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This normalization differs from the one in
Whittaker. Equations (A.6), (A.7), (A.8) define
the quantities E„, Q, &'&, P,&"' uniquely, except for
(immaterial) factors of absolute value 1 in front
of Q, &"& and P &"&.

When we substitute these Q "' and P,"& into
(A.3) and (A.4), we find that the Hamiltonian re-
duces to (A.2). To check on the commutation
rules (A.S) we use the inversion formulae

a =i Q (Q &"&'f& —P &"'*q ) (A.9)

a„+= —i P (Q, &"&p,—P,&'&q;). (A.10)
1

The identities in the P,'"& and Q, &'& given ahead
of Eq. (A.8), together with Eq. (A.8) itself, then
suffice to establish that (A.S) follows from the
commutation rules for the p, q.
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On the Rise of the Wire-Potential in Counters

S. A. KoRFF
Nnv York University, University Heights, New York 53, ¹zv York

(Received June 9, 1947)

The rate at which the potential of the central wire in a counter changes when a count takes
place is considered. The electron collection-time is found to be between 1 and 3)(10 ' second.
The subsequent variations in potential are controlled by the mption of the positive ions. Some
experiments are reported, in ~ hich rises of 100 volts per microsecond were observed. The factors
controlling fast counting are briefly discussed.

INTRODUCTION

~OR some time it has been well known that
the potential of the central wire of a counter,

either operating as a proportional or as a Geigei
counter, rises quite rapidly to its maximum value.
Various estimates of the rise-time have been
made, the usual values being between one-half
and four microseconds, some estimates falling
outside either limit. The quantity in question is
of great importance in determining the maximum
speed with which counters can be operated.
However, it is not immediately obvious how or
whether it is connected with the much longer
"dead time" or "recovery time, " studied by
Stever and others, nor with the much shorter
electron travel time. It was, therefore, felt that
it might be worth while to explore the factors
involved and to see whether the rise time could
be related to other already understood properties
of counters and gas discharges.

MOTION OF THE ELECTRONS

It is evident that we have to discuss the
motion of the electrons from the time of the
formation of the 6rst electron in the counter

(the initial ionizing event) to the appearance of
the electrons on the sensitive portions of our
measuring device, Let us view the phenomenon
in two steps. First we sha11 discuss the motion
of the electron in the gas, including the avalanche
formation. The second step will take the electron
from the point on the central wire where it is
collected to the measuring instrument.

Consider first an electron formed in the sensi-
tive volume of a counter. We shall not discuss
the process whereby the electron came to be
separated from an originally neutral atom or
molecule but shall assume that the electron
came into being as a result of the initial ionizing
event. The electron finds itself in the field

produced by the applied vo'ltage. Since almost
all counters have cylindrical geometry, we can
write for the field 8, in volts per centimeter,
the expression:

E= 2q/r = V/(r log(b/a)), (1)

where q is the charge per unit length on the wire,
r is the radius measured from the center. of the
wire, V is the applied potential in volts, b is the
radius of the cylinder, and a is the radius of the
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TABLE I. Field as function of radius inside typical counter.

Radius from wire center (cm)

5X10 ' {mire surface)
0.01
0.05
0, 1
O.S
1.0 {at cylinder)

Field (volts/cm)

37,400
18',700
3,740
1,870

374
187

/ =4/Xs. R', (2)

where t' is the mean free path in cm, X is the
number of atoms or molecules per cc, and E. is
the average collision radius of each. If we take
X as 2.7&&10'8 per cc (corresponding to a gas
pressure of 7.6-cm Hg in the counter) and R as
10 ' cm, then the mean free path in this counter
is 4.8)&10 ' cm. Although Eq. (2) will give only
approximate values for I, we may consider the
mean free path established nearly enough, since
both E. and X may be considerably varied in any
practical case.

Ke shall now consider how much energy an
electron will gain in one free path at any given
point in the counter. Let us divide the counter
volume into three sections with differing proper, -

ties. The outermost region will be called the low
6eld region. In this region, the electron will gain
less than 2 volts per free path. The next region
we shall call the medium held region. Here the
electron gains between 2 and 15 volts per free
path. The region next to the wire is the high field
region, and in this region the electron mill

acquire 15 volts or more per free path. The
reasons for the selection of these particular
values will be discussed below. The energy gain

wire in centimeters. Let us assume that we have
a counter in which the cylinder has a radius of
1 cm and a wire of 5&&10 ' cm (approximately
4-mil wire). If the potential applied to the
counter is assumed to be .l.000 volts, we can
compute the 6eld in volts per cm at any point
inside the counter. The results of surh a compu-
tation are presented in Table I.

