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The Angular Distribution of Neutrons Emerging from a Plane Surface

G. PLACZEK*

3/IontrecL L,cboratory, NationaL Research CounciL of Canada, ~* 3/Iontreal, Canada

(Received May 31, 1947)

The Wiener-Hopf expression for the angular distribution in Milne s standard case is trans-
formed into a form suitable for numerical evaluation. The results of the evaluation carried out
by the Mathematical Tables Project are given.

1. INTRODUCTION

~HE angular distribution of the neutrons
emerging from a body of purely scattering

material into a vacuum will in general depend
upon the law of scattering and the source dis-
tribution in the body and, to a certain extent,
also upon the size and shape of the body.

An important standard case, of interest in
connection with fast as well as with slow neu-
tron problems, is the following:

The body is infinite in two directions and is
bounded by a plane. It contains no sources, and
no neutrons enter the plane from the outside. A
constant neutron current Rows in the outward
direction perpendicular to the plane. The law of
scattering is isotropic without energy loss.

The problem of the determination of the
angular distribution of the emerging neutrons for
this case has been solved by Wiener and Hopf. '
A simplified derivation of their expression has
been given by Placzek and Seidel. ' The present
paper deals with a transformation of this ex-
pression into a more practical form and its
numerical evaluation. '

2. THEORY

Let p, be the cosine of the angle between the
direction of motion of the neutron and the out-
ward normal, and pp(p)dp the probability for the

Now at General Electric Research Laboratory,
Schenectady, New York.**Report issued September 30, 1943.

'N. Wiener and E. Hopf, Berliner Ber. Math. Phys.
Klasse {1931), p. 696; see also E. Hopf, Cambridge
Tracts No. 31 (1934).' G. Placzek and W. Seidel, Phys. Rev. 72, '550 (1947).' After the present work was done, results of a numerical
evaluation of the original Wiener-Hopf expression have
been published by S. Chandrasekhar (Astrophys. J.99, 180
1944). The use of this function for numerical integrations,
of which the following paper by Mark gives a significant
example, requires the more accurate table given in the
present paper.

direction cosine of an emerging neutron to lie
between p, and p, +dp, so that

1

j" v(~)d~=f.
0

The function pp(p) is given byP Eq. (46) of Placzek
and Seidel.
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since the integrated part vanishes.
The second part of this integral can be evalu-

ated in closed form. Putting tanx=y and using

In G. Placzek and W. Seidel, Phys. Rev. '72, 550
(1947), the inward direction is counted positive, while for
the purposes of the present paper it has been more con-
venient to define the outward direction as the positive one.
Also, the function P(0, p) in Placzek and Seidel is normalized
to unit current, while we use here normalization to unit
densify (Eq. (1)). In order to express q (p) by P(0, y) we
have, therefore, to put

v(~) =0(0, —~)/&3.

v (i ) =
p (1+~)

p" log[sin'x/(1 —x cotx) j
Xexp — ~ —dx . (2)

p. & p 1 —(1—y') sin'x

We integrate by parts, noting that
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where

E(s/p) e-'ds = —,
' log(1+p), (4)

0

F(u) =~I v 'e "d~
'LC

is the exponential integral.
From (4), (3), and (2) we obtain now

1 1 t- '-'x art(p tanx)
~(~) = exp —

l~ dx
2(1+@)~ 7r ~ o 1. —x cotx

From (5) it can be seen in a simpler way than
from (2) that, for very small values of p, y(y) is

asymptotically given by

v(~) =2(1—k~logi),

Thus, the derivative of q(p) becomes logarith-
mically infinite for p, =o. This is directly con-
nected with the well-known fact that the spatial
derivative of the neutron density has a logarith-
mic infinity at the surface.

