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Milne"s Problem in Transyort Theory
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A modified derivation of the Wiener-Hopf solution of Milne s problem is given in a form
suitable for application to problems in the theory of neutron diffusion.

I. INTRODUCTION

E consider the following problem: A half-
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~

space s)0 bounded by the plane s=0 is
filled by a non-capturing medium, which scatters
neutrons isotropically without changing their
velocity. No sources are present in the medium
and no neutrons enter the plane a=0 from out-
side. A current density of magnitude j and
direction —s exists in the medium. We wish to
determine the stationary neutron distribution in
the medium and, in particular, the angular
distribution of the neutrons leaving the plane
a=0.

I his problem, which represents an important
stan. dard case in the study of neutron diffusion,
is completely identical with a problem known in
astrophysical literature as "Milne's case." It has
been extensively discussed in connection with
the determination of the law of darkening at the
sun's surface. ' Its solution, explicit as far as the
angular distribution of the emerging radiation is
concerned, has been obtained by Wiener and
Hopf. 2 Their method can also be used with
advantage for the solution of other neutron
diffusion problems, but their presentation is
somewhat encumbered by generalizations in
directions diferent from those of interest to us.
We shall, therefore, in the following, give a
somewhat modified derivation of Wiener and
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Rochester, New York.

**Report issued June 24, 1943.' For literature, see E. Milne, IIandbuch der Astrophysik,
Vol. 3, p. 1 and E.Hopf, "Mathematical problems of radia-.
tive equilibrium, " Cambridge Tracts No. 31 (1934).
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Integrals (Oxford University Press, New York, 1937},
Chap. XI.

Hopf's results, in such a form as will most easily
lend itself to generalizations to be discussed in
later papers.

II. THE TRANSPORT EQUATION AND INTEGRAL
RELATIONS FOLLOWING FROM IT

We denote by y the cosine of the angle between
the direction of the neutron and the positive
s direction and by P(s, p)dp the number of
neutrons per unit volume at the point s with
direction cosine between p and p+djM. We call

I

4o(s) =)" 4(&, u)dy
-1

the neutron density.
Choosing as unit of length the mean free path

and as unit of velocity the neutron velocity, we
have the transport equation

I (&4/»)+0 = ;tl 0, —

with the boundary condition

$(0, p) =0 for p)0, (2)

A(s, ~)d~,

Bj/Os=0. (4)

Equation (4) shows that the current density j is
constant. We shall put

and thus have P(s, p) normalized for unit current
density.

We now multiply (1) by p and integrate over

since no neutrons enter the medium from outside.
Two important relations can be obtained at

once from (1) and (2). Integrating (1) over the
variable p we obtain, with the notation
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the variable p. Putting

&(») = I V(s, ~)d~2

wc have

an(.i hence
X(s) =s+sp,

where the constant sp is defined by (see Eq. (2))

f, o

sp ——E(0) =
J

p'P(0, p)dp.
—I

the treatment of the problem from Eq. (12). In
view of the fact that in the case of other problems
with more complicated scattering laws the re-
duction of the transport equation to a homo-
geneous integral equation for the neutron density
is in general not possible, here also we shall start
directly from the transport Eq. (1) with condition
(2) rather than from Milne's integral equation.

IV. AN INTEGRAL EQUATION FOR THE LAPLACE
TRANSFORM OF THE NEUTRON DENSITY'

ASYMPTOTIC FORM OF Qp(z)

We introduce the Laplace transforms of f(s, p)
and Pp(s) by

III. MILNE'S INTEGRAL EQUATION

On substitution of the transformation

4(s, p)=X(s; p)e '» (10)

@(s, p) =Jt f(s, jz)e '*ds, —

0

4(» ~)=

(2p) ' " A(»') exp[(s' —s)/p3ds'
~o

if p)0 (11a)

—(2p)-' I Pp(s') exp[(s' —s)/t t s'

if p(0. (11b)

Integration of Eqs. (11) over p yields

into Eq. (1), integration of (1) over s with the
boundary condition (2), and resubstitution from

(10), we obtain

4,(s) =Jt p(s, q)dq=
J 4,(s)e-"ds, (15b)

—1 0

where s is a complex variable tR(s))0.
multiply (1) by e '* and integrate over s from 0
to ~. Noting that, by partial integration,

= le 'V(s, ~) l
+z e 'V(», I )ds

~o

= —P(0, p)+s@(s, p),

with

ttp(s) =l t Pp(s')E(l» —»'I)«''j, (12) we obtain

@(z, ~) = [»A(z)+~%(0, ~)3/(I+») (16)

By integration of (16) over tz we have

and, since'

&(0 t) = —(») ' 4(»') «p(»'/I )ds',
0

+0 (14) z ~ (I+sp) dp

X. 1

Fquation (12) is known as Milne's integral ' ' J
equation. Its solution determines p(s, w) by Eqs.
(11). In particular, we have for the angular
distribution of the neutrons emerging from the
medium (Eq. (11b) for s=0)

p

=
J qg(0, t )(1+st ) idt-

—l.

