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It is assumed that when a plane shock wave is incident
on an interface between two gases of different densities p
and p;, and different ratios of specific heats v and v, re-
spectively, a three shock configuration results, involving
an incident shock, a reflected shock, and a transmitted
shock. It is further assumed that in the various angular
domains the pressure is constant. The Rankine-Hugoniot
equations are used to formulate the following conditions:
(a) the pressure across the interface is continuous and
(b) the deflection of the flow caused by the incident and
reflected waves is equal to that caused by the transmitted
wave. Rational polynomial equations of the twelfth degree
are obtained, the roots of which determine the position and
strength of the reflected and transmitted waves as func-
tions of the strength, angle of incidence of the incident
wave, and three parameters characterizing the pair of
gases involved. The solutions of these equations are

studied as multiple branched functions of the five param-
eters. It is shown that one branch behaves similarly to ‘the

" acoustic case, and it is suggested that this branch is the

only physically realizable one. Relations are obtained
between the strength of the incident shock, its angle of
incidence, and the three parameters characterizing the pair
of gases which determine the ranges of these parameters
where real physically realizable solutions may exist. One
of these relations shows that the configuration is impos-
sible for angles of incidence corresponding to the angle of
total reflection. The cases for which numerical computa-
tions were made are listed, and the method of computation
is briefly described. These computations were planned and
supervised by Mrs. Adele Goldstein and were carried out
on the Eniac which was made available through the
cooperation of the Army Ordnance department.

1. INTRODUCTION

HE purpose of this paper is to give a dis-

cussion of some results on the phenomena
associated with the reflection and refraction of a
plane shock wave incident upon an interface
between two gaseous media. We shall assume
that the neighborhood of the line of intersection
of the incident wave, I, and the surface sepa-
rating the two media is divided into angular
regions by a reflected shock wave, R, and a
transmitted shock wave, M, as illustrated in
Fig. 1. We shall also assume that all quantities
of interest are constant in each of these angular
regions. Thus we implicitly assume that the
phenomenon of reflection is stationary as seen
by one traveling with the line of intersection of
the incident wave and the interface.

The computation of all relevant quantities
may be reduced to that of determining the
angles DOR and DOM of Fig. 1, that is, the
angle between the reflected wave and the inter-
face, the angle of reflection, and the angle
between the transmitted wave and interface, the
angle of refraction, respectively. These angles in
turn may be determined by use of the fact that

* This work was started while the author was employed
at Princeton University on work sponsored by the Office of
Naval Research, contract N6ori-105 Task II.
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the Rankine-Hugoniot equations must hold
across any shock and that the appropriate
boundary conditions must be satisfied. These are:

(A) In the domain ROM there is no discon-
tinuity in pressure. Using the notation of Fig. 1
we have p'' =p/ .

(B) The total deflection of the flow through
the incident and reflected wave, 8+ 68’, must equal
the deflection through the transmitted wave, ;.
Thus 646" =28;. (See Section 2 for the notation.)

When these conditions are imposed, as is done

F1G. 1. The assumed shock configuration.
For notation see Section 2.
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below, we are led to an algebraic equation for
the tangent of the angle 7/, and the angle between
the normal to the reflected wave and the flow
incident upon that wave. Solving this equation
is equivalent to solving a polynomial of twelfth
degree, the coefficients of which are functions of
thé parameters characterizing the incident wave,
essentially the angle of incidence and some
measure of the strength of the incident wave.
They are also functions of the characteristics of
the two gases. These will be taken as the ratio
of the velocities of sound in the two media, and
the ratios of the specific heats for each medium.
Thus each equation which has to be solved has
coefficients which are functions of five parameters.

In general there will be many real solutions of
these equations. Some of these may be dismissed
on the ground that they violate some physical
requirement such as the requirement that the
flow incident upon the reflected shock wave be
supersonic. However, after this is done we are
still left with multiple solutions. We shall con-
sider the solutions as a multiple branched
function of the parameters involved and select
those solutions which lie on branches which
behave as n—1 as do sound waves.

In particular we shall not consider in detail
solutions with positive values of 7/, that is, con-
figurations in which the reflected wave lies ahead
of the normal to the flow behind the incident
wave, for in the sonic case such solutions do not
seem to occur.

