3sps —' —4 p(s)
0

by expanding each side in powers of s and equat-
ing coefFicients. Using (3) we have @p(s) =&3s '
&&(~+1)Lr-(0)+~r—'(0)+2~'r-"(0)+ - .1. &f we
define c„=(—1)"r &"&(0)/r (0), and recall (PS,
Section 6) that r (0) =@3, then it follows from
the statements above that

Mp 3(cl pcp) ~ Mi p (cp pep) q 3fp (cp Ac4).

To evaluate these we use the following relations,
the first of which is given in Section 6 of PS and
the rest of which may be obtained by a similar
method:

ci ——1 —sp ——0.289554; cp
——ci +2/5 =0.483842;

c3 ——ci'+16cg,/'5+ k, with'

@de
k= =0.344708,

(1—u arthu) p+-A' prpu'

0 so that cp = 1.29556; and cp ——612/175+4cpci
ug(0 u)(1 pru) 'du— (17) .—3ci' —12ciP/5=4. 77538. The moments are now

—1 seen to have the values:

Now taking the Fourier inverse of this gives

no+ ic

yp(s) =—r Ap(r)e '*dr-
2X' ~ —oo+ic

0

. l" A(0, u)(1 &ru) 'du-
oo+ic Q

1-.—art.
iTzd r

(c)0).

By the substitution s= —ir this is reduced to
(9) above; or the results of Placzek and Volkoff's

' C. Mark, Milne's Problem for Anisotropic Scattering
Eq. (42). MT-26, obtainable from Plans and Publications
Branch, National Research Council of Canada, Ottawa.

zA„= 0.546, (s') A. =0.712.

One may now, by expa, nding each side of (5)
in powers of s, obtain. the values of the current
moments of the angular distribution:

4'"'(0) = uV(0 u)du

for n= 3, 4, and 5. From PS Eq. (14) we see also

This results from a.numerical integration by Bengt
Carlson.

Mp=3(3 —5sp )/10=0. 14290,
3IIg =0.07798, 352 ——0.10172.

Hence, at once, for the difference function,
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4&"'(0) =-'( —1)" & +I(s)A(s)«
~o

pansion obtained is

$0(z) = %3 f 1 ——,'s logs+1.2788s+—I', s'(logs)'-
—0.3822zz logs+0. 7068s'+0(s' (logs)') I. (19)

8 (s) = I-"e '"du.

The results ~re (in addition to /&I&(0) ——1
P&"(0) = so), lt &'&(0) = —(3+Ssoz)/10 = —0.55237,
if&4'(0) =0.45226, P&'&(0) = —0.38304.

S. NOTE ON AN EXPANSION OF It&0(z} FOR SMALL
VALUES OF s

This expansion, as rllay bc scen from the fol-

lowing tables, represents the density quite well

for values of @&0.1 It could then he used to
evaluate integrals containing Po(s) analytically
over just that part of the range where $0(z)
would give trouble in a numerical integration.

6. NUMERICAL RESULTS; DISCUSSION

( ) ( ) f pl, If we define the function q(s)=s+so —p(z),
where p(s) =-',&0(z), and set

one can write

It may be shown that the integral in (18) can,
for large values of s, be expressed in the form

2a+1 4 —~'—logs+ +—
. +0(s—' logs),

2S 2s 16s'

~ m/2

a =—
l tany —- ——dy = 1.0674.

x' ~o 1 —y ctny 2

Fi olll tllls asylllptoilc fol Ill of @0(s) fol' s~ ~ we
can deduce a from for &&I(z) for small z. The ex-

TxaLE I. E,valuatiofI of qI's) =a+f0—pI's),
~=EV( ) —g.„(~)&X1O4

z Correct I.ecaine»

0 0.1881 0.1814 17
0.01 0.1222 0.1218 9
0.02 0.1150 0.1145 5
0.08 0.1092 0.1089 .8
0.05 0.0997 0.0996 1
0.1 0.0825 0.0826 —1
0.2 0.0609 0.0609 0
0.8 0.0471 0.0470 1
0.4 0.0878 0.0871 2
0.5 0.0801 0.0298 8
0.6 0,0246 0.0248 3
0.7 0.0208 0.0200 8
0.8 0.0169 . 0.0165 4
0.9 0.0141 0.0188 3
1.0 0.0119 0.0116 3
1.2 0.0085 0.0082 8
1.5 0.0053 0.0051 2
2.0 0.0025 0.0024 1
2.5 0.00125 0.00117 0.8
8.0 0.00064 0.00059 0.5
8.5 0.00038 0.00080 0.8
4.0 0.00018 0.00016 0.2
5.0 0.000048 0.000046 0.02