Thus, P(0, p) can be represented by the Laplace
transform of Pp(s). Equations (12) and (11) are
an equivalent formulation of the problem stated
by Eqs. (1) and (2), and it is customary to st:art

=—log[(1+s)/(1 —s)]= s—' arths, (17)
2$

' Here and in the following we use the notation arth for
tanh ' and art for tan '.
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~I (1+st)—'qg(0, q)d~

it o(s) =-
1 —s 'arths

Comparison of (15b) arid (14) yields

ilia(0, p) = —-';it o( —1/u).

Hence we may write (18)

(18)

V. SOLUTION OF THE INTEGRAL EQUATION FOR
go(s) BY THE METHOD OF WIENER AND HOPF

Setting

a(s) = )t (I +&i ) '~4 (u, o)d~,
—1

we may write (18) in the form
f

Qo(s) (1—s ' arthsI =g(s).

C'0 o( —1!~)
go(s) I1—s ' arths I

= ——', ~l diti. (20)
1+sp

arths =s+ 3s + (21)

and using the relations (3), (5), and (9), we

obtain

4o(s) =3s-'+3sos-"+ (22)

and hence the asymptotic form' of Po(z) is given

by

Po(s) -3(s+so) as s—+ ~.

TABLE I. Functional properties of &0(s), s ' arths, g(s).

Function
Domain of
regularity* Proof

@0(s) (R{s)&0 Follows from definition {15b)
and asymptotic form (23)

s ' arths —'1& N, (s) & 1 Follows from definition (17)
g(s) (R(s) &1 Follows from definition {24)**

+ One can actually show that the functions are analytic in domains
wider than those indicated above, but we will not need to make use
of this fact.

*+From (24) it is seen that the only possible singularities of g(s)
can occur for those values of s for which the denominator of the inte-
grand vanishes.

4 That $0(s) has this asymptotic form follows also
directly from (1) by noting that P(s, p) must be almost
isotropic for large s. It is therefore legitimate to write
p(s, p) for large s in the form

4'(& u) = '4'o(&) —'jw=-'4' (&) —'v.

Fquation (A) can be considered as an expansion of P{s,p}
in Legendre polynomials neglecting all higher terms
(diffusion approximation). Introduction of (A} into (1}
yields

&0(s) =3(a+const;}.

Before attempting to solve this integral equation
for @o(s), we note that the asymptotic form of

fo(s) for large s is determined by the behavior of

@o(s) at s=0, which can be immediately ascer-
tained by expanding (18) in a Laurent series

about s=0. Noting that

This integral equation can be solved by con-
sidering the domain in which the functions
occurring in the equation are analytic. We shall
form a certain function containing itio(s) and
(s ' arths) which will have the property of being
analytic and bounded in the whole complex
s-plane. According to Liouville's theorem in the
theory of complex variables, such a function
must be a constant. From this, therefore, it will

be possible to determine 4o(s) in terms of the
known function (s ' arths).

The functions occurring in Eq. (25) can
immediately be shown to be analytic in the
domains given in Table I.

In order to solve (25) we shall try to re-write
it in such a manner that the left-hand side is
analytic in a half-plane and the right-hand side
in another half™plane overlapping the first so
that both half-planes fill out the whole plane.
Then the two sides of the equation can be
considered as the analytical continuations of
each other and therefore will represent the same
function. This function will be analytic on the
whole plane. If, in addition, it turns out to be
bounded in the whole plane, it must be equal to
a constant as mentioned above.