2. NOTATION

The notation used is given in part by Fig. 1.
The lines OI, OR, and OM are the incident,
reflected, and transmitted shocks, and the lines
N1, Ng, and Ny are the normals to these shocks.
The vectors Z, Z', and Z,;=Z are the flows
incident on these shocks and z and 3’ are the
magnitudes of these vectors. The line OD repre-
sents the interface between the two media; that
above OD and to the right of OI is the medium
into which the incident shock is traveling. It is
called the unprimed medium and has a pressure
density, sound velocity, and ratio of specific
heats given by p, p, ¢, and v, respectively. The
medium below OD is the medium on which the
incident shock impinges, and its characteristics
are labeled by the same letters as those in the
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upper medium but are distinguished by a sub-
script 1. The pressure between the incident
shock and the reflected shock is denoted by 2/,
and other quantities are similarly labeled. The
pressure behind the reflected shock is denoted by
p’" and that behind the transmitted shock by
p1/, with a similar convention for other quan-
tities.

The angle between the normal to a shock and
the flow incident upon it is denoted by = with an
appropriate superscript or subscript. It is positive
when the direction from the normal to the flow
is counter-clockwise.

The angle between the emergent flow and the
prolongation of the incident flow is denoted by &
with appropriate sub- or superscripts. These
angles are taken to be positive if the direction
from the latter to the former is counter-clockwise.

In addition we shall use the following symbols
defined in terms of the symbols used in Fig. 1.

n=p"/p, n'=p"/p', m=p'/py,
x=tanr, x'=tanr’, x;=tanr,
A=tand, A’'=tand’, A,=tans,,

D=tan(5+8) = (A+A")/(1—AA"),

B*=(1+n%2)(1+4"2)71, I'=(c/c1)?,

’ [ A(1+9%x?) 1]§

Xm = - )
(14+x)Iy+4 —1+3(y—1)(n—1)

”,=[ 1+ nx? 3 1]‘}
1+3(v+1D)(n—1)
Zar=14x"%
A=y(vi+1)/mily+1), a=v1/7,
P=al'=(v1/v)(c/c1)?*=p1/p,
14xr2=(29P) " [2na+(1—a)(n—1)].
3. THE RANKINE-HUGONIOT EQUATIONS

We shall use the Rankine-Hugoniot equations
in the form

r— 2
Dt Y e/ocost—1]
p vt
2 2
= 1 Ezicl—_l), (3.1)
vy+1\1+4x2
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_fi_(7+1)(1>’>/1>)+7—1.
D@L
_p_=(1+1)n—('y—1)’ (3.2)
P (y+1)—=(y—1)y
(2’ /c")2cos?(7+9)
=2y y=1+C0+D /)], (3.3)
tan(r-+40) =qtanr. (3.4)

In these equations, v is the ratio of specific
heats for the gas under consideration, p’/p is
the ratio of the pressure behind the shock to
that ahead of it, 5 is the ratio of the density
behind the shock to that ahead of it, z and 2’ are
the magnitudes of the flow vectors ahead and
behind the shock, respectively, ¢ and ¢’ are the
sound velocities in these media, the angle 7 is
the angle between the normal to the shock and
the incident flow vector, and § is the angle of
deflection of the flow. Both of these angles are
illustrated in Fig. 1 and the sign convention used
there is held throughout.

Equations analogous to Egs. (3.1) to (3.4) hold
across any. of the shocks, I, R, and M when
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4. THE PRESSURE CONDITION

The requirement (4), namely, p”’ =p,’, when
formulated in terms of the Rankine-Hugoniot
equations leads to an expression for x;=tan r,
as a function of 7, x, x’=tan7’, (¢/c1)? v and v1.
This expression is obtained as follows:

Applying (3.1) to the flow incident on the
reflected wave we have

(0"~ 9)/p =2y (D)L ) (1)~ 1],
Substituting for (z'/c¢’)? from (3.3’) we obtain

" —1)p’ 1 -1 v
P_=B2[('v '+ (v+ )P]_v 1w
p’ (y+1)p v+1
Where
B2=(1+4n%2) (1 +x'2)L 4.2)
Hence
P/ p=1+(B* =1+ (y=1)p/(v+1)p"]. (4.3)
Similarly,

(o1 =)/ =271(v1+1)7[(5/0)* (1 +2,7) 71 —1].