The electron, as it travels toward the central
wire, impelled by the field, will make collisions
with atoms or molecules present in the counter.
The classical mean free path / of an electron in

a gas, between collisions with gas molecules, will

be given nearly enough by the relation:

d V, in electron-volts, will be related to the heM
through:

d V= E(r—)dr,

where E(r) is the field at radius r, and dr is the
radial distance traversed by the electron. Ke
neglect the third derivative term produced by
variations in the field over so small a distance as
a free path. If we take dr as equal to a mean
free path, then we find that d V becomes 2 volts
at r=0.4 cm, and 15 volts where r is 0.06 cm.

. Hence the high field region occupies a space of
only half a millimeter about the central wire.

A 2 volt electron making a collision with an
atom or molecule will be able to transfer energy
by inelastic collisions to the target atom in

many cases. For example, the lowest level in
sodium is at 2.01 volts. In molecules with bands
in the red or infra-red it is lower, while only for
hydrogen, helium, and argon is it substantially
higher. If a polyatomic constituent is present,
electrons will start making inelastic collisions at
quite low energies. As soon as an electron mal. es
inelastic collisions we may think of it as coming
essentially to rest after each collision and starting
from rest to travel its next free path. The energy
transferred in this manner to the atom or mole-
cule will be lost either by radiation or by de-
excitation collisions. However, such radiation
cannot produce new electrons, because there are
no photoelectric work functions as low as 2 volts
characteristic of any substances ordinarily used
in counters. The energy will therefore eventually
be dissipated thermally. As the electron gains
more and more energy per free path nearer the
wire, there will be more and more available
energy levels of the atom or molecule to which
it can transfer energy, and consequently all
further collisions will also be inelastic.

The electron now enters the high field region.
Here the electron is a fraction of a millimeter
from the wire and will gain, per free path, the
15.6 volts needed to ionize argon. Here the
familiar Townsend avalanche process will start.
This process has been fully described elsewhere'
and will not be considered here. The result of
ionizing collisions will be as before, that the
electron will lose almost all of its energy per

S. A. Korff, ELectron and Nuclear Counters {I3. Van
Nostrand and Company, Inc. , Nem York, 1946).
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collision and may be regarded as starting from
rest after each encounter.

The total time required for the electron to
move from the place where it is produced to the
wire will now be discussed. To know this we.

must know the average velocity. It is evident
that the total time will equal the sum of the
times dt required to traverse each free path.
Hence we may write, for T, the total time,

T= Pdt = gt/v(r), (4)

where the sum is to be taken over all free paths.
Again neglecting the third derivative over any
one free path, the average velocity v in any free
path is one half the final velocity, and this may
be computed from the energy gained, since

mv'=eV. Therefore, the average velocity v

depends on the field, and since this varies
inversely as the radius, v(r) varies as the inverse
square root of the radius. Since an electron
starting at the cylinder gains about 0.2 volt
between collisions, and since this energy rises
only to 0.5 volt by the time the electron has
traversed more than half the counter, it is
obvious that the electron spends most of its time
in the low field regions. Inserting actual values,
we recall that a 1-volt electron has a speed of
5.93&10' cm/sec. Hence for an a~erage energy
of ~ volt, the average velocity will be about
3)& 10~ cm/sec. , and it will require around
3/10 ' sec. for the electron to traverse the
1000 free paths between cylinder and wire.

The Townsend avalanche. process, on this
picture, will be characterized by an average
electron velocity of perhaps 5 times the figure
cited, and for a distance of 0.5 mm, and hence
requires between 1 and 2)& 10 "sec. to complete.
I t will be appreciated that the exact times
involved will depend on the nature and amount
of the gas used and on the voltage applied.
However, if more gas is put in, the mean free
path is shortened, but a higher voltage has to be
applied. These two factors operate inversely to
each other as far as the time is involved, so that
3X10 ' sec. will be the proper figure for many
ordinary counters.

We are now ready to consider what happens
after the electrons have arrived on the central
wire. The central wire will generally be connected
to the grid of the first tube in the detecting

arrangement, and we shall assume that the wire,
grid, and connecting leads have a distributed
capacity of about 10 " farad. We are interested
in inquiring the rate at which the voltage of.the
grid will change.