Piaczek4

0.1331
0.1222
0.1151
0.1094
0.1001
0.0835
0.0623
0.0482
0.0379
0.0301 .
0.0240
0.0191
0.0153
0.0122
0.0097
0.0061
0.0030
0.0008
0.0001—0.0003-0.0001

EddIng-
ton»

0 0.1271
0 0.1198—1 0.1076-2 0.1016—4 0.0921

-10 0.0757—14 0.0566—11 0.0452—6 0.0874
0 0.0317
6 0.0278

12 0.0288
16 0.0210
19 0.0186
22 0.0166
24 0.0184
28 0 0100
17 0.0066
11 0.0047
9 0.0036
4 0.0029

Expansion
(Section 5}6

60 . 0.1831 0
2S 0.1222 0
74 0.1150 0
76 0.1091 1
76 0.0995 2
68 0.0817 8
48 0.0582 27
19—1—16—27.—35

-41
—47
-49—47—41

35—80—26

Iog(sto(s)/~~) = ——:log(1+s ')

&

""y art(s —' tany)
+x—'

~ (»)
j. —y ctny

1/k(p) = &p(p) L(1 —p arthp)'+m'p'/4], (20)

then from (1)

4&3q(z) = k(p)e *'&dp. —

Table I contains the results of the evaluation
of q(z). The last figure is considered to be reli-

able. The method used was as follows: The func-
tion 2+p logp —k(p), which vanishes at p=0
and has a finite slope there, turned out to be
almost straight fl om p, =0 to p, =0.9, so that 1t
could be well approximated in that range by a
polynomial p(p) of the form a p+b p+zc p+zd p'

Coefticients for p(p) were chosen so that the func-
tion k(p) =2+p logp —Il(p}—p(p), which van-
ishes at p, =0, would also vanish at p=0.1, 0.2,
and 0.9, and have Jo'k(p)dp =0(Jtik(p}dp, known
from the value of q(0)). It then turned out that
k(p) also vanished between p=0.5 and p=0.6,
and that from p =0 to 0.9, k(p) is quite smooth
and rather small (having a maximum 0.028
near p=0.8). Relation (21) was then rewritten
in the form

1

4v3q(s) =,t t 2 —P(p) je '"dp

+j p, logpe *I"dp

+)t (e ' e *'&)k(p)dzz
——(22—)

Tl+ T2+ T3-
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In Eq. (22) T~ can"be expressed in terms of the
functions

E„(s)= " n "e---du,

which are tabulated;

i+s ~s log s+(4 27)s logs

—(-' —-'y+-'y'+ s'/24) z'

—2(—)"s"/(~ —2)'~'

and T3 is the only term requiring numerical in-

tegration. Although k(p) is appreciable and
varies rapidly between @=0.9 and p, =1, the
integrand in T3 is smooth and small, so that the
maximum contribution of T3 to the value of

g(z), which occurs near s=1.5, is only 7 10
As a check on the evaluation, we may use the
value of 3EIo given in Section 4 by which we

should have

q(s) ds =0.04763.
0

The contribution to this coming from TI and T2,
which may be obtained exactly, is 0.04777, and a
numerical integration of the values obtained for
Ts (which is negative) gave a contribution from
this term of —0.00017.

Table II gives the evaluation of p(s).
Several of the numerous approximations to g(s)

are compared with the correct function. For the
approximations, the differences: [q(s) —q.„,„(s)]
)(104 are also given. In considering the ap-
proximations one must remember that the
difference function in this problem is never very
large and decreases rapidly, whereas s'+so in-

creases, so that for large values of s one can
tolerate very large relative errors in the differ-

ence function, and it is only for s((1 that it
must be given to good accuracy. Furthermore,
even the simple straight-line approximation to
p(s) which fits at the boundary, 9 p(s) =s+1&3,
gives at the worst an error of 9 percent (for
s=0.4) in the value of p(s). With this in mind,
it is seen that the great complication (from an
analytica. l point of view) of an approximation
such as Eddington's" which still has errors up
to 1.3 percent (for s =0.02) is quite unnecessary.

' E. Fermi, Ricerca Scient. '7 $2j, 1.3 (1936).

.fern, E II. Evalu'ation of p(s).