Substituting in this equation for z/¢ we obtain

appropriate changes in the symbols are intro- b’ 27
duced. —
Equation (3.3) may also be written as P v+l
' ¢ (1 24:2)—1 14-x2 +1)(p —
(&/¢')*(1+n*?) , , x[r riv+0p 1))%1]_1}. 04)
=) [y—1+(+D/p)], (3.3) 1+xl 29
and (3.4) as Equating (4.4) and (4.3) gives the equation for
A=tand= (n—1)(1+4nx?)~1x. (3.4)  x1, namely,
14a2) (14’2
14+x,2= ( ) A (4.5)
A —x"?) +3[(v+1) = (v = DnJ(1+x%)
(14x5)Ty

TAB )+ — (=]

Consideration of Eq. (4.5) leads to relations
between the variables %, 7, 4, and I' which must
hold in order for a real solution to exist. It
follows from (4.5) that 14x,® is a monotonic
increasing function of x'%. If

1-A425(v—1)(n—1),

the largest value of 14x,? is finite and occurs
when x’ is infinite. If

1-4<5(v=1(n—1)

1+x* becomes infinite at &’ given by
A(149%2)
A=1+3(r=D—1)

14a2=

We shall see later that for physical reasons x’
must be restricted to the range given by

1492%?
1+3(y+1)n—1)

L 1o =
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The value of 14x, corresponding to this value
of 14«2 is finite and positive in both cases and
given by

14x.2 A+
l =

13 A=) (y+1)(n—1)

Hence x1 is not real in the range we are interested
in unless

(49T 21431 —a)(n—1)/an.  (4.6)

The inequality (4.6) reduces to the well-known
condition for the existence of a transmitted wave
in the acoustic approximation obtained by
setting n=1, namely, (14+x?)I'2 1. The value of
x for which the equality holds defines the angle
of total reflection. However, if the equality
holds in (4.6), the only possible allowable value
of x"2 is x"32 and for this value of x”2, x;=0. This
means that the deflection by the transmitted
wave is zero but the deflection by the incident
and (sonic) reflected wave is different from zero.

Hence we cannot have an allowable solution if °

the equality in (4.6) holds. That is, there can be
no analog of total reflection in the case of shocks.
Of course, if I'>1 and a>1, (4.6) is satisfied
for any real values of x and 4. In case I'>1 and
a <1 the equality in (4.6) will lead to a real curve
in the x, n plane for some values of x and 7 if

2/(v+1)>T—=1a/(1—a).
In case I'<1 and @ <1 the equality in (4.6) leads

to a real curve in the x, 7 plane for all values of -

x and 7. In case I'<1 and a>1 this curve becomes
partly imaginary if the inequality given above
holds.

Since x;* must be real and positive, it follows
from (4.5) that

14522 142",2
A(1419%?)
(A43)Tn+A4 —1+3(y—1)(n—1)

That is, if x, #, I', and 4 are such that the right-

_2E-D-0-DE+DT _

(4.7)

’

TAUB

hand side of (4.7) is greater than one, then
allowable values of x’? are bounded from below.
If this right-hand side is less than one, this lower
bound is zero.

It may readily be verified that (4.6) is equiva-
lent to the condition

14522 1452
There are choices of the parameters x,7, I', and
A such that 1+%",221 and 14+x".2<1. In such
a case (4.6) is satisfied, and x and 7 satisfy the

condition:
x> 3(y+1)(n—1)/7

5. DEFLECTION BY THE UPPER PATH

In order to calculate the deflection of the flow
through the shocks I and R, the upper path,
we calculate tand and tanéd’. These are given by
(3.4'), namely,

A=tand= (n—1) (14 nx?)x, (5.1)
A =tand’ = (n —1)(1+n'x") %', (5.2)

and hence
D=tan(6+8) = (A+4")/(1—AA)"L, (5.3)

Our next concern is to cdlculate 5’ as a function
of 7, x,x’, A, and T'. From Eq. (3.2) we have

, D@7/ -1
! (v=1) " /) +r+1

Substituting in this equation from (4.1) we
obtain after some algebraic manipulation