When the Townsend avalanche is over, a
sheath of positive ions will be left about the
central wire. The role of this sheath in quenching
the discharge and its influence on the rise-time
has been thoroughly discussed by the Mont-
gomerys. ' The positive charges in the sheath will
hold negative charges on the central wire. We
may treat the problem by the familiar method
of electrostatic images. It mill be recalled that
the image in a convex conductor of radius u,
produced by a charge e at distance r from the
center is —ea/r. This expression is exact for a
sphere, and a good approximation for a cylinder.
When the sheath is first formed and r is only a
little greater than a, the image charge is roughly
equal to the charge in the sheath, and almost all
the electrons are held on the wire. However, as
the sheath travels outward and r becomes large
compared to a, the number of electrons held on
the central wire lessens. The electrons are freed
to travel to the grid of the tube and to cause its
potential to vary.

We may estimate the speed of this process.
. The rise in potential of the grid will depend on
the rate at which charge arrives, and this will

depend on the rate at which charge is freed by
the process we have just described. The freeing
of charge depends on the tirade-rate of change of
r, dr/dt. This in turn is in practice a function of
the sheath position, or of the velocity of the
positive ions. The velocity may be taken as
varying with the field, and hence inversely as
the radius.

Another way of viewing this problem is to
consider the effect of the sheath as increasing
the capacity of the central wire. As the sheath
moves outward, the capacity decays down to
the value determined by the counter geometry,
and hence the potential of the system rises. The
relation between charge g, potential V, and

capacity C is the familiar equation q=CV. If
we diHerentiate this with respect to time and

~ C. G. and D. D. Montgomery, Phys. Rev. 5'7, 1030
(&940).
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recall that both C and V will vary, we obtain:

dq/dt=CdV/dt+VdC/dt . (5)

We are interested in ascertaining d U/dh, and we
can write down the factors on which dC/dt
depends. Once the charge has been collected,
dq becomes zero; the electrons are merely held
and redistributed. The capacity of a cylindrical
condenser is given by:

C= 2»g(b/n)

per unit length, where b and a are the electrode
diameters. In this case, we have to consider
what happens when a, the wire diameter, remains
constant, and b, the sheath, moves outward.
The outward (radial) v'elocity of the sheath we
shall assume to be proportional to the field.
This-assumption may be wrong in the high field

region, but is nearly enough right in the region
in which the sheath spends most of its time.
The field varies inversely as the radius. The
outward velocity, d/dh(b), varies as (1/r). Hence
we have:

Kd/dt(1ogb) =d/dt(1/~C),

where X is a constant of proportionality in-

volving loge.
Inspection of this relation shows that the

capacity will be large (and hence the potential
of the grid will be small), while b is nearly equal
to a and that after the sheath has moved out so
that b is any substantial fraction of the size of
the counter, the rate of change of the capacity
will be small and the grid potential will approach
a constant value. We may expect, therefore, that
the rise of potential of the grid of the tube will

give us a straight line on a semi-log plot and
that the intercept on the time axis will give us a
measure of the avalanche formation and electron
collection time.

COMPARISON VGTH EXPERIMENT

%. E. Ramseys has made a careful series of
measurements of the time-rate-of-change of the
potential of the wire of a counter. Inspection of
his curves will show at once that the predictions
based on the above picture are admirably ful-
filled. The predicted straight-line relationship'

~ W. E. Ramsey, Phys. Rev. 5'7, )022 (1940).

suggested by Eq. (7) is found. The intercept
noted by Ramsey is around 3)&10 ' sec. , which
also agrees with the values computed above with
the aid of Eq. (3) and the subsequent argument.
He shows curves for argon-alcohol and for argon-
oxygen counters. He finds that the argon-oxygen
counter has a faster "breakdown" and shows an
intercept of nearer 1.5)& 1.0 ' sec. This is also in
accord with the point of view developed above,
for in the polyatomic counters the electron will
make inelastic collisions at a lower voltage
because of the many available levels in the
band-structure and so it will start to lose energy
(radial velocity) at points further out in the
counter.