0
0.01
0.02
0.03
0.05
0.j.
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.5
2.0
2.5
3.0
3,5
4.0

Z +Zp

0.7104
0.7204
0.7304
0.7404
0.7604
0.8104
0.9104
1.0104
1.1104
1..2104
1.3104
1.4104
1.5104
1.6104
1.7104
1.9104
2.2'104
2.7104
3.2104
3.7104
4.2104
4.7104

p(Z)

0.5773
0.5982
0.6154
0.6312
0.6607
0.7279
0.8495
0.9633
1.0731
1.1803
1,2858
1.3901
1.4935
1.5963
1.6985
1:9019
2.2051
2.7079
3.2092
3.7098
4.2101
-4.7102

In fact, the elementary approximation p(s)
z+zo —aoe ~" (F0=0.133096, ap=3.6986) given

by Placzek" gives at the worst an error of about
2 percent (for s between 0.05 and 0.1). The ap-
proximations of Lecaine" (errors(0. 3 percent)
and Placzek" (errors &0.16 percent) are, how-

ever, significant improvements over the simple
exponential approximation. Lecaine's approxi-
mation, "obtained by a variational method, is

p(s) =s+0.710446
X [1—0 342895E2(z) +0 315870E3(s)].

This has the advantage of a simple analytical
form. . The error of 0.3 percent at the boundary
is quickly reduced, and for s&0.05 the error is
less than 0.05 percent.

Placzek's approximation, " obtained by an
iteration method, is

p(s) =s+so+-,'[E3(s)—spE2(s) $
—(&/2~) I [log(~+ I/~ —1)

+E;((u—1)s)fe—"+E~(s) I

with c=0.11354,e =2.62032. This approximation
is devised so as to be correct at the boundary. For
some purposes the region close to the boundary
is that of greatest interest. The maximum error,

"A. S:-Eddington, Internal Constitution of the Stars
(Cambridge University Press, Teddington, England, 1926).

"G. Placzek, The Neutron Density near a I'lane Surface,
I. MT-16, obtainable from Plans and Publications Branch,
National Research Council of Canada, Ottawa."J.Lecaine, Phys. Rev. '72, 564 (1947).
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which is about 0.16 percent, occurs for a value of
s a little greater than 0.1.

Eddington's approximation, "is

2+3s —IE2(s) ——,'E3(z) I-
p(z) = (s+17/24)—

2+3s —3 IE4(s) —-', E5(s) I

This seems to.be the best;i, pproximation avail-
able in previously published literature, although
it was done at a rather early stage. The error of
1 percent at the boundary, increases to 1..3 per-
cent at @=0.02 and is less than 0.5 percent after
s =0.3.

The expansion of Section 5 is also evaluated
in Table I. This has the correct analytical form
near the boundary and is a good approximation
up to a=0.05. By combining this with Lecaine s
approximation one would have a fairly simple
and very accurate representation of the density
over the entire range.

The author wishes to thank B. Carlson and
M. Goldstein for performing the numerical calcu-
lations and preparing the tables in this paper.

Note. Since the first writing of this paper,
Kick" and Chandrasekhar" have published ap-
plications to this problem of the method of ex-
panding the angular distribution P(z, p) in

Legendre polynomials in p. Chandrasekhar's
highest approximation, in which three exponen-
tials are used, still has a maximum error (near
s=0.1) of more than 3.5 percent, while even the
elementary approximation referred to 'above

which uses only one exponential has a maximum
error of about 1.6 percent. In the light of the
criteria which should be applied to approxima-
tions here, and the other examples already given,
it should be pointed out that the polynomial
method does not seem to be well adapted to the
problem we are considering. Of course, in more
complicated problems where simple iteration and
variation techniques are not available, the poly-
nomial method has had many very successful
applications.

"G. C. Wick, "I.!ber ebene Diffusion'probleme, " Zeits.
f. Physik 121, 702 (1943)."S.Chandrasekhar, Astrophys. ]. 101, 348 (1945).
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Application of a Variational Method to Milne's Problem

J. LECAINE
Montreal J.aboratory, National Research Council of Canada, * Montreal, Canada

(Received May 31, 1947)

An approximate solution of Milne's integral equation for the neutron density is obtained by
a variational method with high accuracy in simple analytical form. The extrapolated asymp-
totic density at the boundary is given by this Inethod correct to 0.4 parts in a million. The
density itself has a maximum error of 0.3 percent which occurs at the boundary and of less than
0.05 percent for all distances beyond 0.05 mean free paths. A simple expression for the angular
distribution of emerging neutrons is also obtained.

with

HE exact solution of Milne's integral
equation'

0

Eg(x) = Ei( —x) =)I (s —*"/v)dv

has been obtained by Mark' and evaluated by
numerical integration.

Ke obtain here an approximate solution of
this equation in simple analytical form by
employing a variational technique.

From the integral equation it is seen that

40(z) =z+a(s) (2)

where lim, „q(z)=so. From Eqs. (9) and (14)
* Report issued May 15, 1944.
' For literature, see references 2 and 3. ' C. Mark, Phys. Rev. '72, 558 (1947).