, (v+1)B?
T =D B = 1)+ (1)
(y+1) (1 +n2x2)

= . (5.4)
(v=1) (22— x"2) + (v +)n(1+x"%)

On substituting (5.4) in (5.2) and (5.3) we
obtain

(32— x'2)x’

= (5.5)
(r+D) A+t —2(B2—1)  (A+2)[1+3(v+ 1) +o"x?)]— (1427
where 14’52 is defined by (5.7) below.
L2t =) — (- D DA+ (5.5

(D1 ) (1) =20 =)
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and

Do (=) (v +1) (14272 (n — 1) (1+5%) +2(n’? — 2'2) (&' (1 +1%2) — (n — 1))
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(D) A+ DL na2) 2+ (= 1) 2] — 2 — %) (L et (— D)

Since, by assumption, the reflected wave must
be a shock wave, we must have 5’2 1. Hence we
must have

1+4n22
14+x2< 14032 =

1+3(y+1)(—1)

Thus |x3’| is an upper limit for |x’|. In case
the right-hand side of Eq. (5.7) is less than one,
no reflected shock is possible. The equation
xu’ =0 is equivalent to

1+ =1+3(y+D(n—1).

This equation determines an angle of incidence
for each shock strength %, such that the reflected
wave is sonic, and for x, less than that given by
this equation; the reflected wave does not exist
because the flow behind the incident wave is
subsonic.

(5.7)

6. THE FUNCTION D(x’)

For the purpose of the discussion to follow it
is convenient to summarize some of the proper-
ties of the function D(x’) for fixed values of v,
1, and x, that is, for an incident shock of given
strength passing through a fixed medium at a
fixed angle of incidence. We shall assume that

1+9°x?
>1.
i+3(y+1)(n—1)
D(x’) is positive if x’ is negative and x'2> x>
As «’ increases D(x’) decreases monotonically and
at &' = —|xa’| it is equal to A. As x’ increases

further D(x’") passes through a minimum for a
negative x’ such that

ay=14x"y=

b4
1 +x,2 =1 + (x/2)min=—'L"
I+3(v+ Dz

X{1=3(y+Dan+[ Gy +1))%n

+3(v = Dau+y+114 22 (6.1)

2A(B2—1)+[v+1¥(v—1)n]

(5.6)

This is the only minimum D(x’) possesses. There
is also a maximum at the positive value of x’
satisfying (6.1). This maximum is greater than
A since A=D(x') at x’ =0, as well as x/, such that
x"2=x'y.

After passing through the maximum D(x’)
decreases monotonically with increasing x’ and
crosses the x’ axis at x' =9x.

The minimum of D(x’) will be negative if and
only if x, n, and v are such that

. 2 —=D[(y—=1) (1 4n9x2) +2](1 +9x2)
g (1+7%?) .

If this inequality holds there are two negative
roots of the equation D(x") =0, given by

(6.2)

—_X x2
EW
T4ge?  L(14nx?)?
_2(n— DLy —1)(1+nx?) +2]]*}
(1722 (L +nx2) 330 '

If the inequality in (6.2) becomes an equality,
the minimum of D(x’) is zero. The angle of
incidence defined by the resulting equation is the
so-called extreme angle beyond which regular
reflection of shocks from a rigid wall is impos-
sible.! ‘

7. DEFLECTION BY THE LOWER PATH

We next calculate #; in order to compute

A1=(111—1)(1+711x12)~1x. (71)

We have
(D@ /P) -1
" D+ - D (/)
_(m+D@"/p) -1

=06/
Substituting from (4.3) we obtain

(7.2)

771=‘/1(’Y+1)

2y(11—= 1) (B2 =) +7i(v+ D[y +1— (= 1)n]

tcf. J. Von Neumann, Obligue Reflection of Shocks (Explosives Research Report No. 12, U. S. Navy Department,

Bureau of Ordnance, October 1943).
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and
2v(B?—1)%,
A= (7.3)
(v+1) (1 +x2)y:1 Dy —2(B*— 1)y
27( 2x2_x/g)x
: - (7.4)

A= .
U D (L) (L) yaTn — 2(n2 — ')y

We note that the condition that the trans-
mitted wave be a shock wave is ;2> 1 which is
automatically satisfied since v, 2 1.

