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The Wiener-Hopf expression for the angular distribution in Milne's standard case is trans-
formed into a form suitable for numerical evaluation. The results of the evaluation carried out

by the Mathematical Tables Project are given.

1. INTRODUCTION

HE angular distribution of the neutrons

emerging from a body of purely scattering
material into a vacuum will in general depend
upon the law of scattering and the source dis-
tribution in the body and, to a certain extent,
also upon the size and shape of the body.

An important standard case, of interest in
connection with fast as well as with slow neu-
tron problems, is the following:

The body is infinite in two directions and is
bounded by a plane. It contains no sources, and
no neutrons enter the plane from the outside. A
constant neutron current flows in the outward
direction perpendicular to the plane. The law of
scattering is isotropic without energy loss.

The problem of the determination of the
angular distribution of the emerging neutrons for
this case has been solved by Wiener and Hopf.!
A simplified derivation of their expression has
‘been given by Placzek and Seidel.? The present
paper deals with a transformation of this ex-
pression into a more practical form and its
numerical evaluation.?

2. THEORY

Let u be the cosine of the angle between the
direction of motion of the neutron and the out-
ward normal, and ¢(u)du the probability for the

*Now at General
Schenectady, New York.

** Report issued September 30, 1943.

! N. Wiener and E. Hopf, Berliner Ber. Math. Phys.
Klasse (1931), p. 696; see also E. Hopf, Cambridge
Tracts No. 31 (1934).

2 G. Placzek and W. Seidel, Phys. Rev. 72, 550 (1947).

3 After the present work was done, results of a numerical
evaluation of the original Wiener-Hopf expression have
been published by S. Chandrasekhar (Astrophys. J. 99, 180
1944). The use of this function for numerical integrations,
of which the following paper by Mark gives a significant
example, requires the more accurate table given in the
present paper.
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direction cosine of an emerging neutron to lie
between u and u-dy, so that

j;l p(u)dp=1.

The function ¢(u) is given by* Eq. (46) of Placzek
and Seidel.

e(u) =3(1+p)
" f"” log[sin%c/(1 —x cotx) ]

(1

Xexp[— (lx] (2)
T 1—(1—u?) sinZx

We integrate by parts, noting that
ufdx/[l — (1 —pu?) sin% ] =art(u tanx)

and

sin2x x

d
— log[
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and obtain

w ™2 log[sin%c/(1—x cotx) ]
f dx
0

T 1—(1—u?) sin

1 pri2 x
=—f {—— -3 cotxlart(u tanx)dx, (3)
wJo 1—x cotx

since the integrated part vanishes.
The second part of this integral can be evalu-
ated in closed form. Putting tanx=y and using

4In G. Placzek and W. Seidel, Phys. Rev. 72, 550
(1947), the tnward direction is counted positive, while for
the purposes of the present paper it has been more con-
venient to define the outward direction as the positive one.
Also, the function ¢(0, ) in Placzek and Seidel is normalized
to unit current, while we use here normalization to unit
density (Eq. (1)). In order to express ¢(x) by ¢(0, 1) we
have, therefore, to put

o) =¥(0, —u)/V3.
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the fact that the integral from 0 to « of the
product of two even functions is equal to 1/27
times the integral from 0 to « of the product of
their Fourier transforms, we obtain:

/2
! [ cotx art(p tanx)dy
0
=n=1 [ Lartuy)/y(1+5% dy
0

-1 j E(e/wedz=} log(1+x), (&)

where

x©

E(u) = f vle~dy

u

is the exponential integral.
From (4), (3), and (2) we obtain now

1 1. p™? x art(u tanx)
exp[— f —dx]
0

2(14u)t T 1—x cotx

o(u) =

()

From (§) it can be seen in a simpler way than
from (2) that, for very small values of u, ¢(u) is
asymptotically given by

o(u)=3(1—3nlogu), w<Kl. (©)

Thus, the derivative of ¢(u) becomes logarith-
mically infinite for u=0. This is directly con-
nected with the well-known fact that the spatial
derivative of the neutron density has a logarith-
mic infinity at the surface.

The integral in (5) has been evaluated nu-
merically by the Mathematical Tables Project.
For 10 values of the argument accurate values

TABLE I. Values of ¢(u) at intervals of 0.1.

o(n)

0.5000000
0.6236751
0.7251757
0.8212611
0.9146378
1.0063894
1.0970665
1.1869875
1.2763522
1.3652938
1.4539053

®
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TABLE II. Values of ¢(u) at intervals of 0.01.