The integral in (5) has been evaluated nu-

merically by the Mathematical Tables Project.
For 10 values of the argument accurate values

the fact that the integral from 0 to ~ of the
product of two even functions is equal to 1/2x
times the integral from 0 to ~ of the product of
their Fourier transforms, we obtain:
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TABLF II. Values of q (y) at intervals of 0.01.
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TABLE I. Values of q (p) at intervals of 0.1.
/

of the integral were obtained by numerical in-

tegration, and from these the intermediate values
were found by interpolation. Table I gives the
results of the numerical integration at intervals
of 0.1, while Table II gives the interpolated
values'at intervals of 0.01. The second table is
in a suitable form for use in connection with the
numerical integration of expressions containing
the function y, except that even for this close
spacing linear interpolation is quite insufficient
for small values of p, . In this region the difference
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of p and the asymptotic expression (6) is best.
used for interpolation.

It is seen from the tables that. p(p) is very
close to a straight line except for small p. Fermi's
simple linear approximation'

q (p) = (1+&3')/(1+&3/2) (7)

has an error of 7.2 percent at p, =0, but for
~ E. Fermi, Ricerca Scient. 'E

I 2j 13 (1936),

p, &0.1 its error is below one percent throughout.
This has to be kept in mind when discussing the
more complicated approximations. ' '

' A. Unsoeld, Physi k der Sternatmosphaeren (Julius
Springer, Berlin, 1939).

7 J. LeCaine, Phys. Rev. "12, 564 (1947), Eq. (12}.
"G. Placzek, Montreal Report MT 16, 1944; reissued

by National Research Council of Canada, Chalk River
1947. See also Eq. (13) in LeCaine, l.c.' S. Chandrasekhar, Astrophys. J. 99, 180 (1944); 101,
348 (1945).
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The exact solution of Milne's integral equation is expressed as a real integral with non-
oscillating integrand. This expression has been derived from the Wiener-Hopi' solution for the
Laplace transform of the density. The integrand involves the angular distribution of neutrons
emerging from the surface, and the tabulation of this function by the Mathematical Tables
Project given by Placzek has been used in the numerical evaluation of the integral. The values
of the first three moments of the difference between the density and the asymptotic density,
and an expansion of the density for points near the boundary are also given. Various authors
have proposed or obtained approximations to the solution of this problem, and some of these
approximations are referred to and compared. with the exact solution.

1. INTRODUCTION

HE purpose of this paper is to determine the
neutron density in Milne's problem as

described by Placzek and Seidel ' Ke shall adopt
the notation and definitions of their paper and
make frequent references to its results.

The neutron density, fo(s), satisfies Milne's
integral equation

Wo(s) =l ~ A(s')&(Is —s'l)ds',
0

with E(x) = —&(—x). An expression for the
Laplace transform of the solution of this equa-

* Now at Los Alamos Scientific Laboratory, Santa Fe,
New Mexico.

**This paper, except for minor modifications, correc-
tions, and improvements in some of the numerical work,
was issued as a report of the Theoretical Division of the
Montreal Laboratory on April 15, 1944.

G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947).
Hereafter this paper will be referred to as PS.

tion has been obtaine'd by Wiener and Hopf. ~ '
A simplified derivation of their result is given
in PS.

The angular distribution of the emerging neu-
trons is, except for a factor, equal to the Laplace
transform of the density (PS, Eq. (19)), so that
the problem of determining the emergent angular
distribution is simply that of evaluating the ex-
pression for this Laplace transform; and an ex-
tensive and accurate tabulation of this is now
available. ' However, considerable difficulties
have been encountered in attempts to invert
the Laplace transform of the density in order
to obtain the density itself, and an exact yet
manageable integral for $0(s) does not seem to
have been given heretofore. In this paper it is

~ N. Wiener and E. Hopf, Berliner Ber. Math. Phys.
Klasse (1931),p. 696.'F.. Hopf, Mathematical Problems of Radiative Zqui-
Librium, Cambridge tracts No. 31, 1934.

4 G. Placzek, Phys. Rev. V2, 556 (1947).