The deflection condition (B) is then satisfied
by finding an x” such that

D=A1 (7.5)

where D is given by (5.6) and A; by (7.4). The
x’ must be such that

142 S 14+x2< 140y (7.6)

In case x’»? is negative the left-hand inequality
is replaced by 1422 1. One solution of (7.5) is
given by x’'=nux for then D=A;=0. However,
this value of x’ violates (7.6) and does not cor-
respond to a physically possible position of the
reflected shock.

8. THE FUNCTION A(x’)

The problem has been reduced to solving (7.5)
where the quantities involved are defined by
(7.4), (5.6), and (4.5); in addition we are
interested only in those solutions satisfying (7.6).
We have already seen that no physically real
solutions can exist unless

(1+)T>14+ 1 —a)(n—1)/2ay
and
T+ 2 1450+ 1) (n—1). (8.1)

We now discuss some properties of the function
Ay(x"). Since the behavior of xy, as a function of
x’ has already been discussed, it is convenient to
write A; as a function of x; and the parameters
X, 1, v, ¥1, and T. It follows from (4.5) and (7.3)
that

[le_ (1 +x12)]x1

A1= s
A4x)[1+3(vi+ Dz | — 2z

where

(8.2)

(49T
2= (y+1)(—1)

as a consequence of the first of (8.1).

>1, (8.3)

Zim

Equation (8.2) may be obtained from the
relation between A’ and x’ by replacing x’ by
%1, i by 21a, and v by ;. The character of A,
as a function of x; may be readily obtained,
therefore, from that of A’ as a function of x’. In
any case it may be seen readily that it is an odd
function of x; and as x’ increases from minus
infinity A, decreases, becoming zero at the value
of xy given by 1412 =2,. As x; increases further,
Ay, passes through a negative minimum and then
increases to zero at x;=0. The value of x; for
which the minimum occurs may be obtained by
making the replacements mentioned above in
Eq. (6.1).

In discussing A; as a function of x’ we dis-
tinguish between four cases:

I+a'w?21, 1-4<3(v—1n—-1),

for which

(8.4)

w0 >14x,221

24 (1+9%x?)
2 1+x/2> 1+x’m2,
2A-1D)+(—-1)(n-1)
142221, 1-4A25v-1)(n—-1), (8.95)
for which
N214+x221 as o2 14+x2>14x"2,
1422 <1, 1=423(v—-1)(n—1), (8.6)
for which
NZ21+x22M as o21+4x221,
and
I+a"2 <1, 1-A<3(y—1)(n—1), (8.7)
for which
w2 14x22 M
as

2A(1 )
> 1+
24—1)+(r—1)(n—1)

The quantities N and M are functions of the
parameters x, 3, I', v, and v, which are deter-
mined by setting 1+4x'? equal to infinity and

x> 1.
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unity, respectively, in Eq. (4.5). They are
positive and greater than unity for all allowed
values of the parameters.

The graph of A; as a function of &’ is sym-
metrical with respect to both axes when positive
and negative values of x; are taken, since A, is
an even function of x’. We shall describe it in
the first quadrant for the various cases. When
(8.4) holds, A; is imaginary for x’ <|x,'|. It is
zero at ¥’ =|x,’'| and has an infinite slope at
this point. As x’ increases, A; increases, passes
through a maximum, and then wvanishes at
x' = px.

The function in the first quadrant has two
branches at x’=%x. The branch which emerges
from this point for increasing &’ is increasing and
has a vertical asymptote at the value of x’ given
in Eq. (8.4). The function of A; is imaginary
beyond this vertical asymptote.

When (8.5) holds, the character of this second
branch of A; at the point x’=7x changes. It is
still increasing, but instead of having a vertical
asymptote it remains finite as x’ goes to infinity.

When (8.6) holds, the function A; is real for
all values of x’ less than nx and does not vanish
anywhere except at x’ = nx. It hasa second branch
which behaves as in the case described by (8.4).
When (8.7) holds, the function A; behaves as in
(8.6) for x’'< nx and as in (8.5) for x’ > nx.