o o(n) A —-A2 » o(u) A

0.00 0.50000 1713 312 0.50 1.00639 911

1 0.51713 1401 105 1 1.01550 910

2 0.53114 1296 64 2 1.02460 909

3 0.54410 1232 45 3 1.03369 908

4 0.55642 1187 34 4 1.04277 907

0.05 0.56829 1153 27 0.55 1.05184 906

6 0.57982 1126 22 6 1.06090 905

7 0.59108 1104 18 7 1.06995 905

8 0.60212 1086 16 8 1.07900 904

9 0.61298 1070 14 9 1.08804 903

0.10 0.62368 1056 12 0.60 1.09707 902

1 0.63424 1044 10 1 1.10609 901

2 0.64468 1034 10 2 1.11510 901

3 0.65502 1024 8 3 1.12411 900

4 0.66526 1016 8 4 1.13311 900

0.15 0.67542 1008 7 0.65 1.14211 899

6 0.68550 1001 7 6 1.15110 898

7 0.69551 994 5 7 1.16008 897

8 0.70545 989 S 8 1.16905 897

9 0.71534 984 6 9 1.17802 897

0.20 0.72518 978 0.70 1.18699 896

1 0.73496 974 1 1.19595 895

2 0.74470 969 2 1.20490 895

.3 0.75439 966 3 1.21385 894

4 0.76405 961 4 1.22279 894

0.25 0.77366 958 0.75 1.23173 893

6 0.78324 955 6 1.24066 -~ 893

7 0.79279 952 7 1.24959 893

8 0.80231 949 8 1.25852 892

9 0.81180 946 9 1.26744 891

0.30 0.82126 944 0.80 1.27636 -~ 891

1 0.83070 941 1 1.28526 891

2 0.84011 938 2 1.29417 890

3 0.84949 937 3 1.30307 890

4 0.85886 934 4 1.31197 890

0.35 0.86820 933 0.85 1.32087 889

6 0.87753 930 6 1.32976 889

7 0.88683 929 7 1.33865 888

8 0.89612 927 8 1.34753 889

9 0.90539 925 9 1.35642 887

0.40 0.91464 923 0.90 1.36529 888

1 0.92387 923 1 1.37417 887

2 0.93310 920 2 1.38304 - 887

3 0.94230 920 3 1.39191 886

4 0.95150 917 4 1.40077 887

0.45 0.96067 917 0.95 1.40964 886

6 0.96984 916 6 1.41850 885

7 0.97900 914 7 1.42735 886

8 0.98814 913 8 1.43621 885

9 0.99727 912 9 1.44506 885
0.50 1.00639 911 1.00 ~ 1.45391

of the integral were obtained by numerical in-
tegration, and from these the intermediate values
were found by interpolation. Table I gives the
results of the numerical integration at intervals
of 0.1, while Table II gives the interpolated
values at intervals of 0.01. The second table is
in a suitable form for use in connection with the
numerical integration of expressions containing
the function ¢, except that even for this close
spacing linear interpolation is quite insufficient
for small values of p. In this region the difference
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of ¢ and the asymptotic expression (6) is best
used for interpolation.

. It is seen from the tables that ¢(u) is very
close to a straight line except for small u. Fermi’s
simple linear approximation?®

o(u) = (14+V3u) /(14+V3/2) (7)
has an error of 7.2 percent at w=0, but for
s E. Fermi, Ricerca Scient. 7 [27 13 (1936).

MARK

w>0.1 its error is below one percent throughout.
This has to be kept in mind when discussing the
more complicated approximations.®—?

8 A. Unsoeld, Physik der Sternatmosphaeren (Julius
Springer, Berlin, 1939).

7J. LeCaine, Phys. Rev. 72, 564 (1947), Eq. (12).

8 G. Placzek, Montreal Report MT 16, 1944; reissued
by National Research Council of Canada, Chalk River
1947. See also Eq. (13) in LeCaine, l.c.

9 S. Chandrasekhar, Astrophys. J. 99, 180 (1944); 101,
348 (1945).
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The exact solution of Milne's integral equation is expressed as a real integral with non-
oscillating integrand. This expression has been derived from the Wiener-Hopf solution for the
Laplace transform of the density. The integrand involves the angular distribution of neutrons
emerging from the surface, and the tabulation of this function by the Mathematical Tables
Project given by Placzek has been used in the numerical evaluation of the integral. The values
of the first three moments of the difference between the density and the asymptotic density,
and an expansion of the density for points near the boundary are also given. Various authors
have proposed or obtained approximations to the solution of this problem, and some of these
approximations are referred to and compared with the exact solution.

1. INTRODUCTION

HE purpose of this paper is to determine the
neutron density in Milne’s problem as
described by Placzek and Seidel.! We shall adopt
the notation and definitions of their paper and
make frequent references to its results.
The neutron density, ¥o(z), satisfies Milne's
integral equation

Yo(e) =1 f Yo(#)E(|z—2' |)de/,

with E(x) = —FEi(—x). An expression for the
Laplace transform of the solution of this equa-

* Now at Los Alamos Scientific Laboratory, Santa Fe,
New Mexico.

**This paper, except for minor modifications, correc-
tions, and improvements in some of the numerical work,
was issued as a report of the Theoretical Division of the
Montreal Laboratory on April 15, 1944.

1 G. Placzek and W. Seidel, Ihys Rev. 72, 550 (1947).
Hereafter this paper will be referred to as PS.

tion has been obtained by Wiener and Hopf.2?
A simplified derivation of their result is given
in PS.

The angular distribution of the emerging neu-
trons is, except for a factor, equal to the Laplace
transform of the density (PS, Eq. (19)), so that
the problem of determining the emergent angular
distribution is simply that of evaluating the ex-
pression for this Laplace transform; and an ex-
tensive and accurate tabulation of this is now
available.* However, considerable difficulties
have been encountered in attempts to invert
the Laplace transform of the density in order
to obtain the density itself, and an exact yet
manageable integral for ¥o(z) does not seem to
have been given heretofore. In this paper it is

2 N. Wiener and E. Hopf, Berliner Ber. Math. Phys.
Klasse (1931), p. 696.
Hopf, Mathematical Problems of Radialive Eqm~
hbmum Cambridge tracts No. 31, 1934.
4G, Placzek, Phys. Rev. 72, 556 (1947).