As it stands, Eq. (25) is not in the desired
form, since the function 1 —s ' arths is analytic
in a strip rather than a half-plane, namely, the
strip —1&(R(s)&1. Such a function can, how-

ever, be written as a quotient of two functions,
each analytic in a half-plane, provided that the
function (a) has no zeros in the strip and (b)
that it tends to unity as ~s~~~ in the strip.
The function 1 —s i arths has, according to (21),
a double zero at the origin and, as may easily be
shown, no other zeros in the strip. We can
satisfy condition (a) by replacing the function by
s '(1 —s ' arths). This function, however, will

not satisfy condition (b). Hence, we form the
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function
r(s) =s '(s' —1)(1—s arths) (26)

which satisfies both conditions. In terms of r(s),
Eq. (25) reads

Ls'/(s' —1)le.(s)r(s) =g(s) (27)

where 0&p&1 and —p((R(s) &p. Defining

—p+i~

r (s) =exp (2s.i) 'Jj
—p—i(e

(u —s) logr(u)ifu

(28)

In order to decompose r(s) in the desired maruier
we consider logr(s) which is single-valued in the
strip —1($(s)&1, provided we choose a par-
ticular determination of the logarithm. We shall
choose it so that log1=0. Since r(s) satisfies
condition (b), logr(s)~0 as ~s~~~ in the strip.
Consequently, logr(s) can be represented by the
'Cauchy integral formula in the form

p+ ioo

logr(s) =(2si) '
t (u —s)—' logr(u)du
p—i~

—p+ioo

—(2iri) ' I (u —s)
—' logr(u)du

—p—ioo

, +1p

)Q

~) p

FIG. 1. Path of integration for r (0).

~
r (s)

~
)Ci) 0 and similarly in any half-plane

$(s) &P'&P, ~r+(s) ~
&C2)0, where Ci and C2

are constants. Furthermore, the definitions (15b)
and (24) imply that in their respective half-planes
of regularity @0(s) and g(s) are 0(1/~s~) at
infinity. These conditions imply that each side
of (31) is bounded at infinity. Since each side is
regular elsewhere it must be bounded in the
whole plane. Hence, it fulfills the conditions of
Liouville's theorem a,nd must be identically equal
to a. constant C. Therefore, from (31)

p+ ioo

r+(s) =exp (2iri) ' t

p —.ioo

we obtain

(u —s)-' log r(u)du,

(29)

0 0(s) = C( +I)r-(s)/s'.

In order to determine C we expand $0(s) in a
Laurent series about s =0

Ol

Iogr(s) = logr+(s) —logr (s)

r(s) =r+(s)/r (s), (30)

where r (s) is regular and different from zero in
the half-plane (R(s)) —p, while r+(s) is regular
and different from zero in the half-plane 61(s) &p.
Putting Eq. (30) into (27), one may write it in
the form

s'$0(s)/(s+1) r (s) = (s —1)g(s)/r+(s). (31)

Here, the left-hand side is regular in (R(s))0,
while the right-hand side is regular in (R(s) &p.
Thus, each side of (31) represents the analytic
continuation of the other, so that either side is
regular in the whole finite s-plane. It is necessary
now to investigate the order of magnitude of
each side of (31). From (28) and (29) it follows
(see appendix) that in any half-plane (R(s) )—p'

& —p, r (s) is bounded away from zero, that is,

C=3/r (0).

We now evaluate r (0). From (28) we have

(34)

p+ioo— .

1/r (0) = exp —(2s i) '
J —p—ioo

u 'log r(u)du-

We deform the path of integration into the
two segments ( i ~, ——ip), (fp, i ~) of the
imaginary axis and the semicircle S of radius p,
as shown on Fig. 1, p being any positive number.
The two integrals over the segments cancel since,
according to (26), the integrand is odd so that

1/r (0) = exp ——(2s'$)
J

u logr(u)du
S

@o(s)= Cr (0)s '
+CLr-(0)+r-'(o) js '+ . (33)

Comparison with (22) yields
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On letting p—+0 in the integral, we find

1/r (0) =exp[-', I ogr(0) j=gr(0)
From (26) and (21) we have r(0) =-,', so that
from (34)

wl th
3 Ilw/2 p j

I,=-
]

— —[dx= —,
&sinpx xz)

/i/2 ( 3Ip (——~ —
f

——- — fdx,
pr &p Ex'- 1 —xcotx)

and thus from (32)

yp(s) =v3(s+1)r (s)/s' (36)

VL DETERMINATION OF zp AND plIp(p)

Again comparing (33) with (22), we obtain

sp ——1+r '(0)/r (0).