9. EXISTENCE OF SOLUTIONS FOR x'> —nx

From the facts already cited -about the func-
tions D(x’) and A;(x’), it is possible to discuss
various solutions of the equation A;=D as a
function of the parameter x for a given com-
bination of gases (I, v, and v, fixed) and for a
strength given of incident shock (5 fixed). The
different solutions of A;=D will correspond to
different branches of the function x'(x). Two
branches may or may not intersect. We shall now
show that for suitable choices of parameters T,
Y1, ¥, and n, branches which pass through the
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those solutions which lie on this branch cor-
respond to physically possible ones.

We begin the discussion by assuming x large,
so that the incident wave strikes the density
discontinuity almost head on. At the point

x'=—nx, A is zero and D is positive so that
A;—D is positive. Moreover, it is decreasing as x’
increases in the neighborhood of x’= —#yx. This

point is, of course, outside the range of a physi-
cally possible solution, since that range is given

by
1422 < 14+a 52 < 2.

We now compare the value of A; and D at
x'= —|xa’|. The latter is given by A since A’=0
g

here. It follows from (7.3) that for 1-4-x
=145
(n—"1)x:
1= s (91)
(1+x*)Pn—(n—1)
where
P=al'=v:c*/yc*=p1/p, 9.2)
and ’
(14x*)Tya 14«2
14x2= = >1, (9.3)

antil—a)(n—1) 14ar?

as follows from the first condition expressed in
(8.1), where

2na+(1—a)(n—1)
>
29P

14xp2= 0. (94)

Writing
(n—1)d
[(1+x2) Py— (n—1) J2(1+nx2)?

A y?) — A=

it may readily be verified that

14-x2
d=1 [x*2(1 — P2(14x72%)) + 2nx2

xTZ

X

point x'= —|xy’|, exist. At this point, the X (1 =[in(P=1)2+P](1+x12)) —x72].  (9.5)
reflected wave disappears. This phenomenon
occurs in acoustics, and this suggests that only Hence d=0 if and only if

o (PHin(P=1)%)(14a7%) = 1= {(1+277) [n(1+27°) (P+3n(P— 1)) — (4 = ) J}H(P—1) ©0.6)

(1 —=P*(14x2?)
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When a=1 there is only one positive root to
d=0, and (9.6) reduces to

1—P [/1—-P\*! 17}
B [ G N
2P 2P Py

When =1 there is only one possible choice of
the sign in (9.6), and it reduces to

r—1 (¢/cr)?—1
PE=1" (p1/p)*—(c/c1)?

In the usual linear theories of reflection and
refraction of sound waves the condition for the
absence of a reflected wave is shown? to be given
by (9.8).

The sign of d in (9.5) depends on the size of
P?(1+x7?) relative to unity. This quantity is the
analog of the square of the acoustic impedance
of the two media involved for

1
P2(14+x7?%) =P(a+%(1—a)(1 ~—)).
' 7

and when n=1 we have
PX(14x1%) =Pa=v1p1/vp=(p1c1/pc)*.

Our subsequent discussion then falls into two
cases:

P(1+x?) 2 1,

9

X (9.8)

and P*(14x%) <1.

In the first case the incident wave impinges on a
“denser”’ medium in an almost head-on direction,
and d is negative as is the difference between A,
and D at ' =nx. As &’ increases, one branch of
A; increases to a positive maximum and D
decreases to a minimum value which we can
make negative by choosing x large enough. We
shall assume that for this choice of parameters
n, %, v, 71, and T' the point &’ = — |x,’| is greater
than at least one of the two real negative roots
‘of D=0. This condition can be satisfied by
choosing x sufficiently large. For such a com-
bination of parameters there must be two
negative values of x’ such that A;=D, as is
obvious from a consideration of the graphs of the
functions involved.

As x decreases d decreases, and one negative
solution x” moves toward the point x’= — |x’|.

2cf. Rayleigh, Theory of Sound (Dover Publications,
New York, 1945), Vol. 11, p. 81.
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As x decreases it may happen that both negative
solutions disappear while d is still negative.
This would be similar to the situations en-
countered in the study of three shock con-
figurations where it is found that a limiting angle
of incidence exists beyond which no three shock
solutions exist. If such a thing happens, the
curves D(x’) and A;(x’) are tangent for some
value of x and for smaller values of x never
intersect. It is evident from a consideration of
the graphs of the function involved that this
may occur even when D(x’)=0 has real solu-
tions, that is, in the region of regular reflection.