In order to ascertain whether the above picture
was also valid in the proportional region, a
counter filled with BF3 was used. It was con-
nected to a P4 Synchroscope. A one megacycle
timing wave gave a time calibration and a high
resistance voltmeter gave the vertical pulse size
scale. The counter wire was connected to ground
through 100,000 ohms, and the distributed
capacity of the wire and leads was estimated at
about 30 mmf. Hence the pulses on the wire
decayed with about a three-microsecond expo-
nent. This quantity was made long compared to
the rise of the pulse so that the exponential
decay would not interfere with the rise-time
measurements and so that the pulses would be
large enough to be easily measured.

The wire was found to change in potential by
about 25 volts in ~~ microsecond, i.e., at the rate
of 100 volts per microsecond. It must be noted
that the rate of rise is not uniform but is rapid
at first and then becomes slower. Hence the rate
is initially greater and afterwards less than 100
v/ms, and the figures refer to a particular
magnitude and instant only. Further, in these
tests it required the presence of about 2&&1.0'
electrons on the wiry to cause a change in

potential of 1 volt, so that even for large initial
ionizing events a considerable gas amplification
in the Townsend avalanche took place. Fluctua-
tions were observed, the magnitude of which
corresponded to about ten percent in the times
required to rise 25 volts. The rates of change
observed in these tests were similar to those
found by Ramsey for his counters. The experi-
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ments, therefore, bear out the picture developed
above. We expect to make some further measure-
ments at smaller pulse sizes;

One may also expect that the rise-time of the
pulse will be slowed down if the capacity of the
wire-system is increased. This was tested and
found to be the case. Increasing the capacity
also has the effect of decreasing the pulse size.
Similar effects were noted by Ramsey" and are
found in his curves.

DISCUSSION

In conclusion a few words may be said about
high counting rates. In the Geiger region the
normal recovery time is determined by the

'

mobility of the positive ion sheath. This may be
shortened by collecting the positives on the
center wire, using the Simpson' circuit. The
effective speed of operation of this circuit is
limited by the spread-time of the sheath. ' In
the proportional region, the sheath does not
spread the whole length of the wire, ' and the

' J. A. Simpson, Phys. Rev. 66, 39 (1944).' E. Wantuch, Phys. Rev, V1, 646 (1947).

recovery times can be made much more rapid, '
The greater the gas amplification, however, the
larger the number of positive ions that produce
space charge which will limit counting speeds.
At . low amplifications, recovery times can be
considerably shortened, but the recovery time
still is the limiting factor. Only a small benefit
can be achieved by operating the counter at a
higher voltage. The field is increased, and hence
the electron velocity is higher, but many more
positives are formed at varying distances from
the wire. The use of grids is beneficial, since
the positives have a smaller distance to travel.
However, grids present added constructional
dif6culty and in the proportional region pose
collection problems. A pulse sufficient in size to
be easy to measure can be obtained in 10 ' sec. ,

as we have shown. Therefore, an application of
the Simpson circuit to a proportional counter
will permit counting at rates up to several
million per second. The matter is under study
and further tests will be reported in due course.

' C. O. Muelhause and H. Friedman, Rev. Sci. Inst. 17'
506 (1946).' S. A. Korff, Phys. Rev. 68, 53 (1945).
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A study of the band spectrum of InC1 has been carried out in absorption with a determination
of vibrational, rotational, and electronic energy levels associated with the band system in the
region 2650 to 3000 angstrom units. The 8„' and 8,"values were found to be of the order of
0.11 wave numbers, from which can be calculated a nuclear separation of the order of 2.3X 10 '
centimeter. Predissociation in the band system provided a value for the energy of dissociation
of the ground state between 4.64 and 4.66 electron volts.

INTRODUCTION

HILE studying the absorption of a mixture
~

~

~

~

~

of Hg and In vapor, Winans, Davis, and
Leitzke' observed a band system appearing in
the region 2650 to 2800 angstrom units. The
present study is the outgrowth of an attempt to
verify the earlier observations and to study the
bands under greater dispersion. By duplicating

' J. G. Winans, Frances. Davis, and Victor Leitzke,
Phys. Rev. SV, 1079 (1940).

the conditions previously found necessary to
produce the bands, it was possible to photograph
them with sufficient dispersion to make an
accurate measurement of the isotope shift. These
measurements showed that the bands were due
to InC1 and not HgIn, as hrst supposed.

A survey of the literature showed that this
same band system had been observed previously
a number of times. Grotrian' obtained the

'W. Grotrian, Zeits. f. Physik 12, 229 (1923).