From (28) we get

—P+i,oo

r '(0)/r (0) =(2pri) '~' u 'logr(u)du.
—P—p,'oo

Integration by parts yields

—//+ i~

r '(0)/r (0) = (2pri) ')~ [r'(u)/ur(u)]du
—P—coo

Since r(u) is even, r(0) 00, and r'(0) =0, the
integrand does not have a singularity at N=O,
and we may move the path of integration to the
imaginary axis. Then, since the integrand is also
even, we may write

1,00

7 '(0)/r (0) =( i) p' [r'(u)/ur(u) jdu.
0

Introducing now the explicit form of v as given

by (26) and replacing the variable of integration
by s =it, we obtain

1 p" 3
0

pr ~ p t' (1+t')(1 t ' artt)—
dt (37)

or, substituting t = tanx,

1 ) 3

sin'x 1 —x cotx

Each of the two parts of the integrand goes to
in6nity as 3/x' as x—&0. Writing

2'0= JI+ 4

we have

pm/2 ( 3
zp= —+—

(

fdx. (39)
~ ~0 Ex' 1 —x cotx)

The integrand in (39) can be expanded in a
power series in x, which converges rapidly in the
whole range of integration, and then integrated
term by term, with the result'

s0 =0.71044609. (40)

As seen from (23), the value of the neutron
density at the boundary, extrapolated from the
asymptotic solution, is 380. Ke now wish to
determine the true neutron density at the
boundary, fp(0). It is readily seen that

Pp(0) = lim syp(s). (41)

Indeed, the relation follows formally from (15b)
by introducing the new variable I=so. Equation
(15b) then becomes

s@p(s) = ~ fp(u/s)e "du-
Here, letting s—+~ and interchanging the limit
and integral sign, ' we obtain

lim sPp(s) = Pp(0)e du=/ (0)p.
~30

Introducing (36) into (41) we now obtain

Pp(0) =@Slim r (s) (42)
8~00

From (28) it is seen that r (s)—&1 as supp and
hence'

Pp(0) =%3. (43)

5 The computation was carried out by Dr. P. R. Wallace
and Mr. B. Carlson. As will be seen from later papers,
very accurate knowledge of s0 is necessary for various
approximation methods.' This step may readily be justihed rigorously.

~ For other derivations of this result, see M. Bronstein,
Zeits. f. Physik 58, N6, 59, j.44 {1929);E. Hopf, see
reference j. ,
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VII. THE ANGULAR DISTRIBUTION OF THE
EMERGING NEUTRONS

1 t
-"logr(u)

logr (s) =-
2%'Z ~ ion

' S—S

1 t logr(u) 1

VP

logr(u)—dQ.

The first integral may be written as

fp

(u —s) log r (u) d11
—t00

ioo

(u+s) logr(u)du

Ke wish to express the angular distribution of
the emerging neutrons, as given by (19), (36),
and (28), by a real integral. For this purpose,
we have to transform r (s). Again deforming
the path of integration according to Fig. 1, we
have:

and, with (19) and (36):

P(0, u) =5~3(1 u)—r-( 1/—t ) =5&3(1—u)

t "logLsin'x/(1 —x cotx)]
&exp dx,

Q 1 —(1—ti') sin'x

p, (0. (46)

The numerical evaluation of this expression is
given in the following paper. '

APPENDIX

It remains to be shown that the functions
(s) and r+(s), defined in (28) and (29), are

such that
~
r (s)

~
)Ci&0 in any half-plane

(R(s) )—p' & —p and
~
r+(s)

~

)Cz )0 in any half-
plane $.(s) (P'&P. We shall confine ourselves
to proving the assertion for r (s). An entirely
analogous argument holds for r+(s) From .(28)
it is evidently suf6cient to prove that in any
half-plane tR(s) )—13') —P the integral

As p—+0, the middle integral approaches zero,
for s/0. Combining the hrst and third integrals
we obtain

~
—P+ioo

j—P—ioo

(u —s) ' logr(u)du

s t'" logr(u)
logr (s) =—

I
———du

1ri ~,;0 u' —s'
logr(it)

dt
t'+s'

is bounded. Now for large values of u the
function r(u) is of the form.(u) =1+0(1/~ uz i),

so that logr(u) is quadratically integrable. Hence,
applying Schwarz's inequality to the integral,

and, on substituting from (26),
I

~+'" logr(u)
— ----dN

S
logr (s) = ——

7K p

—P—sr''+' ~ '""11log—
E t))

dt (44).
t2+S2

i
logr(u)

i

'du

s+'--
x(s,pp [u —sf

sin x+s cos x

Putting t =tagx we have Anally The assertion follows at once since the denomi-
nator of the second integral stays uniformly

lo«(s) — ) ~d 45) away from zero whenever (R(s) )—p') —p.
8 G. Placzek, Phys. Rev. 72, 556 (1947).