It may also happen for some choices of the
parameters v, vi1, I', and 7 that both negative
solutions still exist for the values of x greater
than or equal to the greatest value for which
d=0. In case x satisfies (9.6), x’ = — |xx’| is one
solution, and the reflected wave disappears. For
values of x slightly less than this value, one
solution lies between x'= —nx and x' = — |x»'|,
and this corresponds to acoustic theory, for in
that theory a compression is reflected from a
“denser” medium as a compression for head-on
incidence. As the angle of incidence is made more
glancing, a critical angle given by (9.8) is reached
at which the reflected wave disappears, and
beyond this angle the reflected wave is a rare-
faction.

Thus one branch of the function x'(x) de-
scribing the solutions of D =A; for fixed 7, v, v1,
and T, and varying x passes through the point
x'= —|xy’| and then lies between x’ = —nx and
x'= —|xa’|. Since a similar phenomenon takes
place in acoustic theory and since the other
branch behaves in a physically implausible
manner, as we shall see below, we propose to
identify this branch as the physically realizable
one.

Presumably the reflected shock wave should
be replaced by a Prandtl-Meyer rarefaction for
values of x less than the critical value for which
d=0. We shall not discuss this point further here.

When the value of x is decreased from that
taken initially, the absolute value of the mini-
mum of D(x’) decreases. This means that_the
second negative solution mentioned above is
somewhere given by a value of x’ for which
D(x’) and A,(x’) are small; hence x; is small and

x' is close to —|x,'|. Since the slope of the
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Ai(x") curve is infinite at ¥’ = — |x,’|, &’ can be
close to — |x,’| and A;(x") can be sizable. When
this solution is in the neighborhood of ' = — | x|
the pressure behind the transmitted wave must
be very large, since x is close to zero. This means
that this wave is almost normal to the interface
and yet it must have a large velocity parallel to
the interface since it must keep up with the
incident wave. Such a solution does not seem
physically plausible.

The foregoing discussion may be summarized
as follows: If P(1+x4%) 2 1, the lower medium is
acoustically the more dense. Then for x larger
than the largest value for which d=0, that is,
for x larger than the largest value given by (9.6),
a physically realizable three-shock configuration
may exist. It cannot exist for values smaller than
this critical value, and presumably the reflected
shock is replaced by a Prandtl-Meyer rarefaction.
For «x larger than the critical value, the existence
or non-existence of a solution is determined as in
the problem of three-shock configurations in a
single gas. This is done at present by numerical
means.

10. THE CASE P(1+1x2) <1

In this case, it follows from arguments similar
to those used above that at x'= —ux, A;—D is
negative, and at x’= —|xs’|A;—D is positive
for large x. Hence there is a solution of A;=D
between these two values of x’. There must be
another solution between «'=|x)’| and x'=
— |xn'| as follows from a consideration of the
graphs involved. However, there is no solution
on the physically realizable branch. This is to be
expected, since in the case P?(14x7%2) <1 the
lower medium is the ‘rarer,”” and for head-on
incidence in such a case the reflected wave is a
rarefaction. Presumably the assumption of a
reflected shock wave is incorrect, and this wave
should be replaced by a Prandtl-Meyer rare-
faction.

If x is now decreased to the greatest value

given by (9.6), the solution between x’ = — 5x and
x'=—|xy’| moves toward x'= —|xy’|. When
x satisfies (9.6), there is a solution at &’ = — | x|

for which no reflected wave exists. For values of
x less than this critical value, solutions of the
type assumed may exist.

However, they cannot exist for all values of x
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less than the greatest value satisfying (9.6). It is
evident that if there are two real values of x
satisfying (9.6) this type of solution again dis-
appears at the smaller value. Even if there is
only one real value of x satisfying (9.6), this type
of solution cannot exist for we have seen that
there is a lower bound for x given by the require-
ment that x; must be real, namely, (8.1), which is

2na+(1—a)(n—1)
2P '

14+x2>14x72= (10.1)

There is another lower bound given by the re-
quirement that the flow behind the incident
shock be supersonic, namely,

1+1’2x2
= >1.
I+3(6y+DH-1)

14" (10.2)

We have already pointed out that the solutions
cease to exist before the first of these lower
bounds is reached and, there is therefore, no
analogue of total reflection.

The greatest lower bound for x for the existence
of solutions of the type we are considering is a
function of n and the parameters characterizing
the two gases. Geometrically it is determined by
the condition that the curve D(x’) have one
point of contact with the curve A;(x’) between
the limits ¥’ = — % and x’=0 at which the two
curves are tangent.

Mathematically, this is the same type of con-
dition which determines the greatest lower
bound for the existence of solutions in case
P>(1+4x7%) 2 1, in the three-shock configuration
problem and in the regular reflection problem.
In the last problem, for values of x less than this
greatest lower bound a Mach reflection takes
place. This suggests that the analog of a Mach
reflection may take place for values of x between
the greatest solution of (9.6) and (10.1), provided
(10.2) is satisfied in case P2(1+x7?) <1.

We may summarize the case P?(14+x7%) <1 as
follows: For each », a physically realizable three-
shock configuration such as assumed can exist
only if x is within a certain range. The upper
limit for this range is the greatest value of x
satisfying (9.6). A lower limit for this range is
the largest of the following three numbers, (1)
the smallest solution of (9.6) if it is distinct from
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TasBLE I. Key to computations.

Case ¥ 71 yi/vy T'=(c/c1) P =p1/p pc/pict Gases
I.166 14 0.84 0.825 0.693 1.31
II 14 1.66 1.19 0.12 0.143 7.63 Air-He
11 1.4 14 1 0.875 0.875 1.07 0s-N,

IV 1.4 4/3 095 0.60 0.57 1.36  Air-CH,
V 4/3 1.4 1.05 0.60 0.63 1.23  COq-Air
VI 1.139 1.4 123 0.19 0.23 1.86 Freon-Air
VII 1.139 5/3 146 0.02 0.03 4.71 Freon-He

the largest, (2) |xz|, or (3) (v+1)(n—1)/27%%.
Neither (2) nor (3) can be the greatest lower
bound for defining this range but there must
exist a value of x depending on 7 greater than
(2) or (3) for which solutions of this type cease
existing. Presumably for such n and x (and also
smaller x’s), an analog of Mach reflection takes
place.

11. NUMERICAL COMPUTATIONS?

Equation (7.5) was solved numerically on the
Eniac, which was made available through the
cooperation of the Army Ordnance Department,
for seven combinations of the parameters v, 71,
and T'. These are listed in Table I. Mrs. Adele
Goldstine planned and supervised the com-
putations. ,

The method of computation was the following:
For each combination of gases, (v, v1, and T),
an integral value of » satisfying 1< 9<2/(y—1)
was chosen. For each value of these parameters
7 was allowed to take on values varying from
zero to 89 degrees. For each choice of these five
parameters |xy’| was computed. D, A;, and
D —A, were then computed for x'= — |x’| and
all other

x'=— lxM’l +ndx’ < lxM’I,

3 A detailed report on the numerical computations is in
preparation.
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where =0, 1, 2, --- and dx’ was taken to be
0.05 for some computations and 0.01 for others.
The values of x’ and x’+dx’, between which
D —A; changed sign, were noted and the value
of x'+dx’ was called a solution. This method did
not locate double roots. However these may be
inferred in many cases from graphs of x’ against
x for fixed 7 for a given pair of gases.

The detailed results of these computations
will not be given here but will be summarized
briefly.

For all cases for which computations were
made, the lower medium was the “rarer,” and
hence from the preceding discussion it was to be
expected that for values of x greater than that
given by (9.6) no solutions on the branch we
have called physically realizable were to be
found. However, for these values of x a positive
and negative solution was found, and the values
of x’ were approximately equal to = |x.’|. This
result is caused in part by the fact that the
curve A;(x’) has an infinite slope at x?=x",? and
in part to the nature of the function D(x’).

In many of the cases computed, the interval
of x within which the physically relizable branch
can exist is less than a degree, and hence it was
not explored in the numerical computations. In
other cases some points on these branches were
determined.
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